Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = hot-dip galvanized steel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13880 KiB  
Article
Analysis of Corrosion-Mechanical Properties of Electroplated and Hot-Dip Zinc Coatings on Mechanically Pre-Treated Steel Substrate
by Jaroslav Lozrt, Jiří Votava, Vojtěch Kumbár and Adam Polcar
Appl. Sci. 2025, 15(5), 2626; https://doi.org/10.3390/app15052626 - 28 Feb 2025
Viewed by 960
Abstract
This study evaluates the effects of three mechanical pre-treatment methods on S235JRG2 steel sheets: blasting with a synthetic corundum (F40), blasting with steel shot (S170), and grinding with synthetic corundum (P40). Untreated samples served as a reference. The analysis of mechanical pre-treatments focused [...] Read more.
This study evaluates the effects of three mechanical pre-treatment methods on S235JRG2 steel sheets: blasting with a synthetic corundum (F40), blasting with steel shot (S170), and grinding with synthetic corundum (P40). Untreated samples served as a reference. The analysis of mechanical pre-treatments focused on surface integrity, including measurements of surface roughness parameters Ra and Rz (ISO 21920-2) and subsurface microhardness (ISO 6507-1). Zinc coatings were assessed through mechanical testing (cupping test, ISO 1520) and corrosion testing in a neutral salt spray environment (ISO 9227), with results evaluated using digital image analysis. Experimental findings indicate that electroplated zinc deposition rates are influenced by surface roughness, while subsurface microhardness has no significant effect. In contrast, for hot-dip galvanizing, both parameters impact the process. The mechanical properties of electroplated zinc coatings are further affected by steel surface integrity, whereas hot-dip zinc coatings are primarily governed by intermetallic phase formation, making the influence of steel surface integrity statistically negligible. Corrosion testing revealed that blasting with a synthetic corundum is particularly unsuitable, as it leads to numerous inhomogeneities in both coating types, accelerating corrosion degradation. Full article
Show Figures

Figure 1

14 pages, 4897 KiB  
Article
Electrochemical Corrosion and Wear Behavior of Hot-Dip Galvanized Steel in Soils of Northern China
by Xiaoyu Jiao, Junhong Jia, Wei Chen and Wenlong Yang
Coatings 2025, 15(1), 112; https://doi.org/10.3390/coatings15010112 - 20 Jan 2025
Viewed by 1302
Abstract
The study examined the corrosion and wear characteristics of hot-dip galvanized steel in complex soil environments. The results showed that hot-dip galvanized steel exhibited improved corrosion resistance characteristics. Additionally, the sliding speed was observed to influence both the coefficient of friction (COF) and [...] Read more.
The study examined the corrosion and wear characteristics of hot-dip galvanized steel in complex soil environments. The results showed that hot-dip galvanized steel exhibited improved corrosion resistance characteristics. Additionally, the sliding speed was observed to influence both the coefficient of friction (COF) and the state of the worn surface. Moreover, the corrosion resistance of hot-dip galvanized steel declined as the immersion period increased. Following the incorporation of friction behavior, the galvanized layer is prone to accelerated degradation. The wear of the galvanized layer resulted in the failure of its electrochemical protection, creating a pathway for corrosion to occur on the substrate as a result of the coupling effect of corrosion and wear. The use of hot-dip galvanized steel presents challenges when exposed to a tribocorrosion environment for a prolonged period. This study lays the groundwork for future research on the maintenance cycle of industrial structures constructed primarily with hot-dip galvanized steel. Full article
(This article belongs to the Special Issue Trends and Advances in Anti-Wear Materials and Coatings)
Show Figures

