Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hormopriming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 912 KiB  
Article
Seed Priming and Biopriming in Two Squash Landraces (Cucurbita maxima Duchesne) from Tunisia: A Sustainable Strategy to Promote Germination and Alleviate Salt Stress
by Néji Tarchoun, Wassim Saadaoui, Khawla Hamdi, Hanen Falleh, Ourania Pavli, Riadh Ksouri and Spyridon A. Petropoulos
Plants 2024, 13(17), 2464; https://doi.org/10.3390/plants13172464 - 3 Sep 2024
Cited by 2 | Viewed by 1967
Abstract
In recent years, seed priming has gained interest, with researchers aiming to enhance seed germination and early growth, especially under abiotic stress conditions. In this study, seeds from two squash landraces (Cucurbita maxima Duchesne; i.e., Galaoui large seeds (Galaoui hereafter) and Batati [...] Read more.
In recent years, seed priming has gained interest, with researchers aiming to enhance seed germination and early growth, especially under abiotic stress conditions. In this study, seeds from two squash landraces (Cucurbita maxima Duchesne; i.e., Galaoui large seeds (Galaoui hereafter) and Batati green (Batati hereafter)) were subjected to different priming methods ((a) 0.3% and 0.4% KNO3 (halopriming); (b) 0.1% and 0.2% GA3 (hormopriming); (c) inoculation with Trichoderma spp. (T. harzianum, T. viride, and T. virens), Bacillus subtilis, and Pseudomonas fluorescens (biopriming) in order to promote germination parameters and seedling growth under salinity stress (0, 100, and 200 mM of NaCl). Our findings indicate the better performance of primed seeds compared to the untreated ones in terms of germination and seedling growth traits, although a varied response depending on the priming method and the landrace was observed. The highest germination percentage (GP) and the lowest mean germination time (MGT) were observed in 0.4% KNO3-primed seeds. The positive effects of 0.4% KNO3 were also depicted in all traits related to seedling growth and the seedling vigor index (SVI), indicating its effectiveness as a priming agent in squash seeds. Under salinity stress conditions, priming with 0.4% KNO3 significantly improved the germination and seedling growth traits for both landraces, while the application of 0.2% GA3 at high salinity significantly improved photosynthetic quantum yield (Fv/Fm ratio). Regarding the effects of biopriming in germination and seedling growth traits, our results indicate that T. harzianum and B. subtilis were the most effective bioagents in promoting germination and seedling growth in Galaoui and Batati seeds, respectively. In conclusion, our findings provide important information regarding the practice of using priming and biopriming agents to enhance the germination and seedling growth capacity of squash seeds, as well to mitigate the negative effects of salinity stress at the critical stages of germination and early growth. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 3414 KiB  
Article
Seed Priming with Salicylic Acid Alleviates Salt Stress Toxicity in Barley by Suppressing ROS Accumulation and Improving Antioxidant Defense Systems, Compared to Halo- and Gibberellin Priming
by Hasna Ellouzi, Walid Zorrig, Souhir Amraoui, Samia Oueslati, Chedly Abdelly, Mokded Rabhi, Kadambot H. M. Siddique and Kamel Hessini
Antioxidants 2023, 12(9), 1779; https://doi.org/10.3390/antiox12091779 - 18 Sep 2023
Cited by 20 | Viewed by 3433
Abstract
Plants are highly sensitive to various environmental stresses, which can hinder their growth and reduce yields. In this study, we investigated the potential of seed priming with salicylic acid (SA), gibberellic acid (GA3), and sodium chloride (NaCl) to mitigate the adverse [...] Read more.
Plants are highly sensitive to various environmental stresses, which can hinder their growth and reduce yields. In this study, we investigated the potential of seed priming with salicylic acid (SA), gibberellic acid (GA3), and sodium chloride (NaCl) to mitigate the adverse effects of salinity stress in Hordeum vulgare at the germination and early seedling stages. Exposing H. vulgare seeds to salt stress reduced the final germination percentage and seedling shoot and root growth. Interestingly, all seed treatments significantly improved salt-induced responses, with GA3 being more effective in terms of germination performance, plant growth, and photosynthesis. SA priming exhibited promising effects on antioxidant defense mechanisms, proline, sugar, and ascorbic acid production. Notably, SA priming also suppressed reactive oxygen species accumulation and prevented lipid peroxidation. These findings highlight the ability of SA to manage crosstalk within the seed, coordinating many regulatory processes to support plant adaptation to salinity stress. Full article
(This article belongs to the Special Issue Role of Reactive Oxygen Species in Response to Environmental Stress)
Show Figures

