Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,525)

Search Parameters:
Keywords = home learning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 373 KiB  
Proceeding Paper
Integrating Sustainable Development Goals into Renewable Energy Monopoly: A Generative AI Approach to Sustainable Development Education
by Hung-Cheng Chen
Eng. Proc. 2025, 103(1), 4; https://doi.org/10.3390/engproc2025103004 - 5 Aug 2025
Abstract
This research aims to develop an educational board game, “Sustainable Home: Energy Challenge,” based on Monopoly by integrating sustainable development goals and renewable energy to use ChatGPT in human–computer collaboration. ChatGPT was used for game conceptualization, rule development, board creation, card design, and [...] Read more.
This research aims to develop an educational board game, “Sustainable Home: Energy Challenge,” based on Monopoly by integrating sustainable development goals and renewable energy to use ChatGPT in human–computer collaboration. ChatGPT was used for game conceptualization, rule development, board creation, card design, and simulation in an iterative design. The developed board game demonstrated ChatGPT’s efficiency in educational game design and the benefits of human–computer collaboration. Game simulations validated the board game’s potential as a simulation tool to enhance diversity, cooperation, and strategic depth. The game effectively promoted SDG engagement and sustainable development education in gamified learning. Full article
Show Figures

Figure 1

14 pages, 288 KiB  
Article
Cross-Regional Students’ Engagement and Teacher Relationships Across Online and In-School Learning
by Huiqi Hu, Yijun Wang and Wolfgang Jacquet
Educ. Sci. 2025, 15(8), 993; https://doi.org/10.3390/educsci15080993 (registering DOI) - 5 Aug 2025
Abstract
This study examines how teacher–student relationships and school engagement change across online and in-school learning, based on the experiences of 105 cross-regional secondary vocational students in China. Using questionnaire surveys, the study explores students’ perceptions and learning needs in both settings. The findings [...] Read more.
This study examines how teacher–student relationships and school engagement change across online and in-school learning, based on the experiences of 105 cross-regional secondary vocational students in China. Using questionnaire surveys, the study explores students’ perceptions and learning needs in both settings. The findings confirm that teachers play a consistently positive role in promoting student engagement across both online and in-school learning modalities. While affective engagement was higher during online learning, driven by stronger teacher responsiveness and improved student–teacher relationships, students reported increased pride in their schools after returning home, reflecting a renewed appreciation. In-school learning was associated with higher behavioral engagement and greater motivation, despite tensions over intensified academic tasks. Online learning facilitated cognitive engagement through easier vocabulary searches; nevertheless, poor home environments reduced motivation. Enhancing engagement may require offering students autonomy, valuing their input, and clarifying the relevance of the learning content. Full article
25 pages, 861 KiB  
Article
Designing a Board Game to Expand Knowledge About Parental Involvement in Teacher Education
by Zsófia Kocsis, Zsolt Csák, Dániel Bodnár and Gabriella Pusztai
Educ. Sci. 2025, 15(8), 986; https://doi.org/10.3390/educsci15080986 (registering DOI) - 2 Aug 2025
Viewed by 340
Abstract
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap [...] Read more.
Research highlights a growing demand for active, experiential learning methods in higher education, especially in teacher education. While the benefits of parental involvement (PI) are well-documented, Hungary lacks tools to effectively prepare teacher trainees for fostering family–school cooperation. This study addresses this gap by introducing a custom-designed board game as an innovative teaching tool. The game simulates real-world challenges in PI through a cooperative, scenario-based framework. Exercises are grounded in international and national research, ensuring their relevance and evidence-based design. Tested with 110 students, the game’s educational value was assessed via post-gameplay questionnaires. Participants emphasized the strengths of its cooperative structure, realistic scenarios, and integration of humor. Many reported gaining new insights into parental roles and strategies for effective home–school partnerships. Practical applications include integrating the game into teacher education curricula and adapting it for other educational contexts. This study demonstrates how board games can bridge theory and practice, offering an engaging, effective medium to prepare future teachers for the challenges of PI. Full article
(This article belongs to the Section Teacher Education)
Show Figures