Figure 1

14 pages, 5225 KiB  
Article
Slip-Resistant Connections with Hot-Dip Galvanized Faying Surface Under Freeze-Thaw Cycles and/or Low Temperature
by Alfonso Fuente García, Miguel Serrano López, Carlos López-Colina Pérez and Fernando López Gayarre
Materials 2025, 18(1), 84; https://doi.org/10.3390/ma18010084 - 28 Dec 2024
Viewed by 731
Abstract
In some occasions, outdoor steel structures like wind towers, bridges, winter sports facilities, and so on are subjected to extreme environmental conditions with the presence of ice and/or with below-zero temperatures. Sometimes in these situations, surface protection of the steel structure is usually [...] Read more.
In some occasions, outdoor steel structures like wind towers, bridges, winter sports facilities, and so on are subjected to extreme environmental conditions with the presence of ice and/or with below-zero temperatures. Sometimes in these situations, surface protection of the steel structure is usually designed using hot-dip galvanizing to improve its durability. In these special circumstances, the structure’s connections are also exposed to adverse climatic agents. International standards and codes such as Eurocode 3 or EN1090-2 do not provide indications for these cases. In this experimental research, 24 specimens of non-slip joints with hot-dip galvanized faying surfaces and HV M16 and M20 bolts have been studied. Twelve specimens were subjected to fourteen twelve-hour freeze-thaw cycles, with temperature oscillation and periodic immersion in water. Next, six of the connections were subjected to a slip test under monotonic load at a temperature of −20 ± 0.5 °C and the other six at room temperature. The results were compared with joints kept at room temperature and not subjected to freeze-thaw cycles for the same period of time. The main conclusion of this piece of research is that the short-term slip resistance behavior of joints with hot-dip galvanized surfaces is not reduced for the cases studied. Full article
Show Figures

Figure 1

28 pages, 5425 KiB  
Article
Atmospheric Corrosion of Different Steel Types in Urban and Marine Exposure
by Luca Paterlini, Andrea Brenna, Federica Ceriani, Matteo Gamba, Marco Ormellese and Fabio Bolzoni
Materials 2024, 17(24), 6211; https://doi.org/10.3390/ma17246211 - 19 Dec 2024
Viewed by 1964
Abstract
The aim of the present work is to study the atmospheric corrosion behavior of metals exposed to both urban (Milan, IT-Lombardia) and marine (Bonassola, IT-Liguria) atmospheres in Italy. A number of coupons (100 × 150 mm) of carbon steel (CS), hot-dip galvanized steel [...] Read more.
The aim of the present work is to study the atmospheric corrosion behavior of metals exposed to both urban (Milan, IT-Lombardia) and marine (Bonassola, IT-Liguria) atmospheres in Italy. A number of coupons (100 × 150 mm) of carbon steel (CS), hot-dip galvanized steel (GS) and different grades of stainless steel (SS) were exposed. At fixed periods of time, samples were characterized by means of Linear Polarization Resistance (LPR), mass loss tests and corrosion product analysis. The corrosion rate on carbon steel exposed to an urban atmosphere, obtained by means of mass loss tests and LPR, are in good agreement with the value estimated by the dose–response function according to the ISO 9223 standard. The yielded results can be classified in corrosivity class C2 of the same ISO 9223. Similar measurements on galvanized steel exhibited a coherent average corrosion rate. Higher corrosion rates were measured for samples exposed to a marine atmosphere for both materials, with values belonging to exposure classes C4-C5 for both materials. Stainless steel samples exhibited only superficial staining in the case of marine exposure, even after just a few months. Full article
Show Figures

Figure 1

12 pages, 6474 KiB  
Article
A Novel Magnetic Flux Leakage Method Incorporating TMR Sensors for Detecting Zinc Dross Defects on the Surface of Hot-Dip Galvanized Sheets
by Bo Wang, San Zhang, Jie Wang, Liqin Jing and Feilong Mao
Magnetochemistry 2024, 10(12), 101; https://doi.org/10.3390/magnetochemistry10120101 - 10 Dec 2024
Cited by 1 | Viewed by 1240
Abstract
Surface quality control of hot-dip galvanized sheets is a critical research topic in the metallurgical industry. Zinc dross, the most common surface defect in the hot-dip galvanizing process, significantly affects the sheet’s service performance. In this manuscript, a novel magnetic flux leakage (MFL) [...] Read more.
Surface quality control of hot-dip galvanized sheets is a critical research topic in the metallurgical industry. Zinc dross, the most common surface defect in the hot-dip galvanizing process, significantly affects the sheet’s service performance. In this manuscript, a novel magnetic flux leakage (MFL) detection method was proposed to detect zinc dross defects on the surface of hot-dip galvanized steel sheets. Instead of using exciting coils in traditional methods, a tiny permanent magnet with a millimeter magnitude was employed to reduce the size and weight of the equipment. Additionally, a high-precision tunnel magnetoresistance (TMR) sensor with a sensitivity of 300 mV/V/Oe was selected to achieve higher detection accuracy. The experimental setup was established, and the x-axis direction (sample movement direction) was determined as the best measurement axis by vector analysis through experiments and numerical simulation. The detection results indicate that this novel MFL detection method could detect industrial zinc dross with an equivalent size of 400 μm, with high signal repeatability and signal-to-noise ratio. In the range of 0–1200 mm/s, the detection speed has almost no effect on the measurement signal, which indicates that this novel method has higher adaptability to various conditions. The multi-path scanning method with a single probe was used to simulate the array measurement to detect a rectangular area of 30 × 60 mm. Ten zinc dross defects were detected across eight measurement paths with 4 mm intervals, and the positions of these zinc dross defects were successfully reconstructed. The research results indicate that this novel MFL detection method is simple and feasible. Furthermore, the implementation of array measurements provides valuable guidance for subsequent in-depth research and potential industrial applications in the future. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

