Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = homogenized latent heat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1668 KiB  
Article
Deep Drawing of Paperboard Under Heat–Moisture Control
by Julia Orlik, Viacheslav Khilkov, Stefan Rief, Holger Schubert, Marek Hauptmann and Heiko Andrä
Processes 2025, 13(3), 780; https://doi.org/10.3390/pr13030780 - 7 Mar 2025
Cited by 1 | Viewed by 602
Abstract
Deep drawing is a common process for shaping paperboard packages. To improve performance, the paperboard is kept in a room with high humidity before treatment. The surfaces of forming tools that come into contact with the paperboard are heated. A control problem for [...] Read more.
Deep drawing is a common process for shaping paperboard packages. To improve performance, the paperboard is kept in a room with high humidity before treatment. The surfaces of forming tools that come into contact with the paperboard are heated. A control problem for heating moist paperboard, with evaporation from the pore surface, is considered in this paper. Micro-CT images of three different paperboards are taken, segmented, and parameterized with respect to the specific pore surface in terms of the pore surface per pore volume, pore volume fraction, fiber thickness, average surface contact area between fibers, and unsupported fiber length. Simple averaging formulas are provided to compute the effective coefficients in the coupled water-diffusion and heat-transfer problem with a phase transition. The model is validated by experimental measurements and offers an opportunity for optimal heating control to simultaneously ensure compliance of the paperboard layer, leading to small delamination at its boundary, thereby avoiding folding. Full article
Show Figures

Figure 1

15 pages, 6733 KiB  
Article
Effect of Temperature Gradient and Cooling Rate on the Solidification of Iron: A Molecular Dynamics Study
by Qin Qin, Weizhuang Li, Wenrui Wang, Dongyue Li and Lu Xie
Materials 2024, 17(24), 6051; https://doi.org/10.3390/ma17246051 - 11 Dec 2024
Cited by 1 | Viewed by 1499
Abstract
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification [...] Read more.
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification methods. In the homogeneous temperature field, the solidification of iron is characterized by instantaneous nucleation. The BCC phase surged at 1431 K followed by the phenomenon of latent heat of crystallization. As the temperature continued to decrease, the percentage of the BCC phase continued to increase steadily. Eventually, the atoms aggregated to form a crystal nucleus and grow outward to form polycrystalline structures. During gradient solidification, continuous nucleation of iron leads to a slow increase in the BCC phase. From the initial stage of solidification, the solid–liquid interface moves in the direction of higher temperature and is accompanied by a higher stress distribution. Furthermore, increasing the temperature gradient, particularly the cooling rate, accelerates the transformation efficiency of iron in the gradient solidification process. In addition, increasing the cooling rate or temperature gradient reduces the residual stress and crystallinity of the solidified microstructure. It is worth noting that an increased temperature gradient or cooling rate will produce higher residual stress and uneven microstructure in the boundary region. This study provides an atomic-level understanding of the improvement in the solidification performance of iron. Full article
(This article belongs to the Special Issue Applied Mechanics in Metallic Material Engineering)
Show Figures

Figure 1

21 pages, 4546 KiB  
Article
Geophysical Coupling Before Three Earthquake Doublets Around the Arabian Plate
by Essam Ghamry, Dedalo Marchetti and Mohamed Metwaly
Atmosphere 2024, 15(11), 1318; https://doi.org/10.3390/atmos15111318 - 2 Nov 2024
Viewed by 1753
Abstract
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia [...] Read more.
In this study, we analysed lithospheric, atmospheric, and top-side ionospheric magnetic field data six months before the three earthquake doublets occurred in the last ten years around the Arabian tectonic plate. They occurred in 2014, close to Dehloran (Iran), in 2018, offshore Kilmia (Yemen) and in 2022, close to Bandar-e Lengeh (Iran). For all the cases, we considered the equivalent event in terms of total released energy and mean epicentral coordinates. The lithosphere was investigated by calculating the cumulative Benioff strain with the USGS earthquake catalogue. Several atmospheric parameters (aerosol, SO2, CO, surface air temperature, surface latent heat flux humidity, and dimethyl sulphide) have been monitored using the homogeneous data from the MERRA-2 climatological archive. We used the three-satellite Swarm constellation for magnetic data, analysing the residuals after removing a geomagnetic model. The analysis of the three geo-layers depicted an interesting chain of lithosphere, atmosphere, and ionosphere anomalies, suggesting a geophysical coupling before the Dehloran (Iran) 2014 earthquake. In addition, we identified interesting seismic accelerations that preceded the last 20 days, the Kilmia (Yemen) 2018 and Bandar-e Lengeh (Iran) 2022 earthquake doublets. Other possible interactions between the geolayers have been observed, and this underlines the importance of a multiparametric approach to properly understand a geophysical complex topic as the preparation phase of an earthquake. Full article
(This article belongs to the Special Issue Ionospheric Sounding for Identification of Pre-seismic Activity)
Show Figures