Figure 1

20 pages, 12851 KiB  
Article
Evaluation of a Vision-Guided Shared-Control Robotic Arm System with Power Wheelchair Users
by Breelyn Kane Styler, Wei Deng, Cheng-Shiu Chung and Dan Ding
Sensors 2025, 25(15), 4768; https://doi.org/10.3390/s25154768 - 2 Aug 2025
Viewed by 189
Abstract
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed [...] Read more.
Wheelchair-mounted assistive robotic manipulators can provide reach and grasp functions for power wheelchair users. This in-lab study evaluated a vision-guided shared control (VGS) system with twelve users completing two multi-step kitchen tasks: a drinking task and a popcorn making task. Using a mixed methods approach participants compared VGS and manual joystick control, providing performance metrics, qualitative insights, and lessons learned. Data collection included demographic questionnaires, the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and exit interviews. No significant SUS differences were found between control modes, but NASA-TLX scores revealed VGS control significantly reduced workload during the drinking task and the popcorn task. VGS control reduced operation time and improved task success but was not universally preferred. Six participants preferred VGS, five preferred manual, and one had no preference. In addition, participants expressed interest in robotic arms for daily tasks and described two main operation challenges: distinguishing wrist orientation from rotation modes and managing depth perception. They also shared perspectives on how a personal robotic arm could complement caregiver support in their home. Full article
(This article belongs to the Special Issue Intelligent Sensors and Robots for Ambient Assisted Living)
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 143
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

50 pages, 8673 KiB  
Article
Challenges of Integrating Assistive Technologies and Robots with Embodied Intelligence in the Homes of Older People Living with Frailty
by Abdel-Karim Al-Tamimi, Lantana Hewitt, David Cameron, Maher Salem and Armaghan Moemeni
Appl. Sci. 2025, 15(15), 8415; https://doi.org/10.3390/app15158415 - 29 Jul 2025
Viewed by 235
Abstract
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance [...] Read more.
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance the integration of smart home and assistive technologies specifically for pre-frail older adults. Developed through a systematic literature review and innovative and comprehensive co-design activities, the CIREI framework captures the nuanced needs, preferences, and challenges faced by older adults, caregivers, and experts. Key findings from the co-design workshop highlight critical factors such as usability, privacy, and personalised learning preferences, which directly influence technology adoption. These insights informed the creation of an intelligent middleware prototype named WISE-WARE, which seamlessly integrates commercial off-the-shelf (COTS) devices to support health management and improve the quality of life for older adults. The CIREI framework’s adaptability ensures it can be extended and refined to meet the ever-changing needs of the ageing population, providing a robust foundation for future research and development in user-centred technology design. All workshop materials, including tools and methodologies, are made available to encourage the further exploration and adaptation of the CIREI framework, ensuring its relevance and effectiveness in the dynamic landscape of ageing and technology. This research contributes significantly to the discourse on ageing in place, digital inclusion, and the role of technology in empowering older adults to maintain independence. Full article
Show Figures

Figure 1

12 pages, 1631 KiB  
Article
Machine Learning Applied to NHS Electronic Staff Records Identifies Key Areas of Focus for Staff Retention
by Rupert Milsom, Magdalena Zasada, Cath Taylor and Matt Spick
Adm. Sci. 2025, 15(8), 297; https://doi.org/10.3390/admsci15080297 - 29 Jul 2025
Viewed by 279
Abstract
Background: In this work, we examine determinants of staff departure rates in the NHS, a critical issue for workforce stability and continuity of care. High turnover, particularly among clinical staff, undermines service delivery and incurs substantial replacement costs. Methods: Here, we [...] Read more.
Background: In this work, we examine determinants of staff departure rates in the NHS, a critical issue for workforce stability and continuity of care. High turnover, particularly among clinical staff, undermines service delivery and incurs substantial replacement costs. Methods: Here, we analyse a unique dataset derived from Electronic Staff Records at Ashford and St. Peter’s NHS Foundation Trust, using a machine learning approach to move beyond traditional survey-based methods, to assess propensity to leave. Results: In addition to established predictors such as salary and length of service, we identify drivers of increased risks of staff exits, including the distance between home and workplace and, especially for medical staff, cost centre vacancy rates. Conclusions: These findings highlight the multifactorial nature of staff retention and suggest the potential of local administrative data to improve workforce planning, for example, through hyperlocal recruitment strategies. Whilst further work will be required to assess the generalisability of our findings beyond a single Trust, our analysis offers insights for NHS managers seeking to stabilise staffing levels and reduce attrition through targeted interventions beyond pay and tenure. Full article
Show Figures