Figure 1

15 pages, 738 KiB  
Article
Seed Priming Treatments to Improve Heat Stress Tolerance of Garden Pea (Pisum sativum L.)
by Gordana Tamindžić, Maja Ignjatov, Dragana Miljaković, Janko Červenski, Dragana Milošević, Zorica Nikolić and Sanja Vasiljević
Agriculture 2023, 13(2), 439; https://doi.org/10.3390/agriculture13020439 - 13 Feb 2023
Cited by 22 | Viewed by 4431
Abstract
Heat stress seriously affects the production of cool-season food legume crops such as garden peas. Seed priming is a widely used technique that increases germination and improves plant growth and development, resulting in better field performance and higher yield of crops. In the [...] Read more.
Heat stress seriously affects the production of cool-season food legume crops such as garden peas. Seed priming is a widely used technique that increases germination and improves plant growth and development, resulting in better field performance and higher yield of crops. In the current study, we investigated three seed priming treatments—hydropriming (dH2O), osmopriming (2.2% w/v CaCl2), and hormopriming (50 mg L−1 salicylic acid—SA)—and their effect on germination, initial seedling development, and physiological traits of two novel garden pea cultivars, under optimal conditions and heat stress. Seed priming with H2O, CaCl2, and SA enhanced garden pea performance under both optimal and stress conditions via significant improvements in germination energy, final germination, mean germination time, mean germination rate, seedling vigor index, shoot length, root length, fresh seedling weight, dry seedling weight, shoot elongation rate, root elongation rate, relative water content, chlorophyll content, and membrane stability index, as compared to control. The highest effect on the examined parameters was achieved by osmopriming and hormopriming in both cultivars, suggesting that these treatments could be used to improve the heat stress tolerance of garden pea, after extensive field trials. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

15 pages, 1298 KiB  
Article
Seed Priming Improves Biochemical and Physiological Performance of Wheat Seedlings under Low-Temperature Conditions
by Milica Kanjevac, Biljana Bojović, Andrija Ćirić, Milan Stanković and Dragana Jakovljević
Agriculture 2023, 13(1), 2; https://doi.org/10.3390/agriculture13010002 - 20 Dec 2022
Cited by 6 | Viewed by 4251
Abstract
Wheat is a widely cultivated cereal throughout the world and stress caused by low temperatures significantly affects all stages of wheat development. Seed priming is an effective method to produce stress-resistant plants. This work was carried out to determine whether different priming methods [...] Read more.
Wheat is a widely cultivated cereal throughout the world and stress caused by low temperatures significantly affects all stages of wheat development. Seed priming is an effective method to produce stress-resistant plants. This work was carried out to determine whether different priming methods (hormo-, halo-, osmo-, and hydropriming) can increase the resistance of wheat to low-temperature conditions (10 °C). The effect of priming on growth, as well as the biochemical and physiological performance of wheat seedlings were monitored. In general, priming had a significant stimulatory effect on the monitored characteristics. Hormo- and halopriming had a positive effect on the growth, vigor index, and total soluble protein content of wheat seedlings. Additionally, hormopriming reduced the malondialdehyde (MDA) content in wheat seedlings compared to unprimed seeds. A dominant effect on antioxidant enzymes (superoxide-dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, and pyrogallol peroxidase) was recorded after seed priming with KNO3. The effectiveness of priming was also confirmed through the increased content of phenolic compounds (including flavonoids), and total antioxidant activity. The HPLC analysis showed increased content of chlorogenic acid, catechin, 4-hydroxy benzoic acid, sinapic acid, rutin, naringin, and quercetin in primed wheat seedlings compared to unprimed grown seedlings under low-temperature conditions with the best effects achieved by hormo- and hydropriming. It is concluded that seed priming can be regarded as a promising approach for increasing the resistance of wheat seedlings to low-temperature stress. Full article
(This article belongs to the Special Issue Cereal Genetics, Breeding and Wide Crossing)
Show Figures

