Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates and G-DNA Extraction
2.2. Sequencing and Preprocessing
2.3. Read Alignment and Variant Calling
2.4. SSR Motif Discovery, Primer Design, and PCR Amplification
2.5. Detection of Polymorphic SSRs, Marker Selection, and Phylogenetic Analysis
2.6. Genetic and Phylogenetic Analyses
3. Results
3.1. Preprocessing and Read Alignment
3.2. Variant Detection and Filtering
3.3. SSR Motif Discovery and Marker Selection
3.4. SSR Polymorphism
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Allele Depth |
BAM | Binary Alignment/Map |
bp | Base Pair |
BWA-MEM | Burrows–Wheeler Aligner, Maximal Exact Match Algorithm |
DP | Read Depth |
ESTs | Expressed Sequence Tags |
FS | Fisher Strand |
GATK | Genome Analysis Toolkit |
HE | Expected Heterozygosity |
InDel | Insertion and Deletion |
KACC | Korean Agricultural Culture Collection |
MAF | Minor Allele Frequency |
Mb | Megabase |
MQ | Mapping Quality |
MQRankSum | Mapping Quality Rank Sum Test |
NA | Number of Alleles |
PIC | Polymorphism Information Content |
PCR | Polymerase Chain Reaction |
QD | Quality by Depth |
ReadPosRankSum | Read Position Rank Sum Test |
SAM | Sequence Alignment/Map |
SNP | Single-Nucleotide Polymorphism |
SSR | Simple Sequence Repeat |
UPGMA | Unweighted Pair Group Method with an Arithmetic Mean |
VCF | Variant Call Format |
References
- Boland, G.J.; Hall, R. Index of plant hosts of Sclerotinia sclerotiorum. Can. J. Plant Pathol. 1994, 16, 93–108. [Google Scholar] [CrossRef]
- Sharma, P.; Meena, P.D.; Verma, P.; Saharan, G.; Mehta, N.; Singh, D.; Kumar, A. Sclerotinia sclerotiorum (Lib.) de Bary causing sclerotinia rot in oilseed Brassicas: A review. J. Oilseed Brassica 2014, 6, 1–44. [Google Scholar]
- Purdy, L.H. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 1979, 69, 875–880. [Google Scholar] [CrossRef]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [Google Scholar] [CrossRef]
- Baturo-Ciesniewska, A.; Groves, C.L.; Albrecht, K.A.; Grau, C.R.; Willis, D.K.; Smith, D.L. Molecular Identification of Sclerotinia trifoliorum and Sclerotinia sclerotiorum Isolates from the United States and Poland. Plant Dis. 2016, 101, 192–199. [Google Scholar] [CrossRef]
- Nanjunadappa, M.; Prameela Devi, T.; Narayanasamy, P.; Navali, G.V.; Patil, S.S. Morphological and molecular diversity of Sclerotinia sclerotiorum (Lib.) de Bary isolates of India. Bioscan 2014, 9, 1763–1767. [Google Scholar]
- Rathi, A.S.; Jattan, M.; Punia, R.; Singh, S.; Kumar, P.; Avtar, R. Morphological and molecular diversity of Sclerotinia sclerotiorum infecting Indian mustard. Indian Phytopathol. 2018, 71, 407–413. [Google Scholar] [CrossRef]
- Mandal, A.K.; Dubey, S.C. Genetic diversity analysis of Sclerotinia sclerotiorum causing stem rot in chickpea using RAPD, ITS-RFLP, ITS sequencing and mycelial compatibility grouping. World J. Microbiol. Biotechnol. 2012, 28, 1849–1855. [Google Scholar] [CrossRef]
- Petrofeza, S.; Nasser, L.C.B. Case study: Sclerotinia sclerotiorum: Genetic diversity and disease control. In The Molecular Basis of Plant Genetic Diversity; Çalışkan, M., Ed.; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Sirjusingh, C.; Kohn, L.M. Characterization of microsatellites in the fungal plant pathogen, Sclerotinia sclerotiorum. Mol. Ecol. Notes 2001, 1, 267–269. [Google Scholar] [CrossRef]