Figure 1

18 pages, 1374 KiB  
Article
Learning Environment and Learning Outcome: Evidence from Korean Subject–Predicate Honorific Agreement
by Gyu-Ho Shin, Boo Kyung Jung and Minseok Yang
Languages 2025, 10(8), 180; https://doi.org/10.3390/languages10080180 - 26 Jul 2025
Viewed by 293
Abstract
This study examines the relationship between learning environments and learning outcomes in acquiring Korean as a language target. We compare two learner groups residing in the United States: English-speaking learners of Korean in foreign language contexts versus Korean heritage speakers. Both groups share [...] Read more.
This study examines the relationship between learning environments and learning outcomes in acquiring Korean as a language target. We compare two learner groups residing in the United States: English-speaking learners of Korean in foreign language contexts versus Korean heritage speakers. Both groups share English as their dominant language and receive similar tertiary-level instruction, yet differ in their language-learning profiles. We measure two groups’ comprehension behaviour involving Korean subject−predicate honorific agreement, focusing on two conditions manifesting a mismatch between the honorifiable status of a subject and the realisation of the honorific suffix in a predicate. Results from the acceptability judgement task revealed that (1) both learner groups rated the ungrammatical condition as more acceptable than native speakers did, (2) Korean heritage speakers rated the ungrammatical condition significantly lower than English-speaking learners, and (3) overall proficiency in Korean modulated learners’ evaluations of the ungrammatical condition in opposite directions between the groups. No between-group difference was found in the infelicitous-yet-grammatical condition. Results from reaction time measurement further showed that Korean heritage speakers responded considerably faster than English-speaking learners of Korean. These results underscore the critical role of broad usage experience—whether through home language exposure for heritage language speakers or formal instruction for foreign language learners—in shaping non-dominant language activities. Full article
Show Figures

Figure 1

16 pages, 266 KiB  
Article
Experiences, Beliefs, and Values of Patients with Chronic Pain Who Attended a Nurse-Led Program: A Descriptive Phenomenological Qualitative Study
by Jose Manuel Jimenez Martin, Angelines Morales Fernandez, Manuel Vergara Romero and Jose Miguel Morales Asencio
Nurs. Rep. 2025, 15(8), 269; https://doi.org/10.3390/nursrep15080269 - 25 Jul 2025
Viewed by 186
Abstract
Aim: To explore the experiences, beliefs, and values of patients who participated in a two-arm randomized clinical trial assessing a nurse-led intervention program for chronic pain self-management, which demonstrated positive effects on pain reduction, depression, and anxiety, and on health-related quality of life [...] Read more.
Aim: To explore the experiences, beliefs, and values of patients who participated in a two-arm randomized clinical trial assessing a nurse-led intervention program for chronic pain self-management, which demonstrated positive effects on pain reduction, depression, and anxiety, and on health-related quality of life 24 months after completion of the program. Design: Descriptive phenomenological qualitative study. Methods: Patients were recruited via telephone, informed about the study, and invited to participate in an individual interview at a place of their choice (hospital or home). All interviews were audiotaped, and an inductive thematic analysis was performed. Results: Seven interviews were carried out between both groups. Six emerging categories were found: effective relationship with the healthcare system, learning to live with pain, family and social support, behaviors regarding pain, resources for self-management, and concomitant determinants. Conclusions: Patients report key aspects that help us to understand the impact of this type of nurse-led group intervention: the intrinsic therapeutic effect of participating in the program itself, the ability to learn to live with pain, the importance of family and social support, the modification of pain-related behaviors, and the identification of resources for self-care. The findings highlight the need for gender-sensitive, individualized care approaches to chronic pain, addressing stigma and social context. Expanding community-based programs and supporting caregivers is essential, as is further research into gender roles, family dynamics, and work-related factors. Full article
(This article belongs to the Special Issue Nursing Care for Patients with Chronic Pain)
13 pages, 219 KiB  
Article
No Child Left Behind: Insights from Reunification Research to Liberate Aboriginal Families from Child Abduction Systems
by B.J. Newton
Genealogy 2025, 9(3), 74; https://doi.org/10.3390/genealogy9030074 - 25 Jul 2025
Viewed by 401
Abstract
Bring them home, keep them home is research based in New South Wales (NSW) Australia, that aims to understand successful and sustainable reunification for Aboriginal families who have children in out-of-home care (OOHC). This research is led by Aboriginal researchers, and partners with [...] Read more.
Bring them home, keep them home is research based in New South Wales (NSW) Australia, that aims to understand successful and sustainable reunification for Aboriginal families who have children in out-of-home care (OOHC). This research is led by Aboriginal researchers, and partners with Aboriginal organisations. It is informed by the experiences of 20 Aboriginal parents and family members, and more than 200 practitioners and professionals working in child protection and reunification. This paper traces the evolution of Bring them home, keep them home which is now at the forefront of influence for NSW child protection reforms. Using specific examples, it highlights the role of research advocacy and resistance in challenging and disrupting systems in ways that amplify the voices of Aboriginal families and communities and embeds these voices as the foundation for radical innovation for child reunification approaches. The paper shares lessons being learned and insights for Aboriginal-led research with communities in the pursuit of restorative justice, system change, and self-determination. Providing a framework for liberating Aboriginal families from child abduction systems, this paper seeks to offer a truth-telling and practical contribution to the international efforts of Indigenous resistance to child abduction systems. Full article
(This article belongs to the Special Issue Self Determination in First Peoples Child Protection)
14 pages, 1295 KiB  
Article
Edge-FLGuard+: A Federated and Lightweight Anomaly Detection Framework for Securing 5G-Enabled IoT in Smart Homes
by Manuel J. C. S. Reis
Future Internet 2025, 17(8), 329; https://doi.org/10.3390/fi17080329 - 24 Jul 2025
Viewed by 200
Abstract
The rapid expansion of 5G-enabled Internet of Things (IoT) devices in smart homes has heightened the need for robust, privacy-preserving, and real-time cybersecurity mechanisms. Traditional cloud-based security systems often face latency and privacy bottlenecks, making them unsuitable for edge-constrained environments. In this work, [...] Read more.
The rapid expansion of 5G-enabled Internet of Things (IoT) devices in smart homes has heightened the need for robust, privacy-preserving, and real-time cybersecurity mechanisms. Traditional cloud-based security systems often face latency and privacy bottlenecks, making them unsuitable for edge-constrained environments. In this work, we propose Edge-FLGuard+, a federated and lightweight anomaly detection framework specifically designed for 5G-enabled smart home ecosystems. The framework integrates edge AI with federated learning to detect network and device anomalies while preserving user privacy and reducing cloud dependency. A lightweight autoencoder-based model is trained across distributed edge nodes using privacy-preserving federated averaging. We evaluate our framework using the TON_IoT and CIC-IDS2018 datasets under realistic smart home attack scenarios. Experimental results show that Edge-FLGuard+ achieves high detection accuracy (≥95%) with minimal communication and computational overhead, outperforming traditional centralized and local-only baselines. Our results demonstrate the viability of federated AI models for real-time security in next-generation smart home networks. Full article
Show Figures

