Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = homothallic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 902 KiB  
Article
Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis
by Dong Jae Lee and Young-Joon Choi
Pathogens 2025, 14(7), 610; https://doi.org/10.3390/pathogens14070610 - 20 Jun 2025
Viewed by 483
Abstract
Sclerotinia sclerotiorum is a globally distributed fungal pathogen responsible for significant agricultural losses across a wide range of crops. This study aimed to develop polymorphic simple sequence repeat (SSR) markers by whole-genome resequencing of three Korean isolates and a public reference genome. A [...] Read more.
Sclerotinia sclerotiorum is a globally distributed fungal pathogen responsible for significant agricultural losses across a wide range of crops. This study aimed to develop polymorphic simple sequence repeat (SSR) markers by whole-genome resequencing of three Korean isolates and a public reference genome. A total of 16,885 SSR motifs were identified, of which 368 overlapped with polymorphic insertion–deletion (InDel) sites across the four genomes. From these, 12 SSR markers were selected based on polymorphism information content and amplification quality. Validation across the 28 isolates in Korea revealed high levels of genotypic diversity, suggesting that each isolate is a unique haplotype, although S. sclerotiorum is homothallic and clonally propagated. This multi-genome approach provides robust resources for genotyping, molecular diagnostics, and epidemiological surveillance of S. sclerotiorum. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

16 pages, 1674 KiB  
Article
Mating-Type Analysis in Diaporthe Isolates from Soybean in Central Europe
by Behnoush Hosseini, Lena Sophia Käfer and Tobias Immanuel Link
J. Fungi 2025, 11(4), 251; https://doi.org/10.3390/jof11040251 - 25 Mar 2025
Viewed by 387
Abstract
Species of the genus Diaporthe have a mating-type system with the two mating types MAT1-1 and MAT1-2, like other ascomycetes. They can either be heterothallic, which means that any isolate only possesses one of the two mating types and needs a mating partner [...] Read more.
Species of the genus Diaporthe have a mating-type system with the two mating types MAT1-1 and MAT1-2, like other ascomycetes. They can either be heterothallic, which means that any isolate only possesses one of the two mating types and needs a mating partner for sexual reproduction, or homothallic, which means that they possess both mating types and are self-fertile. For several Diaporthe species, no sexual reproduction has been observed so far. Using PCR with primers specific to the defining genes MAT1-1-1 and MAT1-2-1, we determined the mating types of 33 isolates of Diaporthe caulivora, D. eres, D. longicolla, and D. novem from central Europe. In addition, we partially sequenced the mating-type genes of 25 isolates. We found that different D. longicolla isolates either possess MAT1-1-1 or MAT1-2-1, making the species heterothallic, which is in contrast to previous studies and the general assumption that D. longicolla only reproduces asexually. D. eres and D. novem were also found to be heterothallic. Using genomic sequence information and re-sequencing of DNA and RNA, we identified the MAT1-1-1 gene in D. caulivora and present here the full sequence of the mating-type locus of this homothallic species. Finally, we used sequence information from MAT1-1-1 and MAT1-2-1, respectively, for improved phylogenetic resolution of our isolates. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

