Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
- The Controlling Nutritional Status score [22] was calculated based on the following:
- Serum albumin (g/L);
- Total cholesterol (mg/dL);
- Total lymphocyte count.
- 0–1 points: well-nourished;
- 2–4 points: mildly malnourished;
- 5–8 points: moderately malnourished;
- 9–12 points: severely malnourished.
- The prognostic nutritional index [23] considered the following:
- Serum albumin (g/dL);
- Total lymphocyte count.
- The Naples Prognostic Score [24] combined the following:
- Serum albumin (g/L);
- Total cholesterol (mg/dL);
- Neutrophil-to-lymphocyte ratio;
- Lymphocyte-to-monocyte ratio.
- Score 0: low risk;
- Score 1–2: intermediate risk;
- Score 3–4: high risk.
- The Lymphocyte-to-monocyte ratio [25] was calculated.
- Systemic Immune–inflammation Index [26]. The SII was calculated using the following formula: (platelet count × neutrophil count)/lymphocyte count. All counts were expressed in ×109/L.
- The neutrophil-to-lymphocyte ratio was calculated [27].
- The total lymphocyte count was calculated [28].
- Body mass index was defined as weight in kilograms divided by the square of height in metres (kg/m2).
- Complete blood count;
- White blood cell count (×109/L);
- Lymphocyte count (×109/L);
- Lymphocyte percentage (%);
- Monocyte (×109/L), absolute;
- Neutrophil count (×109/L);
- Platelet count (×109/L);
- Total protein (g/dL);
- Serum albumin (g/L);
- Total cholesterol (mg/dL).
2.3. Statistical Analyses
2.4. Random Survival Forest—Methodology and Implementation
3. Results
3.1. Patient Characteristics
3.2. ROC Analysis and Cut-Off Values
3.3. Cox Regression: Univariate and Multivariate Analysis Results
3.4. Collinearity Assessment
3.5. Survival Analysis with Random Survival Forest
3.6. Kaplan–Meier Survival Curves and Log-Rank Test for Survival Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Area Under the Receiver Operating Characteristic Curve |
BMI | Body Mass Index; |
CONUT | Controlling Nutritional Status |
C-index | Harrell’s Concordance Index |
HR | Hazard Ratio |
HPN | Home Parenteral Nutrition |
LMR | Lymphocyte-to-Monocyte Ratio |
NLR | Neutrophil-to-Lymphocyte Ratio |
NPS | Naples Prognostic Score |
PNI | Prognostic Nutritional Index |
ROC | Receiver Operating Characteristic Curve |
RSF | Random Survival Forest |
SII | Systemic Immune–Inflammation Index |
TLC | Total Lymphocyte Count |
VIF | Variance Inflation Factor |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Fujiya, K.; Kawamura, T.; Omae, K.; Makuuchi, R.; Irino, T.; Tokunaga, M.; Tanizawa, Y.; Bando, E.; Terashima, M. Impact of Malnutrition After Gastrectomy for Gastric Cancer on Long-Term Survival. Ann. Surg. Oncol. 2018, 25, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.G.; Beyer, G.; Christiansen, N.; Kamlage, B.; Pilarsky, C.; Distler, M.; Fahlbusch, T.; Chromik, A.; Klein, F.; Bahra, M.; et al. Identification and Validation of a Multivariable Prediction Model Based on Blood Plasma and Serum Metabolomics for the Distinction of Chronic Pancreatitis Subjects from Non-Pancreas Disease Control Subjects. Gut 2021, 70, 2150–2158. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, M.J. Mechanisms of Cancer Cachexia. Physiol. Rev. 2009, 89, 381–410. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN Endorsed Recommendations. Definition and Classification of Intestinal Failure in Adults. Clin. Nutr. Edinb. Scotl. 