Figure 1

13 pages, 2949 KiB  
Article
Structure, Microstructure and Magnetocaloric/Thermomagnetic Properties at the Early Sintering of MnFe(P,Si,B) Compounds
by Tvrgvn Qianbai, Hargen Yibole and Francois Guillou
Metals 2024, 14(4), 385; https://doi.org/10.3390/met14040385 - 26 Mar 2024
Viewed by 1565
Abstract
Minimizing the sintering time while ensuring high performances is an important optimization step for the preparation of magnetocaloric or thermomagnetic materials produced by powder metallurgy. Here, we study the influence of sintering time on the properties of a Mn0.95Fe1P [...] Read more.
Minimizing the sintering time while ensuring high performances is an important optimization step for the preparation of magnetocaloric or thermomagnetic materials produced by powder metallurgy. Here, we study the influence of sintering time on the properties of a Mn0.95Fe1P0.56Si0.39B0.05 compound. In contrast to former reports investigating different annealing temperatures during heat treatments of several hours or days, we pay special attention to the earliest stages of sintering. After ball-milling and powder compaction, 2 min sintering at 1100 °C is found sufficient to form the desired Fe2P-type phase. Increasing the sintering time leads to a sharper first-order magnetic transition, a stronger latent heat, and usually to a larger isothermal entropy change, though not in all cases. As demonstrated by DSC or magnetization measurements, these parameters present dissimilar time evolutions, highlighting the existence of various underlying mechanisms. Chemical inhomogeneities are likely responsible for broadened transitions for the shortest sinterings. The development of strong latent heat requires longer sinterings than those for sharpening the magnetic transition. The microstructure may play a role as the average grain size progressively increases with the sintering time from 3.5 μm (2 min) to 30.1 μm (100 h). This systematic study has practical consequences for optimizing the preparation of MnFe(P,Si,B) compounds, but also raises intriguing questions on the influence of the microstructure and of the chemical homogeneity on magnetocaloric or thermomagnetic performances. Full article
(This article belongs to the Special Issue Feature Papers in Metallic Functional Materials)
Show Figures