18 pages, 15455 KiB  
Article
The Effect of Bi on the Kinetics of Growths, Microstructure and Corrosion Resistance of Hot-Dip Galvanized Coatings
by Henryk Kania, Helena Otmačić Ćurković, Jan Kudláček, Angela Kapitanović, Joanna Nackiewicz, Daniel Černý and Grzegorz Konopkin
Materials 2024, 17(22), 5604; https://doi.org/10.3390/ma17225604 - 16 Nov 2024
Viewed by 838
Abstract
This paper presents the results of studies on the growth kinetics, microstructure (SEM/EDS) and corrosion behavior of coatings obtained by hot-dip galvanizing process in baths containing Bi additive. The coatings for testing were produced on low-silicon steel in a Zn bath containing 0.04, [...] Read more.
This paper presents the results of studies on the growth kinetics, microstructure (SEM/EDS) and corrosion behavior of coatings obtained by hot-dip galvanizing process in baths containing Bi additive. The coatings for testing were produced on low-silicon steel in a Zn bath containing 0.04, 0.12 and 0.4 wt.% Bi. The corrosion resistance of the coatings was determined comparatively in standard Neutral Salt Spray Tests (NSST) (ISO 9227) and sulfur dioxide test (SDT) in a humid atmosphere (ISO 22479). Potentiodynamic tests and electrochemical impedance spectroscopy measurements were conducted. It was found that the addition of 0.04 and 0.12 wt.% Bi reduces the total thickness of the coatings and the thickness of intermetallic layers, while the content of 0.4 wt.% Bi in the bath increases the thickness of the layers forming the coating. Direct corrosion tests (NSST and SDT) and electrochemical tests showed that the addition of Bi to the zinc bath reduces the corrosion resistance of the coatings. The corrosion resistance of the coatings decreases with increasing Bi concentration in the zinc bath. In the microstructure of the coatings, it was found that Bi precipitates mainly on the surface of the coating, but also on the cross-section of the outer layer and ζ intermetallic layer. Bi precipitates, due to their cathodic nature, affect the reduction of the corrosion resistance of the coatings with the increase of their content in the bath. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

23 pages, 8234 KiB  
Article
Bond Strength and Corrosion Protection Properties of Hot-Dip Galvanized Prestressing Reinforcement in Normal-Strength Concrete
by Petr Pokorný, Tomáš Chobotský, Nikola Prodanovic, Veronika Steinerová and Karel Hurtig
J. Compos. Sci. 2024, 8(10), 407; https://doi.org/10.3390/jcs8100407 - 4 Oct 2024
Cited by 3 | Viewed by 1517
Abstract
Several prestressing reinforced structures have recently collapsed due to chloride-induced steel corrosion. This study investigates the effect of the corrosion of hot-dip galvanized conventional prestressing steel reinforcement under hydrogen evolution on bond strength in normal-strength concrete. The impact of hydrogen evolution on the [...] Read more.
Several prestressing reinforced structures have recently collapsed due to chloride-induced steel corrosion. This study investigates the effect of the corrosion of hot-dip galvanized conventional prestressing steel reinforcement under hydrogen evolution on bond strength in normal-strength concrete. The impact of hydrogen evolution on the porosity of cement paste at the interfacial transition zone (ITZ) is verified through image analysis. The whole surface of prestressing strands is hot-dip galvanized, and their corrosion behavior when embedded in the cement paste is investigated by measuring the time dependence of the open-circuit potential. Concerning the uniformity of the hot-dip galvanized coating and its composition, it is advisable to coat the individual wires of the prestressing reinforcement and subsequently form a strand. It is demonstrated that the corrosion of the coating under the evolution of hydrogen in the cement paste reduces the bond strength of hot-dip galvanized reinforcement in normal-strength concrete. Image analysis after 28 days of cement paste aging indicates insignificant filling of hydrogen-generated pores by zinc corrosion products. Applying an additional surface treatment (topcoat) stable in an alkaline environment is necessary to avoid corrosion of the coating under hydrogen evolution and limit the risk of bond strength reduction. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 5888 KiB  
Article
Study of Flow and Zinc Dross Removal in Hot-Dip Galvanizing with Combined Traveling Magnetic Field
by Xianwen Luo, Haibiao Lu, Yunbo Zhong, Weili Ren and Zuosheng Lei
Materials 2024, 17(19), 4799; https://doi.org/10.3390/ma17194799 - 29 Sep 2024
Cited by 2 | Viewed by 1457
Abstract
The removal of zinc dross, which continuously generates and partially floats on a molten zinc surface, has been a persistent challenge during hot-dip galvanizing. Herein, a three-dimensional mathematical model coupled with the electromagnetic field, flow field and air-knife jet flow was established to [...] Read more.
The removal of zinc dross, which continuously generates and partially floats on a molten zinc surface, has been a persistent challenge during hot-dip galvanizing. Herein, a three-dimensional mathematical model coupled with the electromagnetic field, flow field and air-knife jet flow was established to investigate the flow and zinc dross removal in a zinc pot. Two types of traveling magnetic field combined modes (Mode 1 and Mode 2) were compared. The surface dross removal efficiency was introduced to evaluate the ability of the zinc flow field to compel the movement of zinc dross. The research findings indicate that, in comparison to the influence of strip steel line speed, both the electromagnetic field and air-knife jet have a more pronounced effect on altering the flow characteristics of a molten zinc at surface. The dross removal efficiency for Mode 1 is much far superior to that of Mode 2. With an increase in the driving current, the dross removal efficiency increases while the excessive driving current cannot promote the dross removal efficiency significantly. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