2015, 34, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zheng, L.; Wang, X.; Mao, X.; Wang, Q.; Yang, Y.; Mo, D. The Clinical Value of the Combined Detection of Systemic Immune-Inflammation Index (SII), Systemic Inflammation Response Index (SIRI), and Prognostic Nutritional Index (PNI) in Early Diagnosis of Gastric Cancer. J. Inflamm. Res. 2025, 18, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L.-J.; Li, Q.-Y.; Yuan, Z.; Zhang, D.-C.; Xu, H.; Yang, L.; Gu, X.-H.; Xu, Z.-K. Prognostic Value of Preoperative Immune-Nutritional Scoring Systems in Remnant Gastric Cancer Patients Undergoing Surgery. World J. Gastrointest. Surg. 2023, 15, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Shimada, H.; Takiguchi, N.; Kainuma, O.; Soda, H.; Ikeda, A.; Cho, A.; Miyazaki, A.; Gunji, H.; Yamamoto, H.; Nagata, M. High Preoperative Neutrophil-Lymphocyte Ratio Predicts Poor Survival in Patients with Gastric Cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2010, 13, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.E.; Choi, M.-G.; Seo, J.-M.; An, J.Y.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; Kim, S. Prognostic Significance of Perioperative Nutritional Parameters in Patients with Gastric Cancer. Clin. Nutr. Edinb. Scotl. 2019, 38, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Esashi, R.; Aoyama, T.; Yamamoto, S.; Maezawa, Y.; Hashimoto, I.; Kazama, K.; Morita, J.; Kawahara, S.; Otani, K.; Komori, K.; et al. The CONUT Score Can Predict the Prognosis of Gastric Cancer Patients After Curative Treatment. Anticancer Res. 2025, 45, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Komori, K.; Nakazano, M.; Hara, K.; Tamagawa, H.; Kazama, K.; Hashimoto, I.; Yamada, T.; Maezawa, Y.; Segami, K.; et al. The Clinical Influence of the CONUT Score on Survival of Patients With Gastric Cancer Receiving Curative Treatment. Vivo Athens Greece 2022, 36, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Hou, C.; Li, Y.; Liu, Y. Preoperative Low Muscle Mass and Malnutrition Affect the Clinical Prognosis of Locally Advanced Gastric Cancer Patients Undergoing Radical Surgery. Front. Oncol. 2023, 13, 1156359. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, T.; Shimizu, S.; Yokota, K.; Tanioka, N.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; Hanazaki, K. Neutrophil-to-Lymphocyte Ratio and C-Reactive Protein-to-Albumin Ratio as Prognostic Factors for Unresectable Advanced or Recurrent Gastric Cancer. Langenbecks Arch. Surg. 2022, 407, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, X.-D.; Gao, Y. Correlation between Preoperative Systemic Immune-Inflammatory Indexes and the Prognosis of Gastric Cancer Patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5706–5720. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Hashimoto, I.; Maezawa, Y.; Hara, K.; Tamagawa, A.; Cho, H.; Numata, M.; Morita, J.; Tanabe, M.; Kawahara, S.; et al. Clinical Impact of the Lymphocyte-to-Monocyte Ratio in Patients With Gastric Cancer Who Received Curative Treatment. Anticancer Res. 2024, 44, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, K.; Hojdis, A.; Szewczuk, M. Controlling Nutritional Status (CONUT) Score as Prognostic Indicator in Stage IV Gastric Cancer with Chronic Intestinal Failure. Nutrients 2024, 16, 4052. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; et al. Metabolomic Machine Learning Predictor for Diagnosis and Prognosis of Gastric Cancer. Nat. Commun. 2024, 15, 1657. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Song, D.; Li, K.; Cao, F.; Zheng, Y. Deep Learning Model for Predicting Postoperative Survival of Patients with Gastric Cancer. Front. Oncol. 2024, 14, 1329983. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random Survival Forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Adham, D.; Abbasgholizadeh, N.; Abazari, M. Prognostic Factors for Survival in Patients with Gastric Cancer Using a Random Survival Forest. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wang, J.; Zheng, T.; Cao, Y.; Ye, F. Prediction of Prognosis and Survival of Patients with Gastric Cancer by a Weighted Improved Random Forest Model: An Application of Machine Learning in Medicine. Arch. Med. Sci. AMS 2022, 18, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.P.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A Tool for Controlling Nutritional Status. First Validation in a Hospital Population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Galizia, G.; Lieto, E.; Auricchio, A.; Cardella, F.; Mabilia, A.; Podzemny, V.; Castellano, P.; Orditura, M.; Napolitano, V. Naples Prognostic Score, Based on Nutritional and Inflammatory Status, Is an Independent Predictor of Long-Term Outcome in Patients Undergoing Surgery for Colorectal Cancer. Dis. Colon Rectum 2017, 60, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Stotz, M.; Pichler, M.; Absenger, G.; Szkandera, J.; Arminger, F.; Schaberl-Moser, R.; Samonigg, H.; Stojakovic, T.; Gerger, A. The Preoperative Lymphocyte to Monocyte Ratio Predicts Clinical Outcome in Patients with Stage III Colon Cancer. Br. J. Cancer 2014, 110, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Zahorec, R. Ratio of Neutrophil to Lymphocyte Counts--Rapid and Simple Parameter of Systemic Inflammation and Stress in Critically Ill. Bratisl. Lek. Listy 2001, 102, 5–14. [Google Scholar] [PubMed]
- Ingenbleek, Y.; Carpentier, Y.A. A Prognostic Inflammatory and Nutritional Index Scoring Critically Ill Patients. Int. J. Vitam. Nutr. Res. Int. Z. Vitam. Ernahrungsforschung J. Int. Vitaminol. Nutr. 1985, 55, 91–101. [Google Scholar]
- Tang, W.; Li, G.; Lin, Q.; Zhu, Z.; Wang, Z.; Wang, Z. Multiplex Immunohistochemistry Defines Two Cholesterol Metabolism Patterns Predicting Immunotherapeutic Outcomes in Gastric Cancer. J. Transl. Med. 2023, 21, 887. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Berrington de González, A.; Freedman, N.D.; Huxley, R.; Mok, Y.; Jee, S.H.; Samet, J.M. Total Cholesterol and Cancer Risk in a Large Prospective Study in Korea. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 1592–1598. [Google Scholar] [CrossRef] [PubMed]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The Antioxidant Properties of Serum Albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Dang, Y.; Zhang, F.; Huang, Q. Low Serum Albumin Correlates with Poor Survival in Gastric Cancer Patients. Clin. Lab. 2018, 64, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Torres, O.R.; García-Ruiz, L.; Luna-Abanto, J.; Meza-García, K.; Chávez-Passiuri, I.; Berrospi-Espinoza, F.; Luque-Vásquez