Figure 1

14 pages, 13856 KiB  
Article
Numerical Simulation of CdTe Crystal Growth Using the Vertical Gradient Freeze Technique Assisted by Axial Low-Frequency Oscillations of the Melt
by Oleg Nefedov, Alexey Dovnarovich, Vladimir Kostikov, Elena Mozhevitina, Dmitry Bocharnikov and Igor Avetissov
Crystals 2024, 14(1), 72; https://doi.org/10.3390/cryst14010072 - 11 Jan 2024
Cited by 5 | Viewed by 1903
Abstract
The problem of intensification of the melt crystal growth process has been analyzed using CdTe as an actual material. Numerical simulation of 100 mm diameter CdTe crystal growth using the VGF technique has been carried out. The heat–mass transfer was controlled by introducing [...] Read more.
The problem of intensification of the melt crystal growth process has been analyzed using CdTe as an actual material. Numerical simulation of 100 mm diameter CdTe crystal growth using the VGF technique has been carried out. The heat–mass transfer was controlled by introducing low-frequency oscillating baffle into the melt, which is a so-called axial vibrational control (AVC) technique. The baffle configuration has been optimized to destroy solid “tails”, which were formed near the crucible walls at high cooling rates due to the low thermoconductivity and the corresponding latent heat. Analysis of CdTe homogeneity range showed that during fast crystal cooling, Te micro precipitations were formed, resulting from the decay of oversaturated Cd-rich nonstoichiometric solid solution during the Bridgman crystal growth technique. After full crystallization, a VGF-grown CdTe crystal stays inside the phase field of the high-temperature wurtzite polymorph. This makes it possible to go through the polymorph transition without Te micro-precipitating using the advantages of the VGF-specific feature of very slow cooling. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 4418 KiB  
Article
Modelling Porous Cementitious Media with/without Integrated Latent Heat Storage: Application Scenario
by Mona Nazari Sam, Jens Schneider and Holger V. Lutze
Energies 2023, 16(18), 6687; https://doi.org/10.3390/en16186687 - 18 Sep 2023
Cited by 2 | Viewed by 1399
Abstract
This paper presents a methodological approach for the evaluation of the thermal behavior of cementitious porous media with/without integrated latent-heat thermal energy storage (LHTES). To achieve this goal, the Lewis-Nielsen model has been calibrated to predict the insulation properties of mineralized foamed concretes. [...] Read more.
This paper presents a methodological approach for the evaluation of the thermal behavior of cementitious porous media with/without integrated latent-heat thermal energy storage (LHTES). To achieve this goal, the Lewis-Nielsen model has been calibrated to predict the insulation properties of mineralized foamed concretes. Two pore-related microstructural fitting parameters, A and Φm, are presented according to the available data in the literature. In this regard, new findings are implemented for the classification of pore structure and prediction of the homogenized thermal conductivity of two-phase cementitious foams with or without phase change materials. The calibration and predictive analyses have been extended to a wide range of experimental data, including variation of binder types, porosities, and latent components. The presented analytical approach appears to agree well with experimental results and can be employed in the design of two-phase mineral foam materials. Then, to assess the thermal behavior of the predicted insulating envelopes, a one-dimensional (1D) enthalpy-based model is used which combines Fourier’s law of heat conduction, the first law of thermodynamics, Lewis-Nielsen conductivities, and the mixture theory for LHTES additions. The results demonstrated the importance of volumetric heat capacity for the thermal inertia of building envelopes. Full article
Show Figures

Figure 1

11 pages, 2599 KiB  
Article
Molecular Dynamics Simulation of the Crystallization Behavior of Octadecane on a Homogeneous Nucleus
by Stefanie Tafelmeier and Stefan Hiebler
Crystals 2022, 12(7), 987; https://doi.org/10.3390/cryst12070987 - 15 Jul 2022
Cited by 7 | Viewed by 3639
Abstract
Latent heat storages have the ability to contribute to a more sustainable energy supply network. However, phase change materials (PCM) used for latent heat storages often show supercooling. This phenomenon takes place whenever the PCM begins crystallizing below the freezing point and is [...] Read more.
Latent heat storages have the ability to contribute to a more sustainable energy supply network. However, phase change materials (PCM) used for latent heat storages often show supercooling. This phenomenon takes place whenever the PCM begins crystallizing below the freezing point and is one of the biggest drawbacks holding back the widespread use of PCM. Nucleation agents (NA) can be used to avoid the supercooling, yet the choice of an effective NA is not straightforward. In this work, molecular dynamics (MD) simulation was tested in order to simulate the crystallization of Octadecane on a NA. The simulation results include density, phase change temperature and enthalpy as well as the crystal structure and lie in good agreement with literature values and the authors’ own experimental data. Further simulations of the crystallization process on different surfaces of homogeneous nuclei acting as a NA were performed. The results reflect the hypothesis that liquid molecules start crystallizing easier on surfaces exposing the whole chain side rather than the chain ends. With the result, that the choice of parameters for the MD simulation represent the Octadecane system reliably and further studies can be performed including heterogeneous NA. Full article
(This article belongs to the Special Issue Crystals for Thermal Energy Storage)
Show Figures