46 pages, 13286 KiB  
Article
Three-Dimensional Structural Heteromorphs of Mating-Type Proteins in Hirsutella sinensis and the Natural Cordyceps sinensis Insect–Fungal Complex
by Xiu-Zhang Li, Yu-Ling Li and Jia-Shi Zhu
J. Fungi 2025, 11(4), 244; https://doi.org/10.3390/jof11040244 - 23 Mar 2025
Viewed by 583
Abstract
The MAT1-1-1 and MAT1-2-1 proteins are essential for the sexual reproduction of Ophiocordyceps sinensis. Although Hirsutella sinensis has been postulated to be the sole anamorph of O. sinensis and to undergo self-fertilization under homothallism or pseudohomothallism, little is known about the three-dimensional [...] Read more.
The MAT1-1-1 and MAT1-2-1 proteins are essential for the sexual reproduction of Ophiocordyceps sinensis. Although Hirsutella sinensis has been postulated to be the sole anamorph of O. sinensis and to undergo self-fertilization under homothallism or pseudohomothallism, little is known about the three-dimensional (3D) structures of the mating proteins in the natural Cordyceps sinensis insect–fungal complex, which is a valuable therapeutic agent in traditional Chinese medicine. However, the alternative splicing and differential occurrence and translation of the MAT1-1-1 and MAT1-2-1 genes have been revealed in H. sinensis, negating the self-fertilization hypothesis but rather suggesting the occurrence of self-sterility under heterothallic or hybrid outcrossing. In this study, the MAT1-1-1 and MAT1-2-1 proteins in 173 H. sinensis strains and wild-type C. sinensis isolates were clustered into six and five clades in the Bayesian clustering trees and belonged to 24 and 21 diverse AlphaFold-predicted 3D structural morphs, respectively. Over three-quarters of the strains/isolates contained either MAT1-1-1 or MAT1-2-1 proteins but not both. The diversity of the heteromorphic 3D structures of the mating proteins suggested functional alterations of the proteins and provided additional evidence supporting the self-sterility hypothesis under heterothallism and hybridization for H. sinensis, Genotype #1 of the 17 genome-independent O. sinensis genotypes. The heteromorphic stereostructures and mutations of the MAT1-1-1 and MAT1-2-1 proteins in the wild-type C. sinensis isolates and natural C. sinensis insect–fungi complex suggest that there are various sources of the mating proteins produced by two or more cooccurring heterospecific fungal species in natural C. sinensis that have been discovered in mycobiotic, molecular, metagenomic, and metatranscriptomic studies, which may inspire future studies on the biochemistry of mating and pheromone receptor proteins and the reproductive physiology of O. sinensis. Full article
(This article belongs to the Special Issue Protein Research in Pathogenic Fungi)
Show Figures

Figure 1

22 pages, 2400 KiB  
Article
The Construction of Heterothallic Strains of Komagataella kurtzmanii Using the I-SceI Meganuclease
by Daria D. Sokolova, Philipp I. Akentyev, Kristina O. Petrova, Lyudmila V. Lyutova, Aleksei A. Korzhenkov, Irek I. Gubaidullin, Stepan V. Toshchakov and Dmitry G. Kozlov
Biomolecules 2025, 15(1), 97; https://doi.org/10.3390/biom15010097 - 10 Jan 2025
Viewed by 972
Abstract
The methylotrophic yeast Komagataella kurtzmanii belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically [...] Read more.
The methylotrophic yeast Komagataella kurtzmanii belongs to the group of homothallic fungi that are able to spontaneously change their mating type by inversion of chromosomal DNA in the MAT locus region. As a result, natural and genetically engineered cultures of these yeasts typically contain a mixture of sexually dimorphic cells that are prone to self-diploidisation and spore formation accompanied by genetic rearrangements. These characteristics pose a significant challenge to the development of genetically stable producers for industrial use. In the present study, we constructed heterothallic strains of K. kurtzmanii, ensuring a constant mating type by unifying the genetic sequences in the active and silent MAT loci. To obtain such strains, we performed site-directed inactivation of one of the two yeast MAT loci, replacing its sequence with a selective HIS4 gene surrounded by I-SceI meganuclease recognition sites. We then used transient expression of the SCE1 gene, encoding a recombinant I-SceI meganuclease, to induce site-specific cleavage of HIS4, followed by damage repair by homologous recombination in mutant cells. As a result, heterothallic strains designated ‘Y-727-2(alpha)’ and ‘Y-727-9(a)’, which correspond to the α and a mating type, respectively, were obtained. The strains demonstrated a loss of the ability to self-diploidize. The results of PCR and whole genome analysis confirmed the identity of the contents of the MAT loci. Analysis of the genomes of the final strains, however, revealed a fusion of chromosome 3 and chromosome 4 in strain Y-727-2(alpha)-1. This finding was subsequently confirmed by pulsed-field gel electrophoresis of yeast chromosomes. However, the ability of the Y-727-2(alpha)-derived producers to efficiently secrete recombinant β-galactosidase was unaffected by this genomic rearrangement. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