Vásquez, C.; Ruiz-Figueroa, E.; Payet-Meza, E. Risk Factors Associated with Postoperative Morbidity and Mortality in D2 Radical Gastrectomy for Gastric Cancer. Rev. Gastroenterol. Mex. Engl. 2022, 87, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, W.; Wu, Y.; Luo, Y.; Wu, B.; Cheng, J.; Chen, J.; Liu, D.; Li, C. Prognostic Role of Pretreatment Blood Lymphocyte Count in Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Cell Int. 2020, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhao, Y.; Ma, F.; Wu, S. Controlling Nutritional Status Score Predict the Individualized Survival of Patients with Gastric Cancer. Asia Pac. J. Clin. Nutr. 2021, 30, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhang, C.; Liu, Z.; Ai, S.; Guan, W.; Liu, S. Controlling Nutritional Status (CONUT) Score as a Predictive Marker for Short-Term Complications Following Gastrectomy of Gastric Cancer: A Retrospective Study. BMC Gastroenterol. 2021, 21, 107. [Google Scholar] [CrossRef] [PubMed]
- Akagunduz, B.; Demir, M.; Atcı, M.M. Controlling Nutritional Status (CONUT) Score Is a Prognostic Factor for Patients with Gastric Cancer Treated by Perioperative FLOT. J. Gastrointest. Cancer 2022, 53, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Pagès, F.; Sautès-Fridman, C.; Galon, J. The Immune Contexture in Human Tumours: Impact on Clinical Outcome. Nat. Rev. Cancer 2012, 12, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.; Zheng, G.; Wang, Q.; Liu, S.; Liu, Z.; Xu, G.; Wang, F.; Guo, M.; Lian, X.; Zhang, H. Low Lymphocyte Count and High Monocyte Count Predicts Poor Prognosis of Gastric Cancer. BMC Gastroenterol. 2018, 18, 148. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-C.; Jia, Z.-F.; Cao, D.-H.; Wu, Y.-H.; Jiang, J.; Wen, S.-M.; Zhao, D.; Zhang, S.-L.; Cao, X.-Y. Preoperative Lymphocyte-to-Monocyte Ratio (LMR) Could Independently Predict Overall Survival of Resectable Gastric Cancer Patients. Medicine 2018, 97, e13896. [Google Scholar] [CrossRef] [PubMed]
- Okuno, K.; Tokunaga, M.; Yamashita, Y.; Umebayashi, Y.; Saito, T.; Fukuyo, R.; Sato, Y.; Saito, K.; Fujiwara, N.; Hoshino, A.; et al. Preoperative Lymphocyte-to-Monocyte Ratio Is the Most Predictive Inflammatory Response Marker of Survival in Gastric Cancer. Langenbecks Arch. Surg. 2021, 406, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Li, S.; Xue, Y. Impact of preoperative lymphocyte to monocyte ratio on the prognosis of the elderly patients with stage II(-III( gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi Chin. J. Gastrointest. Surg. 2016, 19, 1144–1148. [Google Scholar]
- Mei, P.; Feng, W.; Zhan, Y.; Guo, X. Prognostic Value of Lymphocyte-to-Monocyte Ratio in Gastric Cancer Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Front. Immunol. 2023, 14, 1321584. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Yu, W.; Dai, Y.; Liu, C.; Wang, Y.; Wu, Q. A Deep Neural Network for Gastric Cancer Prognosis Prediction Based on Biological Information Pathways. J. Oncol. 2022, 2022, 2965166. [Google Scholar] [CrossRef] [PubMed]