Figure 1

12 pages, 1908 KiB  
Article
Thermophysical Properties of Inorganic Phase-Change Materials Based on MnCl2·4H2O
by Kyung-Eun Min, Jae-Won Jang, Jun-Ki Kim, Chien Wern and Sung Yi
Appl. Sci. 2022, 12(13), 6338; https://doi.org/10.3390/app12136338 - 22 Jun 2022
Cited by 6 | Viewed by 2671
Abstract
Manganese (II) chloride tetrahydrate, classified as an inorganic phase-change material (PCM), can be used as a thermal energy storage material, saving and releasing thermal energy during its phase transitions. In this study, thermophysical properties, such as phase change temperatures, latent heat, and thermal [...] Read more.
Manganese (II) chloride tetrahydrate, classified as an inorganic phase-change material (PCM), can be used as a thermal energy storage material, saving and releasing thermal energy during its phase transitions. In this study, thermophysical properties, such as phase change temperatures, latent heat, and thermal conductivities, of four types of MnCl2·4H2O PCMs were investigated under single and dual phases (liquid-, solid-, and dual-phase PCMs) using differential scanning calorimetry (DSC) and a heat flow meter. PCMs with a liquid or dual phases exhibited superheating issues, and their melting temperatures were 7 to 10 °C higher than the reference melting temperatures. The PCMs had latent heats between 146 and 176 J/g in the temperature range of 23 to 45 °C under the endothermic process. Severe supercooling during the exothermic process was observed in all as-received specimens, but was mitigated in the homogenization-treated specimen, which sustained an increase in solidification temperature of about 15 °C compared with the as-received and treated PCMs. The diffusivities of PCMs were between 9.76 × 10−6 and 2.35 × 10−5 mm2/s. The diffusivities of the PCMs in the solid phase were higher than those in the liquid phase. During the initial holding time of the endothermic process, the PCM in the liquid phase could not be fully solidified due to an insufficient initial holding time and very low diffusivity, which caused superheating during the DSC measurement. Moreover, in the exothermic process, a fast cooling rate of 5 °C/min and low thermal diffusivity caused supercooling. In particular, the diffusivity of the liquid PCM was lower than those of the solid PCM and other PCMs, which caused extremely high supercooling during the DSC measurement. This paper provides the thermophysical properties of MnCl2·4H2O PCMs, which are not available in the literature. The homogeneity of PCMs in their initial states and their heating/cooling rates were identified, and constitute important factors for accurately measuring the thermophysical properties of PCMs. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

21 pages, 12344 KiB  
Article
Morlet Cross-Wavelet Analysis of Climatic State Variables Expressed as a Function of Latitude, Longitude, and Time: New Light on Extreme Events
by Jean-Louis Pinault
Math. Comput. Appl. 2022, 27(3), 50; https://doi.org/10.3390/mca27030050 - 4 Jun 2022
Cited by 7 | Viewed by 3138
Abstract
This study aims to advance our knowledge in the genesis of extreme climatic events with the dual aim of improving forecasting methods while clarifying the role played by anthropogenic warming. Wavelet analysis is used to highlight the role of coherent Sea Surface Temperature [...] Read more.
This study aims to advance our knowledge in the genesis of extreme climatic events with the dual aim of improving forecasting methods while clarifying the role played by anthropogenic warming. Wavelet analysis is used to highlight the role of coherent Sea Surface Temperature (SST) anomalies produced from short-period oceanic Rossby waves resonantly forced, with two case studies: a Marine Heatwave (MHW) that occurred in the northwestern Pacific with a strong climatic impact in Japan, and an extreme flood event that occurred in Germany. Ocean–atmosphere interactions are evidenced by decomposing state variables into period bands within the cross-wavelet power spectra, namely SST, Sea Surface Height (SSH), and the zonal and meridional modulated geostrophic currents as well as precipitation height, i.e., the thickness of the layer of water produced during a day, with regard to subtropical cyclones. The bands are chosen according to the different harmonic modes of the oceanic Rossby waves. In each period band, the joint analysis of the amplitude and the phase of the state variables allow the estimation of the regionalized intensity of anomalies versus their time lag in relation to the date of occurrence of the extreme event. Regarding MHWs in the northwestern Pacific, it is shown how a warm SST anomaly associated with the northward component of the wind resulting from the low-pression system induces an SST response to latent and sensible heat transfer where the latitudinal SST gradient is steep. The SST anomaly is then shifted to the north as the phase becomes homogenized. As for subtropical cyclones, extreme events are the culmination of exceptional circumstances, some of which are foreseeable due to their relatively long maturation time. This is particularly the case of ocean–atmosphere interactions leading to the homogenization of the phase of SST anomalies that can potentially contribute to the supply of low-pressure systems. The same goes for the coalescence of distinct low-pressure systems during cyclogenesis. Some avenues are developed with the aim of better understanding how anthropogenic warming can modify certain key mechanisms in the evolution of those dynamic systems leading to extreme events. Full article
(This article belongs to the Special Issue Computational Mathematics and Applied Statistics)
Show Figures