34 pages, 3130 KiB  
Review
White Mold: A Global Threat to Crops and Key Strategies for Its Sustainable Management
by Md. Motaher Hossain, Farjana Sultana, Md. Tanbir Rubayet, Sabia Khan, Mahabuba Mostafa, Nusrat Jahan Mishu, Md. Abdullah Al Sabbir, Nabela Akter, Ahmad Kabir and Mohammad Golam Mostofa
Microorganisms 2025, 13(1), 4; https://doi.org/10.3390/microorganisms13010004 - 24 Dec 2024
Cited by 6 | Viewed by 3091
Abstract
White mold, caused by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, is a significant biotic stress impacting horticultural and field crops worldwide. This disease causes plants to wilt and ultimately die, resulting in considerable yield losses. This monocyclic disease progresses through a [...] Read more.
White mold, caused by the fungal pathogen Sclerotinia sclerotiorum (Lib.) de Bary, is a significant biotic stress impacting horticultural and field crops worldwide. This disease causes plants to wilt and ultimately die, resulting in considerable yield losses. This monocyclic disease progresses through a single infection cycle involving basal infections from myceliogenically germinated sclerotia or aerial infections initiated by ascospores from carpogenically germinated sclerotia. The pathogen has a homothallic mating system with a weak population structure. Relatively cool temperatures and extended wetness are typical conditions for spreading the disease. Each stage of infection triggers a cascade of molecular and physiological events that underpin defense responses against S. sclerotiorum. Molecular markers can help rapid diagnosis of this disease in plants. Effective management strategies encompass altering the crop microclimate, applying fungicides, reducing inoculum sources, and developing resistant plant varieties. Integrated approaches combining those strategies often yield the best results. This review discusses the latest insights into the biology, epidemiology, infection mechanisms, and early detection of white mold. This review also aims to provide comprehensive guidelines for sustainable management of this destructive disease while reducing the use of excessive pesticides in crop fields. Full article
Show Figures

Figure 1

32 pages, 6010 KiB  
Article
Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex
by Xiu-Zhang Li, Meng-Jun Xiao, Yu-Ling Li, Ling Gao and Jia-Shi Zhu
Biology 2024, 13(8), 632; https://doi.org/10.3390/biology13080632 - 18 Aug 2024
Cited by 2 | Viewed by 1752
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the [...] Read more.
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

20 pages, 10712 KiB  
Article
STRIPAK Dependent and Independent Phosphorylation of the SIN Kinase DBF2 Controls Fruiting Body Development and Cytokinesis during Septation and Ascospore Formation in Sordaria macrospora
by Maria Shariatnasery, Valentina Stein, Ines Teichert and Ulrich Kück
J. Fungi 2024, 10(3), 177; https://doi.org/10.3390/jof10030177 - 26 Feb 2024
Cited by 1 | Viewed by 1845
Abstract
The supramolecular striatin-interacting phosphatases and kinases (STRIPAK) complex is highly conserved in eukaryotes and controls diverse developmental processes in fungi. STRIPAK is genetically and physically linked to the Hippo-related septation initiation network (SIN), which signals through a chain of three kinases, including the [...] Read more.
The supramolecular striatin-interacting phosphatases and kinases (STRIPAK) complex is highly conserved in eukaryotes and controls diverse developmental processes in fungi. STRIPAK is genetically and physically linked to the Hippo-related septation initiation network (SIN), which signals through a chain of three kinases, including the terminal nuclear Dbf2-related (NDR) family kinase DBF2. Here, we provide evidence for the function of DBF2 during sexual development and vegetative growth of the homothallic ascomycetous model fungus Sordaria macrospora. Using mutants with a deleted dbf2 gene and complemented strains carrying different variants of dbf2, we demonstrate that dbf2 is essential for fruiting body formation, as well as septum formation of vegetative hyphae. Furthermore, we constructed dbf2 mutants carrying phospho-mimetic and phospho-deficient codons for two conserved phosphorylation sites. Growth tests of the phosphorylation mutants showed that coordinated phosphorylation is crucial for controlling vegetative growth rates and maintaining proper septum distances. Finally, we investigated the function of DBF2 by overexpressing the dbf2 gene. The corresponding transformants showed disturbed cytokinesis during ascospore formation. Thus, regulated phosphorylation of DBF2 and precise expression of the dbf2 gene are essential for accurate septation in vegetative hyphae and coordinated cell division during septation and sexual spore formation. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