- Neha Mittal, N.M.; Dubey, A.K. Microsatellite markers—A new practice of DNA based markers in molecular genetics. Pharmacogn. Rev. 2009, 3, 235–246. [Google Scholar]
- Alves, S.I.A.; Dantas, C.W.D.; Macedo, D.B.; Ramos, R.T.J. What are microsatellites and how to choose the best tool: A user-friendly review of SSR and 74 SSR mining tools. Front. Genet. 2024, 15, 1474611. [Google Scholar] [CrossRef] [PubMed]
- Arahana, V.S.; Graef, G.L.; Specht, J.E.; Steadman, J.R.; Eskridge, K.M. Identification of QTLs for Resistance to Sclerotinia sclerotiorum in soybean. Crop Sci. 2001, 41, 180–188. [Google Scholar] [CrossRef]
- Darvishzadeh, R. Association of SSR markers with partial resistance to Sclerotinia sclerotiorum isolates in sunflower (‘Helianthus annuus’ L.). Aust. J. Crop Sci. 2012, 6, 276–282. [Google Scholar]
- Sexton, A.C.; Howlett, B.J. Microsatellite markers reveal genetic differentiation among populations of Sclerotinia sclerotiorum from Australian canola fields. Curr. Genet. 2004, 46, 357–365. [Google Scholar] [CrossRef]
- Gyawali, S.; Harrington, M.; Durkin, J.; Horner, K.; Parkin, I.A.P.; Hegedus, D.D.; Bekkaoui, D.; Buchwaldt, L. Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol. Breed. 2016, 36, 72. [Google Scholar] [CrossRef]
- Gomes, E.V.; Do Nascimento, L.B.; De Freitas, M.A.; Nasser, L.C.B.; Petrofeza, S. Microsatellite markers reveal genetic variation within Sclerotinia sclerotiorum populations in irrigated dry bean crops in Brazil. J. Phytopathol. 2011, 159, 94–99. [Google Scholar] [CrossRef]
- Tok, F.M.; Sibel, D.; Arslan, M. Analysis of genetic diversity of Sclerotinia sclerotiorum from eggplant by mycelial compatibility, random amplification of polymorphic DNA (RAPD) and simple sequence repeat (SSR) analyses. Biotechnol. Biotechnol. Equip. 2016, 30, 921–928. [Google Scholar] [CrossRef]
- Yu, Y.; Cai, J.; Ma, L.; Huang, Z.; Wang, Y.; Fang, A.; Yang, Y.; Qing, L.; Bi, C. Population structure and aggressiveness of Sclerotinia sclerotiorum from rapeseed (Brassica napus) in Chongqing city. Plant Dis. 2019, 104, 1201–1206. [Google Scholar] [CrossRef]
- Attanayake, R.N.; Carter, P.A.; Jiang, D.; del Río-Mendoza, L.; Chen, W. Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology 2013, 103, 750–761. [Google Scholar] [CrossRef]
- Winton, L.M.; Krohn, A.L.; Leiner, R.H. Genetic diversity of Sclerotinia species from Alaskan vegetable crops. Can. J. Plant Pathol. 2006, 28, 426–434. [Google Scholar] [CrossRef]
- Mahalingam, T.; Chen, W.; Rajapakse, C.S.; Somachandra, K.P.; Attanayake, R.N. Genetic diversity and recombination in the plant pathogen Sclerotinia sclerotiorum detected in Sri Lanka. Pathogens 2020, 9, 306. [Google Scholar] [CrossRef]
- Buchwaldt, L.; Garg, H.; Puri, K.D.; Durkin, J.; Adam, J.; Harrington, M.; Liabeuf, D.; Davies, A.; Hegedus, D.D.; Sharpe, A.G.; et al. Sources of genomic diversity in the self-fertile plant pathogen, Sclerotinia sclerotiorum, and consequences for resistance breeding. PLoS ONE 2022, 17, e0262891. [Google Scholar] [CrossRef] [PubMed]