16 pages, 8293 KiB  
Article
Low-Carbon Steel Formed by DRECE Method with Hot-Dip Zinc Galvanizing and Potentiodynamic Polarization Tests to Study Its Corrosion Behavior
by Jiřina Vontorová, Vlastimil Novák and Petra Váňová
Metals 2024, 14(9), 993; https://doi.org/10.3390/met14090993 - 31 Aug 2024
Cited by 1 | Viewed by 1484
Abstract
The use of low-carbon unalloyed steel with minimal silicon content is widespread in structural steel and automotive applications due to its ease of manipulation. The mechanical properties of this steel can be significantly enhanced through severe plastic deformation (SPD) techniques. Our study focuses [...] Read more.
The use of low-carbon unalloyed steel with minimal silicon content is widespread in structural steel and automotive applications due to its ease of manipulation. The mechanical properties of this steel can be significantly enhanced through severe plastic deformation (SPD) techniques. Our study focuses on the practical benefits of the dual rolling equal channel extrusion (DRECE) method, which strengthens the steel and has implications for material hardness and the thickness of subsequently applied hot-dip zinc galvanizing. Furthermore, the steel’s corrosion potential and current are investigated as a function of material hardness and thickness. The findings show a 20% increase in hardness HV 30 after the first run through the forming machine, with an additional 10% increase after the second run. Subsequent galvanizing leads to a further 1–12% increase in HV 30 value. Notably, the DRECE hardening demonstrates no statistically significant effect on the corrosion potential and current; however, the impact of galvanizing is as anticipated. Full article
(This article belongs to the Special Issue Novel Insights and Advances in Steels and Cast Irons)
Show Figures

Graphical abstract

14 pages, 11328 KiB  
Article
High-Temperature Zn-5Al Hot Dip Galvanizing of Reinforcement Steel
by Anżelina Marek, Veronika Steinerová, Petr Pokorný, Henryk Kania and Franciszek Berger
Coatings 2024, 14(8), 959; https://doi.org/10.3390/coatings14080959 - 1 Aug 2024
Cited by 2 | Viewed by 1903
Abstract
This article presents the results of research on the growth kinetics, microstructure (SEM/EDS/XRD), and corrosion behavior of Zn-5Al coatings obtained using a high-temperature hot dip process on B500B reinforcing steel. The corrosion resistance of the coatings was determined using the neutral salt spray [...] Read more.
This article presents the results of research on the growth kinetics, microstructure (SEM/EDS/XRD), and corrosion behavior of Zn-5Al coatings obtained using a high-temperature hot dip process on B500B reinforcing steel. The corrosion resistance of the coatings was determined using the neutral salt spray (NSS) test (EN ISO 9227). Based on chemical composition tests in micro-areas (EDS) and phase composition tests (XRD), corrosion products formed on the coating surface after exposure to a corrosive environment containing chlorides were identified. In the outer layer of the coating, areas rich in Zn and Al were found, which were solid solutions of Al in Zn (α), while the diffusion layer was formed by a layer of Fe(Al,Zn)3 intermetallics. The growth kinetics of the coatings indicate the sequential growth of the diffusion layer, controlled by diffusion in the initial phase of growth, and the formation of a periodic layered structure with a longer immersion time. The NSS test showed an improved corrosion resistance of reinforcing bars with Zn-5Al coatings compared to a conventional hot-dip-galvanized zinc coating. The increase in corrosion resistance was caused by the formation of beneficial corrosion products: layered double hydroxides (LDH) based on Zn2+ and Al3+ cations and Cl anions and simonkolleite—Zn5(OH)8Cl2·H2O. Full article
(This article belongs to the Special Issue High-Temperature Corrosion and Oxidation of Metals and Alloys)
Show Figures