16 pages, 5350 KiB  
Article
Structure of the Mating-Type Genes and Mating Systems of Verpa bohemica and Verpa conica (Ascomycota, Pezizomycotina)
by Wenhua Sun, Wei Liu, Yingli Cai, Xiaofei Shi, Liyuan Wu, Jin Zhang, Lingfang Er, Qiuchen Huang, Qi Yin, Zhiqiang Zhao, Peixin He and Fuqiang Yu
J. Fungi 2023, 9(12), 1202; https://doi.org/10.3390/jof9121202 - 15 Dec 2023
Cited by 3 | Viewed by 1985
Abstract
Verpa spp. are potentially important economic fungi within Morchellaceae. However, fundamental research on their mating systems, the key aspects of their life cycle, remains scarce. Fungal sexual reproduction is chiefly governed by mating-type genes, where the configuration of these genes plays a pivotal [...] Read more.
Verpa spp. are potentially important economic fungi within Morchellaceae. However, fundamental research on their mating systems, the key aspects of their life cycle, remains scarce. Fungal sexual reproduction is chiefly governed by mating-type genes, where the configuration of these genes plays a pivotal role in facilitating the reproductive process. For this study, de novo assembly methodologies based on genomic data from Verpa spp. were employed to extract precise information on the mating-type genes, which were then precisely identified in silico and by amplifying their single-ascospore populations using MAT-specific primers. The results suggest that the MAT loci of the three tested strains of V. bohemica encompassed both the MAT1-1-1 and MAT1-2-1 genes, implying homothallism. On the other hand, amongst the three V. conica isolates, only the MAT1-1-1 or MAT1-2-1 genes were present in their MAT loci, suggesting that V. conica is heterothallic. Moreover, bioinformatic analysis reveals that the three tested V. bohemica strains and one V. conica No. 21110 strain include a MAT1-1-10 gene in their MAT loci, while the other two V. conica strains contained MAT1-1-11, exhibiting high amino acid identities with those from corresponding Morchella species. In addition, MEME analysis shows that a total of 17 conserved protein motifs are present among the MAT1-1-10 encoded protein, while the MAT1-1-11 protein contained 10. Finally, the mating type genes were successfully amplified in corresponding single-ascospore populations of V. bohemica and V. conica, further confirming their life-cycle type. This is the first report on the mating-type genes and mating systems of Verpa spp., and the presented results are expected to benefit further exploitation of these potentially important economic fungi. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 2nd Edition)
Show Figures