- Attanayake, R.N.; Xu, L.; Chen, W. Sclerotinia sclerotiorum populations: Clonal or recombining? Trop. Plant Pathol. 2019, 44, 23–31. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Indian Phytopathol. 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLOS Genetics 2011, 7, e1002230. [Google Scholar] [CrossRef]
- Derbyshire, M.; Denton-Giles, M.; Hegedus, D.; Seifbarghy, S.; Rollins, J.; van Kan, J.; Seidl, M.F.; Faino, L.; Mbengue, M.; Navaud, O.; et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol. Evol. 2017, 9, 593–618. [Google Scholar] [CrossRef]
- Freed, D.; Aldana, R.; Weber, J.A.; Edwards, J.S. The Sentieon Genomics Tools—A fast and accurate solution to variant calling from next-generation sequence data. bioRxiv 2017, 115717. [Google Scholar] [CrossRef]
- Cingolani, P.; Adrian, P.; Lily, W.L.; Melissa, C.; Tung, N.; Luan, W.; Land, S.J.; Xiangyi, L.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Kalinowski, S.; Taper, M.; Marshall, T. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular evolutionary genetic analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Gupta, N.C.; Yadav, S.; Arora, S.; Mishra, D.C.; Budhlakoti, N.; Gaikwad, K.; Rao, M.; Prasad, L.; Rai, P.K.; Sharma, P. Draft genome sequencing and secretome profiling of Sclerotinia sclerotiorum revealed effector repertoire diversity and allied broad-host range necrotrophy. Sci. Rep. 2022, 12, 21855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, X.; Liu, L.; Liu, S. Genome sequence resource for the plant pathogen Sclerotinia sclerotiorum WH6 Isolated in China. Plant Dis. 2021, 105, 3720–3722. [Google Scholar] [CrossRef]
- Peng, F.; Li, X.; Wei, Z.; Han, G. The complete genome sequence of Sclerotinia sclerotiorum (S1), one of the pathogens causing sclerotinosis in mulberry fruit. PhytoFrontiers 2023, 4, 416–418. [Google Scholar] [CrossRef]
- Atallah, Z.; Larget, B.; Chen, X.; Johnson, D. High genetic diversity, phenotypic uniformity, and evidence of outcrossing in Sclerotinia sclerotiorum in the Columbia Basin of Washington state. Phytopathology 2004, 94, 737–742. [Google Scholar] [CrossRef]
- Dunn, A.R.; Kikkert, J.R.; Pethybridge, S.J. Genotypic characteristics in populations of Sclerotinia sclerotiorum from New York State, USA. Ann. Appl. Biol. 2017, 170, 219–228. [Google Scholar] [CrossRef]
- Barari, H.; Dalili, S.A.; Hassani, H.M. Genetic diversity among different isolates of Sclerotinia sclerotiorum in north of Iran. J. Bacteriol. Mycol. Open Access 2017, 5, 387–389. [Google Scholar] [CrossRef]
- Mert-Türk, F.; Ipek, M.; Mermer, D.; Nicholson, P. Microsatellite and morphological markers reveal genetic variation within a population of Sclerotinia sclerotiorum from oilseed rape in the Çanakkale Province of Turkey. J. Phytopathol. 2007, 155, 182–187. [Google Scholar] [CrossRef]
- Aldrich-Wolfe, L.; Travers, S.; Nelson, B.D., Jr. Genetic variation of Sclerotinia sclerotiorum from multiple crops in the North Central United States. PLoS ONE 2015, 10, e0139188. [Google Scholar] [CrossRef] [PubMed]