Figure 1

25 pages, 16941 KiB  
Article
KAN-Sense: Keypad Input Recognition via CSI Feature Clustering and KAN-Based Classifier
by Minseok Koo and Jaesung Park
Electronics 2025, 14(15), 2965; https://doi.org/10.3390/electronics14152965 - 24 Jul 2025
Viewed by 279
Abstract
Wi-Fi sensing leverages variations in CSI (channel state information) to infer human activities in a contactless and low-cost manner, with growing applications in smart homes, healthcare, and security. While deep learning has advanced macro-motion sensing tasks, micro-motion sensing such as keypad stroke recognition [...] Read more.
Wi-Fi sensing leverages variations in CSI (channel state information) to infer human activities in a contactless and low-cost manner, with growing applications in smart homes, healthcare, and security. While deep learning has advanced macro-motion sensing tasks, micro-motion sensing such as keypad stroke recognition remains underexplored due to subtle inter-class CSI variations and significant intra-class variance. These challenges make it difficult for existing deep learning models typically relying on fully connected MLPs to accurately recognize keypad inputs. To address the issue, we propose a novel approach that combines a discriminative feature extractor with a Kolmogorov–Arnold Network (KAN)-based classifier. The combined model is trained to reduce intra-class variability by clustering features around class-specific centers. The KAN classifier learns nonlinear spline functions to efficiently delineate the complex decision boundaries between different keypad inputs with fewer parameters. To validate our method, we collect a CSI dataset with low-cost Wi-Fi devices (ESP8266 and Raspberry Pi 4) in a real-world keypad sensing environment. Experimental results verify the effectiveness and practicality of our method for keypad input sensing applications in that it outperforms existing approaches in sensing accuracy while requiring fewer parameters. Full article
Show Figures