Figure 1

20 pages, 908 KiB  
Review
Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research
by Theodora Ijeoma Ekwomadu and Mulunda Mwanza
Agriculture 2023, 13(9), 1810; https://doi.org/10.3390/agriculture13091810 - 14 Sep 2023
Cited by 73 | Viewed by 22616
Abstract
Fusarium pathogens are ubiquitous and mainly associated with diseases in plants. They are the subject of great economic concern in agriculture due to crop losses to contamination of cereal grains with mycotoxins. Fusarium species are also considered agents of human and animal mycotic [...] Read more.
Fusarium pathogens are ubiquitous and mainly associated with diseases in plants. They are the subject of great economic concern in agriculture due to crop losses to contamination of cereal grains with mycotoxins. Fusarium species are also considered agents of human and animal mycotic infections, having a wide-ranging spectrum of clinical manifestations in immunocompromised patients. Fusarium phytopathogens infect a wide variety of plants and cause symptoms ranging from stunted growth, fruit or seed decay, yellowing, and wilting of the leaves and cankers to root or stem decay. The identification of these fungi is difficult due to their pleomorphic tendency and the presence of both homothallic and heterothallic strains in the same species, and so is identifying them at species level because of variation among isolates. However, molecular tools have so far been very powerful in species identification and phylogeny, as the great diversity of the Fusarium genus has compelled scientists to continuously revise previous taxons. Mostly, Fusarium diseases are difficult to control, as fungi easily overcome host resistance to various methods of control. We present an overview of the recent research on Fusarium fungi, its adverse effects, and its impacts on food security. We further elucidate various methods of identifying them to encourage much-needed research on integrated management of this unavoidable food contaminant to achieve sustainable global food security. Full article
(This article belongs to the Special Issue Integrated Management of Fungal Diseases in Crops)
Show Figures

Figure 1

16 pages, 5127 KiB  
Article
Characterisation of Chrysoporthe cubensis and Chrysoporthe deuterocubensis, the Stem Canker Diseases of Eucalyptus spp. in a Forest Plantation in Malaysia
by Norida Hanim Awing, Annya Ambrose, Arifin Abdu, Affendy Hassan and Razak Terhem
Forests 2023, 14(8), 1660; https://doi.org/10.3390/f14081660 - 17 Aug 2023
Cited by 1 | Viewed by 2522
Abstract
Commercial plantations of Eucalyptus species have been established in Malaysia, especially during the past 10 years, with the aim of sustaining the supply of wood and timber products for industrial use in Malaysia. As part of an assessment of fungal diseases affecting Eucalyptus [...] Read more.
Commercial plantations of Eucalyptus species have been established in Malaysia, especially during the past 10 years, with the aim of sustaining the supply of wood and timber products for industrial use in Malaysia. As part of an assessment of fungal diseases affecting Eucalyptus species in four regions in Malaysia, including Kelantan, Pahang, Sabah, and Selangor, stem canker disease was discovered to be a widespread disease infecting Eucalyptus species in Malaysia. This study aimed to identify the fungus-causing stem canker disease, test its pathogenicity in Eucalyptus, and determine the mating type of isolates from the infected trees. The fungi were identified based on morphology and through comparisons of DNA sequence data from the ITS, β-tubulin 2 gene, and TEF-1α gene regions. Phylogenetic analyses showed that the causal agent of the stem canker was Chrysoporthe cubensis infecting Eucalyptus plantations in Pahang and Chrysoporthe deuterocubensis infecting Eucalyptus plantations in Kelantan, Sabah, and Selangor. We believe this is the first report of Chrysoporthe cubensis-infected Eucalyptus in Malaysia and Southeast Asia, while Chrysoporthe deuterocubensis is the first-reported species infecting Eucalyptus pellita in Malaysia. Moreover, the fact that the mating-type MAT1-1 and MAT1-2 genes and the pheromone genes ppg1, ppg2, pre1, and pre2 were identified in all isolates indicates that Chrysoporthe cubensis and Chrysoporthe deuterocubensis are homothallic mating systems. Pathogenicity was tested on a 3-year-old standing tree, 1-year-old seedling, and detached healthy leaves, which were re-isolated for fulfilling Koch’s postulates. In pathogenicity trials, both Chrysoporthe cubensis and Chrysoporthe deuterocubensis gave rise to lesions on wounded Eucalyptus. Both Chrysoporthe spp. were equally pathogenic to Eucalyptus urograndis and Eucalyptus pellita and should be regarded as a biosecurity concern in Malaysia’s forest plantation industry. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

13 pages, 577 KiB  
Article
The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa
by Nicolaas A. van der Merwe, Tshiamo Phakalatsane and P. Markus Wilken
Genes 2023, 14(6), 1158; https://doi.org/10.3390/genes14061158 - 26 May 2023
Viewed by 1778
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. [...] Read more.
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