- Attanayake, R.N.; Tennekoon, V.; Johnson, D.A.; Porter, L.D.; del Río-Mendoza, L.; Jiang, D.; Chen, W. Inferring outcrossing in the homothallic fungus Sclerotinia sclerotiorum using linkage disequilibrium decay. Heredity 2014, 113, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Leyronas, C.; Bardin, M.; Berthier, K.; Duffaud, M.; Troulet, C.; Torres, M.; Villeneuve, F.; Nicot, P.C. Assessing the phenotypic and genotypic diversity of Sclerotinia sclerotiorum in France. Eur. J. Plant Pathol. 2018, 152, 933–944. [Google Scholar] [CrossRef]
- Peripolli, M.; Martinelli, J.A.; Delatorre, C.A. Avaliação da agressividade e da diversidade genética de Sclerotinia sclerotiorum em tabaco no sul do Brasil. Summa Phytopathol. 2018, 44, 170–177. [Google Scholar] [CrossRef]
- Sharma, P.; Samkumar, A.; Rao, M.; Singh, V.V.; Prasad, L.; Mishra, D.C.; Bhattacharya, R.; Gupta, N.C. Genetic diversity studies based on morphological variability, pathogenicity and molecular phylogeny of the Sclerotinia sclerotiorum population from indian mustard (Brassica juncea). Front. Microbiol. 2018, 9, 1169. [Google Scholar] [CrossRef]
- Kohli, Y.; Kohn, L.M. Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet. Biol. 1998, 23, 139–149. [Google Scholar] [CrossRef]
- Kohli, Y.; Morrall, R.; Anderson, J.; Kohn, L. Local and trans-Canadian clonal distribution of Sclerotinia sclerotiorum on canola. Phytopathology 1992, 82, 875–880. [Google Scholar] [CrossRef]
- Kohli, Y.; Brunner, L.J.; Yoell, H.; Milgroom, M.G.; Anderson, J.B.; Morrall, R.A.A.; Kohn, L.M. Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum. Mol. Ecol. 1995, 4, 69–77. [Google Scholar] [CrossRef]
- Kohn, L.M. The clonal dynamic in wild and agricultural plant–pathogen populations. Can. J. Bot. 1995, 73, 1231–1240. [Google Scholar] [CrossRef]
- Amaradasa, B.S.; Everhart, S.E. Effects of sublethal fungicides on mutation rates and genomic variation in fungal plant pathogen, Sclerotinia sclerotiorum. PLoS ONE 2016, 11, e0168079. [Google Scholar] [CrossRef]
- Datta, J.; Lal, N. Application of molecular markers for genetic discrimination of Fusarium wilt pathogen races affecting chickpea and pigeonpea in major regions of India. Cell. Mol. Biol. (Noisy-le-grand) 2012, 58, 55–65. [Google Scholar] [CrossRef]
- Datta, J.; Lal, N. Genetic variability assessment of Fusarium wilt pathogen races affecting chickpea using molecular markers. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2392–2397. [Google Scholar]
- He, M.-H.; Wang, Y.-P.; Wu, E.J.; Shen, L.-L.; Yang, L.-N.; Wang, T.; Shang, L.-P.; Zhu, W.; Zhan, J. Constraining evolution of Alternaria alternata resistance to a demethylation inhibitor (DMI) fungicide difenoconazole. Front. Microbiol. 2019, 10, 1609. [Google Scholar] [CrossRef]
- Chen, X.-R.; Zhang, Y.; Huang, S.-X.; Liu, T.-T.; Qiao, G.-H. Investigation of the genetic diversity of Phytophthora capsici in China using a universal fluorescent labelling method. J. Phytopathol. 2019, 167, 111–122. [Google Scholar] [CrossRef]
- Utami, D.W.; Afandi, A.; Yuriyah, S.; Terryana, R.T.; Ambarawati, A.D.; Apriana, A.; Sisharmini, A. The pathogenicity and genetic diversity of the Indonesian blast pathogen from wide host ranges of rice sub-species. J. Plant Pathol. 2025, 107, 661–673. [Google Scholar] [CrossRef]