Figure 1

12 pages, 11026 KiB  
Article
Comparative Analysis of Coatings Applied for Anti-Corrosion Protection of Public Transport Vehicles’ Structural Parts
by Wojciech Skotnicki and Dariusz Jędrzejczyk
Materials 2024, 17(15), 3763; https://doi.org/10.3390/ma17153763 - 30 Jul 2024
Cited by 1 | Viewed by 1389
Abstract
The conducted research focused on anti-corrosion systems applied for the protection of structural parts used in public transport vehicles. Detailed tests were carried out on samples taken from the brackets supporting the doors of a public transport bus. This work includes the results [...] Read more.
The conducted research focused on anti-corrosion systems applied for the protection of structural parts used in public transport vehicles. Detailed tests were carried out on samples taken from the brackets supporting the doors of a public transport bus. This work includes the results of the chemical analysis of the composition of snow–mud samples taken from the selected bus route and the results of laboratory tests performed on samples with various anti-corrosion coatings. Four types of samples made of S235JR steel with a zinc coating deposited by thermo-diffusion, electroplating, hot-dip zinc galvanization, and the cataphoresis method were tested. Both non-destructive tests—NDTs (the measurement of coating thickness and roughness, microscopic observations)—and destructive tests—DTs (scratch tests, salt chamber tests)—were performed. The conducted tests proved that the most effective method is the use of anti-corrosive hot-dip zinc coating. Full article
Show Figures

Figure 1

23 pages, 30432 KiB  
Article
Application of Organo-Modified Silica Nanoparticles to Improve the Load-Bearing Capacity of Bonded Joints of Dissimilar Steel Substrates
by Anna Guzanová, Dagmar Draganovská, Miroslav Tomáš, Petr Szelag, Nikita Veligotskyi, Miroslav Džupon and Marek Vojtko
Crystals 2024, 14(6), 558; https://doi.org/10.3390/cryst14060558 - 17 Jun 2024
Viewed by 1560
Abstract
The paper deals with the joining of dissimilar steels by adhesive bonding. The base materials for the experimental work were deep-drawn low-carbon steel DC04, and hot-dip galvanized HSLA steel HX340LAD+Z. Adhesive bonding was performed using rubber-based and epoxy-based adhesives. The research aimed to [...] Read more.
The paper deals with the joining of dissimilar steels by adhesive bonding. The base materials for the experimental work were deep-drawn low-carbon steel DC04, and hot-dip galvanized HSLA steel HX340LAD+Z. Adhesive bonding was performed using rubber-based and epoxy-based adhesives. The research aimed to verify the importance of surface preparation of steel substrates using a formulation with organically modified silica nanoparticles and epoxy organic functional groups, where one end of the functional group can be incorporated into the organic binder of the coating material and the other end can be firmly bonded to substances of an inorganic nature (metals). Since the binder base of adhesives is very similar to that of coatings, verifying the performance of this surface preparation when interacting with the adhesive is necessary. The load-bearing tensile shear capacity of single-lapped joints and the resistance of the joints against corrosion-induced disbanding in a climate chamber were tested. The energy dissipated by the joints up to fracture was calculated from the load-displacement curves. Bonded joints with organosilane were compared with joints without surface preparation and joints prepared by chroman-free zirconate passivation treatment. Exposure of the joints in the climatic chamber did not cause a relevant reduction in the characteristics of the joints. Organosilicate formulation was proved effective when bonding ungalvanized steels with a rubber-based structural adhesive, where it improves the bond quality between the adhesive and the substrate. Full article
Show Figures