23 pages, 4738 KiB  
Article
Synchrospora gen. nov., a New Peronosporaceae Genus with Aerial Lifestyle from a Natural Cloud Forest in Panama
by Thomas Jung, Yilmaz Balci, Kirk D. Broders, Ivan Milenković, Josef Janoušek, Tomáš Kudláček, Biljana Đorđević and Marilia Horta Jung
J. Fungi 2023, 9(5), 517; https://doi.org/10.3390/jof9050517 - 27 Apr 2023
Cited by 4 | Viewed by 2997
Abstract
During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 [...] Read more.
During a survey of Phytophthora diversity in Panama, fast-growing oomycete isolates were obtained from naturally fallen leaves of an unidentified tree species in a tropical cloud forest. Phylogenetic analyses of sequences from the nuclear ITS, LSU and ßtub loci and the mitochondrial cox1 and cox2 genes revealed that they belong to a new species of a new genus, officially described here as Synchrospora gen. nov., which resided as a basal genus within the Peronosporaceae. The type species S. medusiformis has unique morphological characteristics. The sporangiophores show determinate growth, multifurcating at the end, forming a stunted, candelabra-like apex from which multiple (8 to >100) long, curved pedicels are growing simultaneously in a medusa-like way. The caducous papillate sporangia mature and are shed synchronously. The breeding system is homothallic, hence more inbreeding than outcrossing, with smooth-walled oogonia, plerotic oospores and paragynous antheridia. Optimum and maximum temperatures for growth are 22.5 and 25–27.5 °C, consistent with its natural cloud forest habitat. It is concluded that S. medusiformis as adapted to a lifestyle as a canopy-dwelling leaf pathogen in tropical cloud forests. More oomycete explorations in the canopies of tropical rainforests and cloud forests are needed to elucidate the diversity, host associations and ecological roles of oomycetes and, in particular, S. medusiformis and possibly other Synchrospora taxa in this as yet under-explored habitat. Full article
Show Figures

Figure 1

22 pages, 2890 KiB  
Article
Diversity Analysis of the Rice False Smut Pathogen Ustilaginoidea virens in Southwest China
by Rongtao Fu, Cheng Chen, Jian Wang, Yao Liu, Liyu Zhao and Daihua Lu
J. Fungi 2022, 8(11), 1204; https://doi.org/10.3390/jof8111204 - 15 Nov 2022
Cited by 9 | Viewed by 2691
Abstract
Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of [...] Read more.
Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of 221 strains of U. virens were collected from 13 rice-growing regions in southwest China. The morphological features of these strains exhibited high diversity, and the pathogenicity of the smut fungus showed significant differentiation. There was no correlation between pathogenicity and sporulation. Mating-type locus (MAT) analysis revealed that all 221 isolates comprised heterothallic and homothallic forms, wherein 204 (92.31%) and 17 (7.69%) isolates belonged to heterothallic and homothallic mating types, respectively. Among 204 strains of heterothallic mating types, 62 (28.05%) contained MAT1-1-1 idiomorphs, and 142 isolates (64.25%) had the MAT1-2-1 idiomorph. Interestingly, strains isolated from the same fungus ball had different mating types. The genetic structure of the isolates was analyzed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs). All isolates were clustered into five genetic groups. The values of Nei’s gene diversity (H) and Shannon’s information index (I) indicated that all strains as a group had higher genetic diversity than strains from a single geographical population. The pairwise population fixation index (FST) values also indicated significant genetic differentiation among all compared geographical populations. The analysis of molecular variation (AMOVA) indicated greater genetic variation within individual populations and less genetic variation among populations. The results showed that most of the strains were not clustered according to their geographical origin, showing the rich genetic diversity and the complex and diverse genetic background of U. virens in southwest China. These results should help to better understand the biological and genetic diversity of U. virens in southwest China and provide a theoretical basis for building effective management strategies. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