- Attanayake, R.N.; Porter, L.; Johnson, D.A.; Chen, W. Genetic and phenotypic diversity and random association of DNA markers of isolates of the fungal plant pathogen Sclerotinia sclerotiorum from soil on a fine geographic scale. Soil Biol. Biochem. 2012, 55, 28–36. [Google Scholar] [CrossRef]
- Faraghati, M.; Abrinbana, M.; Ghosta, Y. Genetic structure of Sclerotinia sclerotiorum populations from sunflower and cabbage in West Azarbaijan province of Iran. Sci. Rep. 2022, 12, 9263. [Google Scholar] [CrossRef]
- Clarkson, J.P.; Coventry, E.; Kitchen, J.; Carter, H.E.; Whipps, J.M. Population structure of Sclerotinia sclerotiorum in crop and wild hosts in the UK. Plant Pathol. 2013, 62, 309–324. [Google Scholar] [CrossRef]
- Hemmati, R.; Javan-Nikkhah, M.; Linde, C.C. Population genetic structure of Sclerotinia sclerotiorum on canola in Iran. Eur. J. Plant Pathol. 2009, 125, 617–628. [Google Scholar] [CrossRef]
Isolate No. | Year | Host or Substrate | Geographic Location |
---|---|---|---|
KACC 48152 | 2016 | Capsella bursa-pastoris | Hwaseong-si, Gyeonggi-do |
KACC 40923 | 2001 | Pimpinella brachycarpa | Yeoncheon-gun, Gyeonggi-do |
KACC 42223 | - | Chrysanthemum sp. | Masan (Changwon)-si, Gyeongsangnam-do |
KACC 45153 | 2010 | Brassica oleracea var. acephala | Icheon-si, Gyeonggi-do |
KACC 45771 | 2010 | Lactuca sativa | Yuseong-gu, Daejeon |
KACC 46833 | 2012 | Ranunculus asiaticus | Hwaseong-si, Gyeonggi-do |
KACC 46834 | 2012 | Anemone coronaria | Icheon-si, Gyeonggi-do |
KACC 47217 | 2013 | Ranunculus asiaticus | Icheon-si, Gyeonggi-do |
KACC 47218 | 2013 | Matthiola incana | Suwon-si, Gyeonggi-do |
KACC 47260 | 2013 | Matthiola incana | Suwon-si, Gyeonggi-do |
KACC 47261 | 2013 | Capsicum annuum | Incheon, Gyeonggi-do |
KACC 47709 | 2013 | Brassica oleracea var. italica | Gangneung-si, Gangwon-do |
KACC 47723 | 2014 | Allium tuberosum | Iksan-si, Jeollabuk-do |
KACC 47724 | 2014 | Foeniculum vulgare | Iksan-si, Jeollabuk-do |
KACC 47725 | 2014 | Malva sylvestris | Iksan-si, Jeollabuk-do |
KACC 47726 | 2014 | Matthiola incana | Iksan-si, Jeollabuk-do |
KACC 48153 | 2016 | Cucumis sativus | Gongju-si, Chungcheongnam-do |
KACC 48668 | 2018 | Codonopsis lanceolata | Jeju-si, Jeju-do |
KACC 48672 | 2017 | Pod of Pisum sativum | Gangneung-si, Gangwon-do |
KACC 48705 | 2018 | Stem of Canavalia ensiformis | Jinju-si, Gyeongsangnam-do |
KACC 40172 | - | leaf of Citrus sinensis | Seogwipo-si, Jeju-do |
KACC 40457 | - | Lactuca sativa | unknown, Republic of Korea |
KACC 40922 | 2001 | Pimpinella brachycarpa | Namyangju-si, Gyeonggi-do |
KACC 410245 | 2020 | Stem of Sedum sarmentosum | Icheon-si, Gyeonggi-do |
KACC 41064 | 1998 | Brassica napus | Jeju-si, Jeju-do |
KACC 41065 | 2000 | Capsicum annuum | Hadong-gun, Gyeongsangnam-do |
KACC 41069 | 1998 | Solanum tuberosum | Jeju-si, Jeju-do |
KACC 49781 | - | Stem of Brassica napus | Yeongam-eup, Yeongam-gun, Jeollanam-do |
Isolate | Raw Data | Trimmed Data | Best Hit Reads | Covered Genome Length (bp) | ||||
---|---|---|---|---|---|---|---|---|
Reads | Bases | Reads | Bases | % | Reads | % | ||
KACC 42223 | 21,497,084 | 3,246,059,684 | 18,656,622 | 2,746,284,821 | 84.6 | 13,913,638 | 74.58 | 38,175,374 |
KACC 47260 | 22,409,198 | 3,383,788,898 | 21,352,534 | 3,184,738,647 | 94.12 | 18,293,424 | 85.67 | 38,249,628 |