Figure 1

33 pages, 25515 KiB  
Article
Simulation of Mass and Heat Transfer in an Evaporatively Cooled PEM Fuel Cell
by Robert Herrendörfer, Magali Cochet and Jürgen O. Schumacher
Energies 2022, 15(8), 2734; https://doi.org/10.3390/en15082734 - 8 Apr 2022
Cited by 6 | Viewed by 3862
Abstract
Evaporative cooling is a promising concept to improve proton exchange membrane fuel cells. While the particular concept based on gas diffusion layers (GDLs) modified with hydrophilic lines (HPILs) has recently been demonstrated, there is a lack in the understanding of the mass and [...] Read more.
Evaporative cooling is a promising concept to improve proton exchange membrane fuel cells. While the particular concept based on gas diffusion layers (GDLs) modified with hydrophilic lines (HPILs) has recently been demonstrated, there is a lack in the understanding of the mass and heat transport processes. We have developed a 3-D, non-isothermal, macro-homogeneous numerical model focusing on one interface between a HPIL and an anode gas flow channel (AGFC). In the base case model, water evaporates within a thin film adjacent to the interfaces of the HPIL with the AGFC and with the hydrophobic anode GDL. The largest part of the generated water vapor leaves the cell via the AGFC. The transport to the cathode side is shown to be partly limited by the ab-/desorption into/from the membrane. The cooling due to the latent heat has a strong effect on the local evaporation rate. An increase of the mass transfer coefficient for evaporation leads to a transport limited regime inside the MEA while the transport via the AGFC is limited by evaporation kinetics. Full article
(This article belongs to the Special Issue Proton Exchange Membrane Fuel Cells 2022)
Show Figures

Figure 1

23 pages, 6681 KiB  
Article
Simulating the Effects of Land Surface Characteristics on Planetary Boundary Layer Parameters for a Modeled Landfalling Tropical Cyclone
by Yu Wang and Corene J. Matyas
Atmosphere 2022, 13(1), 138; https://doi.org/10.3390/atmos13010138 - 14 Jan 2022
Cited by 7 | Viewed by 3413
Abstract
This study examined whether varying moisture availability and roughness length for the land surface under a simulated Tropical Cyclone (TC) could affect its production of precipitation. The TC moved over the heterogeneous land surface of the southeastern U.S. in the control simulation, while [...] Read more.
This study examined whether varying moisture availability and roughness length for the land surface under a simulated Tropical Cyclone (TC) could affect its production of precipitation. The TC moved over the heterogeneous land surface of the southeastern U.S. in the control simulation, while the other simulations featured homogeneous land surfaces that were wet rough, wet smooth, dry rough, and dry smooth. Results suggest that the near-surface atmosphere was modified by the changes to the land surface, where the wet cases have higher latent and lower sensible heat flux values, and rough cases exhibit higher values of friction velocity. The analysis of areal-averaged rain rates and the area receiving low and high rain rates shows that simulations having a moist land surface produce higher rain rates and larger areas of low rain rates in the TC’s inner core. The dry and rough land surfaces produced a higher coverage of high rain rates in the outer regions. Key differences among the simulations happened as the TC core moved over land, while the outer rainbands produced more rain when moving over the coastline. These findings support the assertion that the modifications of the land surface can influence precipitation production within a landfalling TC. Full article
(This article belongs to the Special Issue Feature Papers in Atmosphere Science)
Show Figures