32 pages, 4766 KiB  
Article
De Novo Long-Read Whole-Genome Assemblies and the Comparative Pan-Genome Analysis of Ascochyta Blight Pathogens Affecting Field Pea
by Yvonne O. Ogaji, Robert C. Lee, Tim I. Sawbridge, Benjamin G. Cocks, Hans D. Daetwyler and Sukhjiwan Kaur
J. Fungi 2022, 8(8), 884; https://doi.org/10.3390/jof8080884 - 22 Aug 2022
Cited by 2 | Viewed by 4814
Abstract
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for [...] Read more.
Ascochyta Blight (AB) is a major disease of many cool-season legumes globally. In field pea, three fungal pathogens have been identified to be responsible for this disease in Australia, namely Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga. Limited genomic resources for these pathogens have been generated, which has hampered the implementation of effective management strategies and breeding for resistant cultivars. Using Oxford Nanopore long-read sequencing, we report the first high-quality, fully annotated, near-chromosome-level nuclear and mitochondrial genome assemblies for 18 isolates from the Australian AB complex. Comparative genome analysis was performed to elucidate the differences and similarities between species and isolates using phylogenetic relationships and functional diversity. Our data indicated that P. pinodella and P. koolunga are heterothallic, while P. pinodes is homothallic. More homology and orthologous gene clusters are shared between P. pinodes and P. pinodella compared to P. koolunga. The analysis of the repetitive DNA content showed differences in the transposable repeat composition in the genomes and their expression in the transcriptomes. Significant repeat expansion in P. koolunga’s genome was seen, with strong repeat-induced point mutation (RIP) activity being evident. Phylogenetic analysis revealed that genetic diversity can be exploited for species marker development. This study provided the much-needed genetic resources and characterization of the AB species to further drive research in key areas such as disease epidemiology and host–pathogen interactions. Full article
(This article belongs to the Special Issue Plant Fungal Pathogenesis 2022)
Show Figures

Figure 1

16 pages, 2007 KiB  
Article
Organization and Unconventional Integration of the Mating-Type Loci in Morchella Species
by Hongmei Chai, Ping Liu, Yuanhao Ma, Weimin Chen, Nan Tao and Yongchang Zhao
J. Fungi 2022, 8(7), 746; https://doi.org/10.3390/jof8070746 - 19 Jul 2022
Cited by 4 | Viewed by 2548
Abstract
True morels (Morchella spp.) are a group of delicious fungi in high demand worldwide, and some species of morels have been successfully cultivated in recent years. To better understand the sexual reproductive mechanisms of these fungi, we characterized the structure of the [...] Read more.
True morels (Morchella spp.) are a group of delicious fungi in high demand worldwide, and some species of morels have been successfully cultivated in recent years. To better understand the sexual reproductive mechanisms of these fungi, we characterized the structure of the mating-type loci from ten morel species, and seven of them were obtained using long-range PCR amplification. Among the studied species, eight were heterothallic, two were homothallic, and four types of composition were observed in the MAT loci. In three of the five black morel species, the MAT1-1-1, MAT1-1-10, and MAT1-1-11 genes were in the MAT1-1 idiomorph, and only the MAT1-2-1 gene was in the MAT1-2 idiomorph, while an integration event occurred in the other two species and resulted in the importation of the MAT1-1-11 gene into the MAT1-2 idiomorph and survival as a truncated fragment in the MAT1-1 idiomorph. However, the MAT1-1-11 gene was not available in the four yellow morels and one blushing morel species. M. rufobrunnea, a representative species of the earliest diverging branch of true morels, along with another yellow morel Mes-15, were confirmed to be homothallic, and the MAT1-1-1, MAT1-1-10, and MAT1-2-1 genes were arranged in a tandem array. Therefore, we hypothesized that homothallism should be the ancestral reproductive state in Morchella. RT-PCR analyses revealed that four mating genes could be constitutively expressed, while the MAT1-1-10 gene underwent alternative splicing to produce different splice variants. Full article
(This article belongs to the Special Issue Genomics and Evolution of Macrofungi)
Show Figures

Figure 1

Back to TopTop