KACC 410245 | 18,003,952 | 2,718,596,752 | 15,766,472 | 2,349,042,473 | 86.41 | 12,453,534 | 78.99 | 37,832,436 |
Isolate | Total Variants | SNPs a | InDels b | Home Variants | Hetero Variants | Genic Variants | Intergenic Variants |
---|---|---|---|---|---|---|---|
KACC 42223 | 33,763 | 29,881 | 3882 | 28,073 | 5690 | 11,035 | 22,728 |
KACC 47260 | 31,336 | 27,740 | 3596 | 29,565 | 1771 | 10,874 | 20,462 |
KACC 410245 | 41,286 | 36,922 | 4364 | 36,925 | 4361 | 12,861 | 28,425 |
Marker | Chromosome | Position | SSR Motif | Primer (5′–3′) | TM (°C) | Product Size | NA a | HE b | PIC c | |
---|---|---|---|---|---|---|---|---|---|---|
SS14–1819 | CP017814.1 | 1661050 | (AGAGGAGGG)n | F: | GGGAGGGAATCTGAGATAAGTT | 55.7 | 228 | 7 | 0.7013 | 0.6559 |
R: | CAATAATTCCCTTTCCACTGAA | 53.3 | ||||||||
SS15–1627 | CP017815.1 | 2535712 | (CATTCA)n | F: | CCTTACCTTACCTTACTTAACCTCC | 57.1 | 237 | 8 | 0.8675 | 0.8339 |
R: | GTGAGTTCGTTTCGTGTGTATG | 57 | ||||||||
SS16–70 | CP017816.1 | 1261826 | (AC)n | F: | TCCGTACATACATCCATCCATA | 55 | 172 | 3 | 0.2571 | 0.2338 |
R: | ATTCTCAGCATACATTGTGTCG | 55.9 | ||||||||
SS16–359 | CP017816.1 | 2660538 | (TAA)n | F: | AAACATACACTCAGCTGTTGAAA | 55.9 | 231 | 14 | 0.8286 | 0.8030 |
R: | AGGTCAGTGAAGGATGATTGTT | 56.4 | ||||||||
SS17–256 | CP017817.1 | 1606994 | (TTG)n | F: | GAATAGCTATGCCTCCAGTGAC | 57.4 | 219 | 12 | 0.8935 | 0.8658 |
R: | CCAAATCCCAATCTTCTCATTA | 52.9 | ||||||||
SS23–428 | CP017823.1 | 799724 | (ATGT)n | F: | GACTTGTCTCGAGCCTCTCTT | 58.2 | 181 | 4 | 0.4182 | 0.3803 |
R: | CCTCTGCACATCTTTAATTGGT | 55.7 | ||||||||
SS23–1015 | CP017823.1 | 538059 | (TCAAATA)n | F: | CAAATGTATAAGTGCTGCCAAA | 54.6 | 225 | 16 | 0.9247 | 0.9014 |
R: | GGGAAAGGAAGACATTGATTTA | 53.1 | ||||||||
SS26–345 | CP017826.1 | 415037 | (TTGC)n | F: | TTTGGATTTCTGATCTCGTACA | 54.2 | 175 | 4 | 0.5429 | 0.4874 |
R: | AGGAAGCTGCTCCTCTTCTC | 57.8 | ||||||||
SS27–790 | CP017827.1 | 1277078 | (ATAGTT)n | F: | TGATATCGACAAGTGCTACGAG | 56.8 | 230 | 5 | 0.7377 | 0.6786 |
R: | TTCAGATGATGCAATAACCAAA | 53.4 | ||||||||
SS28–205 | CP017828.1 | 1019692 | (GAT)n | F: | CGAGTATTATTGTGCAGATGGA | 55.1 | 235 | 2 | 0.4675 | 0.3538 |
R: | CCTCATTCAATACCTACCTACGTT | 56.9 | ||||||||
SS28–258 | CP017828.1 | 80138 | (CATC)n | F: | GACCACGCCATATTGAACTAAT | 55.7 | 239 | 2 | 0.4442 | 0.3411 |
R: | GCTAGGTACTTGGTACACAGGC | 59.4 | ||||||||
SS29–677 | CP017829.1 | 153137 | (AGCATCC)n | F: | GCTGTAGATAAACGGAGTCGTC | 57.7 | 246 | 3 | 0.2000 | 0.1862 |
R: | TAGAAATCGAGGACTATCCGG | 55.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.J.; Choi, Y.-J. Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis. Pathogens 2025, 14, 610. https://doi.org/10.3390/pathogens14070610
Lee DJ, Choi Y-J. Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis. Pathogens. 2025; 14(7):610. https://doi.org/10.3390/pathogens14070610
Chicago/Turabian StyleLee, Dong Jae, and Young-Joon Choi. 2025. "Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis" Pathogens 14, no. 7: 610. https://doi.org/10.3390/pathogens14070610
APA StyleLee, D. J., & Choi, Y.-J. (2025). Development and Characterization of New SSR Markers in Sclerotinia sclerotiorum Using Genomic and Variant Analysis. Pathogens, 14(7), 610. https://doi.org/10.3390/pathogens14070610