Figure 1

12 pages, 2531 KiB  
Article
Structural Investigation of the Synthesized Few-Layer Graphene from Coal under Microwave
by Faridul Islam, Arash Tahmasebi, Behdad Moghtaderi and Jianglong Yu
Nanomaterials 2022, 12(1), 57; https://doi.org/10.3390/nano12010057 - 26 Dec 2021
Cited by 17 | Viewed by 3525
Abstract
This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium [...] Read more.
This study focused on the structural investigation of few-layer graphene (FLG) synthesis from bituminous coal through a catalytic process under microwave heat treatment (MW). The produced FLG has been examined by Raman spectroscopy, XRD, TEM, and AFM. Coal was activated using the potassium hydroxide activation process. The FLG synthesis processing duration was much faster requiring only 20 min under the microwave radiation. To analyse few-layer graphene samples, we considered the three bands, i.e., D, G, and 2D, of Raman spectra. At 1300 °C, the P10% Fe sample resulted in fewer defects than the other catalyst percentages sample. The catalyst percentages affected the structural change of the FLG composite materials. In addition, the Raman mapping showed that the catalyst loaded sample was homogeneously distributed and indicated a few-layer graphene sheet. In addition, the AFM technique measured the FLG thickness around 4.5 nm. Furthermore, the HRTEM images of the P10% Fe sample contained a unique morphology with 2–7 graphitic layers of graphene thin sheets. This research reported the structural revolution with latent feasibility of FLG synthesis from bituminous coal in a wide range. Full article
(This article belongs to the Special Issue Carbon-Doped Nanocomposites for Catalytical Application)
Show Figures

Figure 1

22 pages, 3646 KiB  
Article
Correction of Eddy Covariance Based Crop ET Considering the Heat Flux Source Area
by Stuart L. Joy and José L. Chávez
Atmosphere 2021, 12(2), 281; https://doi.org/10.3390/atmos12020281 - 21 Feb 2021
Cited by 3 | Viewed by 3452
Abstract
Eddy covariance (EC) systems are being used to measure sensible heat (H) and latent heat (LE) fluxes in order to determine crop water use or evapotranspiration (ET). The reliability of EC measurements depends on meeting certain meteorological assumptions; the most important of such [...] Read more.
Eddy covariance (EC) systems are being used to measure sensible heat (H) and latent heat (LE) fluxes in order to determine crop water use or evapotranspiration (ET). The reliability of EC measurements depends on meeting certain meteorological assumptions; the most important of such are horizontal homogeneity, stationarity, and non-advective conditions. Over heterogeneous surfaces, the spatial context of the measurement must be known in order to properly interpret the magnitude of the heat flux measurement results. Over the past decades, there has been a proliferation of ‘heat flux source area’ (i.e., footprint) modeling studies, but only a few have explored the accuracy of the models over heterogeneous agricultural land. A composite ET estimate was created by using the estimated footprint weights for an EC system in the upwind corner of four fields and separate ET estimates from each of these fields. Three analytical footprint models were evaluated by comparing the composite ET to the measured ET. All three models performed consistently well, with an average mean bias error (MBE) of about −0.03 mm h−1 (−4.4%) and root mean square error (RMSE) of 0.09 mm h−1 (10.9%). The same three footprint models were then used to adjust the EC-measured ET to account for the fraction of the footprint that extended beyond the field of interest. The effectiveness of the footprint adjustment was determined by comparing the adjusted ET estimates with the lysimetric ET measurements from within the same field. This correction decreased the absolute hourly ET MBE by 8%, and the RMSE by 1%. Full article
(This article belongs to the Special Issue Agricultural Microclimate and Irrigation Water Management)
Show Figures