Figure 1

15 pages, 1381 KiB  
Article
Improvement of Germination and Early Growth of Radish (Raphanus sativus L.) through Modulation of Seed Metabolic Processes
by Milica Kanjevac, Dragana Jakovljević, Marija Todorović, Milan Stanković, Svetlana Ćurčić and Biljana Bojović
Plants 2022, 11(6), 757; https://doi.org/10.3390/plants11060757 - 12 Mar 2022
Cited by 11 | Viewed by 9274
Abstract
Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in seed necessary for germination. This research was conducted to examine the influence [...] Read more.
Radish (Raphanus sativus L.) is a vegetable cultivated worldwide because of its large succulent hypocotyls. The priming method initiates metabolic processes at early stages and regulates the metabolic events in seed necessary for germination. This research was conducted to examine the influence of various priming treatments on physiological performance (germination, growth, lipid peroxidation, primary and secondary metabolism) and antioxidant activity of radish seedlings. On the basis of germination and growth characteristics, vigor index, and relative water content in leaves, it was confirmed that priming treatments with 0.01% ascorbic acid (AA) and 1% KNO3 improves the initial stages of radish development. Furthermore, the efficiency of AA as a priming agent was confirmed through the reduction of malondialdehyde (MDA) level compared to unprimed seedlings. On the other hand, hormopriming with indole-3-acetic acid (IAA) significantly increased the concentration of photosynthetic pigments and total soluble leaf proteins compared to non-primed seedlings. The highest content of total phenolic compounds, including flavonoids, were obtained after hormopriming with 1 mM IAA and halopriming with 1% MgSO4. On the basis of the percentage of inhibition of DPPH radicals, it was confirmed that treatments with IAA and AA can improve the antioxidant activity of radish seedlings. This study provides useful information regarding the possibilities of pregerminative metabolic modulation through the seed priming for the biochemical and physiological improvement of radish, and this topic should be further investigated in order to determine the potential use of AA and IAA as suitable priming agents in radish commercial production. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 2809 KiB  
Article
ROS Accumulation as a Hallmark of Dehydration Stress in Primed and Overprimed Medicago truncatula Seeds
by Andrea Pagano, Giulia Folini, Paola Pagano, Federico Sincinelli, Andrea Rossetto, Anca Macovei and Alma Balestrazzi
Agronomy 2022, 12(2), 268; https://doi.org/10.3390/agronomy12020268 - 21 Jan 2022
Cited by 16 | Viewed by 3741
Abstract
Seed priming protocols implement incomplete imbibition phases, as well as physical, chemical or biological treatments, to activate pre-germinative metabolism and stress response, thus improving germination performances, seedling establishment and stress tolerance according to agricultural productivity requirements. The dehydration phase following priming treatments represents [...] Read more.
Seed priming protocols implement incomplete imbibition phases, as well as physical, chemical or biological treatments, to activate pre-germinative metabolism and stress response, thus improving germination performances, seedling establishment and stress tolerance according to agricultural productivity requirements. The dehydration phase following priming treatments represents a critical variable, since an excessively prolonged imbibition (overpriming) impairs desiccation tolerance, compromising seed viability and seedling establishment. Priming protocols generally optimize imbibition-dehydration timing empirically to avoid overpriming. Hence, a better understanding of the dynamics underlying the loss of desiccation tolerance represents a promising route to test and develop efficient and cost-effective priming techniques. In the present work, priming and overpriming conditions were defined to explore the role of desiccation tolerance in seed priming efficiency in the model legume Medicago truncatula. The positive effects of hydropriming and kinetin-mediated hormopriming on germination parameters were screened in combination with conditions of short/prolonged priming and mild/severe overpriming. Biometric analyses highlighted contrasting responses in terms of germination performances and seedling development, while ROS (reactive oxygen species) levels measured during dehydration positively correlate with the loss of desiccation tolerance in early seedlings, suggesting possible applications to monitor priming progression and predict overpriming occurrence. Full article
(This article belongs to the Special Issue Effective Methods for Improving Seed Germination and Seed Quality)
Show Figures

Figure 1

20 pages, 698 KiB  
Article
Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India
by Buta Singh Dhillon, Virender Kumar, Pardeep Sagwal, Navjyot Kaur, Gurjit Singh Mangat and Sudhanshu Singh
Agronomy 2021, 11(5), 849; https://doi.org/10.3390/agronomy11050849 - 27 Apr 2021
Cited by 16 | Viewed by 7148
Abstract
Poor early growth and uneven crop establishment are reported as the major bottlenecks in wide-scale adoption and optimal yield realization of dry direct-seeded rice (DSR). Seed priming can potentially help overcome these problems in DSR. Therefore, laboratory and field studies were conducted at [...] Read more.
Poor early growth and uneven crop establishment are reported as the major bottlenecks in wide-scale adoption and optimal yield realization of dry direct-seeded rice (DSR). Seed priming can potentially help overcome these problems in DSR. Therefore, laboratory and field studies were conducted at Punjab Agricultural University, Ludhiana, India, during kharif/wet-season 2018 and 2019 to evaluate the effect of different priming techniques on germination, establishment, growth, and grain yield of rice under DSR conditions. The following priming treatments were evaluated: dry non-primed seed (control), hydropriming with distilled water, halopriming with 2.0% potassium nitrate, hormopriming with 50 ppm gibberellic acid (GA3), and osmopriming with polyethylene glycol (PEG)(−0.6 MPa), each with 12 and 24 h priming duration. In 2019, priming treatments were tested under two DSR establishment methods—conventional DSR (sowing in dry soil followed by irrigation) and soil mulch DSR (locally known as vattar DSR) (sowing in moist soil after pre-sowing irrigation), whereas in 2018, priming treatments were evaluated under conventional DSR only. In both years, halopriming and hormopriming resulted in a 7–11% increase in rice yields compared to non-primed dry seed (control). Osmopriming resulted in a 4% yield increase compared to control in 2018 but not in 2019. The higher yields in halopriming and hormopriming were attributed to higher and rapid germination/crop emergence, better root growth, and improvement in yield attributes. Priming effect on crop emergence, growth, and yield did not differ by DSR establishment methods and duration of priming. Conventional DSR and soil mulch DSR did not differ in grain yield, whereas they differed in crop emergence, growth, and yield attributes. These results suggest that halopriming with 2.0% potassium nitrate and hormopriming with 50 ppm GA3 has good potential to improve crop establishment and yield of rice in both conventional and soil mulch DSR systems. Full article
Show Figures

Figure 1

Back to TopTop