Figure 1

53 pages, 13665 KiB  
Review
Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview
by Petr Pokorný and Milan Kouřil
Buildings 2024, 14(6), 1756; https://doi.org/10.3390/buildings14061756 - 11 Jun 2024
Cited by 3 | Viewed by 2610
Abstract
This article provides a comprehensive overview of the potential use of organofunctional silane coatings in the corrosion protection of concrete reinforcement in close relation to other commercially used coating technologies—i.e., epoxy coatings and bath hot-dip galvanizing coatings. The application technology of the steel [...] Read more.
This article provides a comprehensive overview of the potential use of organofunctional silane coatings in the corrosion protection of concrete reinforcement in close relation to other commercially used coating technologies—i.e., epoxy coatings and bath hot-dip galvanizing coatings. The application technology of the steel surface is described in detail, and the corrosion performance and bond strength in concrete are compared. The paper also points out the possibility of improving the durability of epoxy coatings by the addition of silanes and, in the case of application to the surface of hot-dip galvanized steel, they can prevent corrosion of the coating by hydrogen evolution. The application potential of organofunctional silanes is also presented in the form of hydrophobic coatings on concrete surfaces or as corrosion inhibitors in simulated concrete pore solutions. The use of a suitable type of modified silane coating on the surface of carbon steel reinforcement can increase the corrosion performance and can also increase the bond strength in concrete. However, these facts need to be experimentally verified. Full article
Show Figures

Figure 1

13 pages, 2773 KiB  
Article
Comparison of Friction Properties of GI Steel Plates with Various Surface Treatments
by Miroslav Tomáš, Stanislav Németh, Emil Evin, František Hollý, Vladimír Kundracik, Juliy Martyn Kulya and Marek Buber
Lubricants 2024, 12(6), 198; https://doi.org/10.3390/lubricants12060198 - 31 May 2024
Cited by 3 | Viewed by 1665
Abstract
This article presents the improved properties of GI (hot-dip galvanized) steel plates in combination with a special permanent surface treatment. The substrate used was hot-dip galvanized deep-drawn steel sheets of grade DX56D + Z. Subsequently, various surface treatments were applied to their surface. [...] Read more.
This article presents the improved properties of GI (hot-dip galvanized) steel plates in combination with a special permanent surface treatment. The substrate used was hot-dip galvanized deep-drawn steel sheets of grade DX56D + Z. Subsequently, various surface treatments were applied to their surface. The coefficient of friction of the metal sheets without surface treatment, with a temporary surface treatment called passivation, and a thin organic coating (TOC) based on hydroxyl resins dissolved in water, Ti and Cr3+ were determined by a cup test. The surface quality and corrosion resistance of all tested samples were also determined by exposing them for up to 288 h in an atmosphere of neutral salt spray. The surface microgeometry parameters Ra, RPc and Rz(I), which have a significant influence on the pressing process itself, were also determined. The TOC deposited on the Zn substrate was the only one to exhibit excellent lubrication and anticorrosion properties, resulting in the lowest surface microgeometry values owing to the uniform and continuous layer of the thin organic coating compared to the GI substrate and passivation surface treatment, respectively. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology)
Show Figures

Figure 1

14 pages, 9091 KiB  
Article
Non-Contact Evaluation of Deformation Characteristics on Automotive Steel Sheets
by Ľubomír Ambriško and Ladislav Pešek
Metals 2024, 14(5), 566; https://doi.org/10.3390/met14050566 - 11 May 2024
Viewed by 1569
Abstract
The work is focused on experimental research of deformation characteristics on three grades of hot-dip galvanized steels for the automotive industry. Deformation maps were obtained using the DIC (Digital Image Correlation) method. The map documents the development of longitudinal and transverse deformations under [...] Read more.
The work is focused on experimental research of deformation characteristics on three grades of hot-dip galvanized steels for the automotive industry. Deformation maps were obtained using the DIC (Digital Image Correlation) method. The map documents the development of longitudinal and transverse deformations under tensile stress. In addition to uniaxial tension, the investigated specimens were subjected to eccentric tension. The stable crack growth (SCG) was evaluated using a non-contact measurement technique on CT (compact tension) specimens. The deformation of steels, which affects the resistance to stable crack growth (confirmed by the Design of Experiments—DOE method), was manifested in the first stages of eccentric loading of specimens. The notch root radius varies considerably due to the blunting of the starting fatigue crack. The resistance to stable crack growth, which represents a safety reserve during a vehicle crash, was obtained. Full article
Show Figures

Figure 1

Back to TopTop