Figure 1

11 pages, 20653 KiB  
Article
Using Dihydrazides as Thermal Latent Curing Agents in Epoxy-Based Sealing Materials for Liquid Crystal Displays
by Jun Hyup Lee
Polymers 2021, 13(1), 109; https://doi.org/10.3390/polym13010109 - 29 Dec 2020
Cited by 10 | Viewed by 4853
Abstract
In this study, highly adhesive epoxy-based sealing materials for liquid crystal (LC) displays were fabricated using different types of dihydrazides as thermal latent curing agents. Their curing characteristics, mechanical properties, LC contamination levels, and electro-optical characteristics were investigated depending on the chemical structure [...] Read more.
In this study, highly adhesive epoxy-based sealing materials for liquid crystal (LC) displays were fabricated using different types of dihydrazides as thermal latent curing agents. Their curing characteristics, mechanical properties, LC contamination levels, and electro-optical characteristics were investigated depending on the chemical structure of dihydrazides. The epoxy-based sealing material containing a dihydrazide derivative with a bulky heterocyclic ring afforded a high heat curing conversion of 90.4%, high adhesion strength of 54.3 kgf cm−2, and a high elongation of 57.3% due to the relatively low melting characteristic under heat treatment compared to those involving dihydrazides with short aliphatic or aromatic spacers. In addition, the proposed sealing material exhibited an extremely low LC contamination level of 9 µm, which is essential to the successful operation of LC displays. With respect to electro-optical properties of the LC device, it was found that a dihydrazide derivative with a bulky heterocyclic ring afforded a normal voltage-dependent transmittance curve and fast response time due to the prevention of abnormal homogeneous LC alignment. This study developed highly adhesive and robust epoxy-based sealing materials based on the use of dihydrazides as thermal latent curing agents for advanced LC displays. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials)
Show Figures

Figure 1

18 pages, 5839 KiB  
Article
Analytical Modeling of Residual Stress in Laser Powder Bed Fusion Considering Volume Conservation in Plastic Deformation
by Elham Mirkoohi, Dongsheng Li, Hamid Garmestani and Steven Y. Liang
Modelling 2020, 1(2), 242-259; https://doi.org/10.3390/modelling1020015 - 15 Dec 2020
Cited by 10 | Viewed by 4168
Abstract
Residual stress (RS) is the most challenging problem in metal additive manufacturing (AM) since the build-up of high tensile RS may influence the fatigue life, corrosion resistance, crack initiation, and failure of the additively manufactured components. While tensile RS is inherent in all [...] Read more.
Residual stress (RS) is the most challenging problem in metal additive manufacturing (AM) since the build-up of high tensile RS may influence the fatigue life, corrosion resistance, crack initiation, and failure of the additively manufactured components. While tensile RS is inherent in all the AM processes, fast and accurate prediction of the stress state within the part is extremely valuable and results in optimization of the process parameters to achieve a desired RS and control of the build process. This paper proposes a physics-based analytical model to rapidly and accurately predict the RS within the additively manufactured part. In this model, a transient moving point heat source (HS) is utilized to determine the temperature field. Due to the high temperature gradient within the proximity of the melt pool area, the material experiences high thermal stress. Thermal stress is calculated by combining three sources of stresses known as stresses due to the body forces, normal tension, and hydrostatic stress in a homogeneous semi-infinite medium. The thermal stress determines the RS state within the part. Consequently, by taking the thermal stress history as an input, both the in-plane and out of plane RS distributions are found from the incremental plasticity and kinematic hardening behavior of the metal by considering volume conservation in plastic deformation in coupling with the equilibrium and compatibility conditions. In this modeling, material properties are temperature-sensitive since the steep temperature gradient varies the properties significantly. Moreover, the energy needed for the solid-state phase transition is reflected by modifying the specific heat employing the latent heat of fusion. Furthermore, the multi-layer and multi-scan aspects of metal AM are considered by including the temperature history from previous layers and scans. Results from the analytical RS model presented excellent agreement with XRD measurements employed to determine the RS in the Ti-6Al-4V specimens. Full article
(This article belongs to the Section Modelling in Engineering Structures)
Show Figures

Figure 1

Back to TopTop