Figure 1

16 pages, 1417 KiB  
Article
Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition
by Konrad Matysiak, Aleksandra Hojdis and Magdalena Szewczuk
Nutrients 2025, 17(15), 2414; https://doi.org/10.3390/nu17152414 - 24 Jul 2025
Viewed by 307
Abstract
Background/Objectives: Patients with stage IV gastric cancer who develop chronic intestinal failure require home parenteral nutrition (HPN). This study aimed to evaluate the prognostic relevance of nutritional and immune–inflammatory biomarkers and to construct an individualised survival prediction model using machine learning techniques. Methods: [...] Read more.
Background/Objectives: Patients with stage IV gastric cancer who develop chronic intestinal failure require home parenteral nutrition (HPN). This study aimed to evaluate the prognostic relevance of nutritional and immune–inflammatory biomarkers and to construct an individualised survival prediction model using machine learning techniques. Methods: A secondary analysis was performed on a cohort of 410 patients with TNM stage IV gastric adenocarcinoma who initiated HPN between 2015 and 2023. Nutritional and inflammatory indices, including the Controlling Nutritional Status (CONUT) score and lymphocyte-to-monocyte ratio (LMR), were assessed. Independent prognostic factors were identified using Cox proportional hazards models. A Random Survival Forest (RSF) model was constructed to estimate survival probabilities and quantify variable importance. Results: Both the CONUT score and LMR were independently associated with overall survival. In multivariate analysis, higher CONUT scores were linked to increased mortality risk (HR = 1.656, 95% CI: 1.306–2.101, p < 0.001), whereas higher LMR values were protective (HR = 0.632, 95% CI: 0.514–0.777, p < 0.001). The RSF model demonstrated strong predictive accuracy (C-index: 0.985–0.986) and effectively stratified patients by survival risk. The CONUT score exerted the greatest prognostic influence, with the LMR providing additional discriminatory value. A gradual decline in survival probability was observed with an increasing CONUT score and a decreasing LMR. Conclusions: The application of machine learning to immune–nutritional data offers a robust tool for predicting survival in patients with advanced gastric cancer requiring HPN. This approach may enhance risk stratification, support individualised clinical decision-making regarding nutritional interventions, and inform treatment intensity adjustment. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

34 pages, 1525 KiB  
Article
Using Machine Learning to Model the Acceptance of Domestic Low-Carbon Technologies
by Paul van Schaik, Heather Clements, Yordanka Karayaneva, Elena Imani, Michael Knowles, Natasha Vall and Matthew Cotton
Sustainability 2025, 17(15), 6668; https://doi.org/10.3390/su17156668 - 22 Jul 2025
Viewed by 398
Abstract
This research addresses two specific knowledge gaps. The first regards the influence of domestic low-carbon technology (LCT) installation approaches and occupier status on user acceptance. The second is to demonstrate the role of machine learning techniques in producing an enhanced model-based understanding of [...] Read more.
This research addresses two specific knowledge gaps. The first regards the influence of domestic low-carbon technology (LCT) installation approaches and occupier status on user acceptance. The second is to demonstrate the role of machine learning techniques in producing an enhanced model-based understanding of domestic LCT acceptance. Together, these two approaches provide new insights into LCT acceptance through the theory of planned behaviour and demonstrate the value of machine learning for modelling such acceptance. Our aim is therefore to contribute to model-based knowledge about the acceptance of domestic LCTs. Specifically, we contribute new knowledge of the acceptance of LCTs according to the theory of planned behaviour and of the value of machine-learning techniques for modelling this acceptance. Through empirical research using an online quasi-experiment with 3813 English residents, we developed a model of low-carbon technology adoption and evaluated machine learning for model analysis. The design factors were the installation approach and occupier status, with main outcomes including adoption intention, willingness to accept, willingness to pay, attitude, subjective norm, and perceived behavioural control. To examine residents’ technology acceptance, we created two virtual reality models of technology implementation, differing in installation approach. For machine learning analysis, we employed nine techniques for model validation and predictor selection: linear regression, LASSO regression, ridge regression, support vector regression, regression tree (decision tree regression), random forest, XGBoost, k-NN, and neural network. LASSO regression emerged as the best technique in terms of predictor selection, with (near-)optimal model fit (R2 and MSE). We found that attitude, subjective norm, and perceived behavioural control significantly predicted the intention to adopt low-carbon technologies. The installation approach influenced willingness to accept, with higher intention for new-build installations than retrofits. Homeownership positively predicted perceived behavioural control, while age negatively predicted several outcomes. This study concludes with implications for policy and future research, a specific emphasis upon contemporary UK policy towards Future Homes Standards, and public information campaigns targeted to specific demographic user groups. This research demonstrates the value of an extended theory of planned behaviour model to study the acceptance of LCTs and the value of machine learning analysis in acceptance modelling. Full article
Show Figures

Figure 1

Back to TopTop