- Na, J.-E.; Lee, Y.-C.; Kim, T.-J.; Lee, H.; Won, H.-H.; Min, Y.-W.; Min, B.-H.; Lee, J.-H.; Rhee, P.-L.; Kim, J.J. Machine Learning Model to Stratify the Risk of Lymph Node Metastasis for Early Gastric Cancer: A Single-Center Cohort Study. Cancers 2022, 14, 1121. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Wang, M.; Chen, W.; Xu, Y.; Zhou, Q.; Zhu, T.; Wang, G.; Cai, S.; Han, Y.; Xu, C.; et al. Senescence-Related Genes Define Prognosis, Immune Contexture, and Pharmacological Response in Gastric Cancer. Aging 2023, 15, 2891–2905. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics of Stage IV Gastric Cancer Patients | n = 410 |
---|---|
Body mass index (kg/m2) | |
BMI < 18.5 | 152 (37) |
18.5 ≤ BMI < 25 | 211(51) |
BMI ≥ 25 | 47 (11) |
Systemic immune–inflammation index (cut-off = 758.5) | |
SII < 758.5 | 177 (43) |
SII ≥ 758.5 | 233 (57) |
Lymphocyte-to-monocyte ratio (cut-off = 2.078) | |
LMR < 2.078 | 198 (48) |
LMR ≥ 2.078 | 212 (52) |
Total lymphocyte count | |
TLC < 800 | 77 (19) |
800 ≤ TLC < 1200 | 80 (20) |
1200 ≤ TLC < 1500 | 65 (16) |
TLC ≥ 1500 | 188 (46) |
Neutrophil-to-lymphocyte ratio (cut-off = 3.319) | |
NLR < 3.319 | 259 (63) |
NLR ≥ 3.319 | 151 (37) |
Naples Prognostic Score | |
Score 0: low risk | 56 (14) |
Score 1–2: intermediate risk | 134 (33) |
Score 3–4: high risk | 220 (54) |
Controlling Nutritional Status Score | |
Score 0–1: well-nourished | 112 (27) |
Score 2–4: mildly malnourished | 167 (41) |
Score 5–8: moderately malnourished | 108 (26) |
Score 9–12: severely malnourished | 23 (6) |
Prognostic nutritional index (cut-off = 34.013) | |
PNI < 34.013 | 252 (61) |
PNI ≥ 34.013 | 158 (39) |
Variables | AUC | Cut-Off Value | Sensitivity | Specificity |
---|---|---|---|---|
Prognostic Nutritional Index | 0.744 | 34.013 | 0.818 | 0.585 |
Lymphocyte-to-Monocyte Ratio | 0.678 | 2.078 | 0.680 | 0.643 |
Neutrophil-to-Lymphocyte Ratio | 0.678 | 3.319 | 0.517 | 0.780 |
Systemic Immune–Inflammation Index | 0.653 | 758.5 | 0.561 | 0.693 |
Variables | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR (95% CI) | HR (95% CI) | |||||
HR | Lower–Upper | p-Value | HR | Lower–Upper | p-Value | |
Age (years) | 1.002 | 0.993–1.011 | 0.640 | |||
Gender (Female vs. Male) | 1.184 | 0.890–1.574 | 0.102 | |||
BMI (kg/m2) | 0.943 | 0.844–1.054 | 0.304 | |||
Systemic Immune–Inflammation Index | 0.663 | 0.554–0.792 | <0.001 | 1.076 | 0.809–1.431 | 0.613 |
Lymphocyte-to-Monocyte Ratio | 0.487 | 0.428–0.555 | <0.001 | 0.632 | 0.514–0.777 | <0.001 |
Total Lymphocyte Count | 0.739 | 0.650–0.839 | <0.001 | 0.982 | 0.871–1.109 | 0.778 |
Neutrophil-to-Lymphocyte Ratio | 1.807 | 1.538–2.124 | <0.001 | 1.352 | 0.998–1.831 | 0.051 |
Naples Prognostic Score | 1.558 | 1.346–1.802 | <0.001 | 1.059 | 0.889–1.260 | 0.519 |
Controlling Nutritional Status Score | 2.110 | 1.838–2.424 | <0.001 | 1.656 | 1.306–2.101 | <0.001 |
Prognostic Nutritional Index | 0.403 | 0.338–0.480 | <0.001 | 0.743 | 0.569–0.970 | 0.029 |
Variables | SII | LMR | TLC | NPS | CONUT | PNI | NLR | Variance Inflation Factor |
---|---|---|---|---|---|---|---|---|
SII | 1.000 | 0.202 | 0.372 | −0.204 | −0.352 | 0.210 | −0.702 | 1.992 |
LMR | 0.202 | 1.000 | 0.297 | −0.273 | −0.398 | 0.298 | −0.254 | 1.247 |
TLC | 0.372 | 0.297 | 1.000 | −0.177 | −0.592 | 0.243 | −0.459 | 1.938 |
NPS | −0.204 | −0.273 | −0.177 | 1.000 | 0.559 | −0.455 | 0.240 | 1.582 |
CONUT | −0.352 | −0.398 | −0.592 | 0.559 | 1.000 | −0.693 | 0.429 | 3.828 |
PNI | 0.210 | 0.298 | 0.243 | −0.455 | −0.693 | 1.000 | −0.247 | 2.127 |
NLR | −0.702 | −0.254 | −0.459 | 0.240 | 0.429 | −0.247 | 1.000 | 2.226 |
CONUT Category | LMR Category | 6 m | 12 m | 18 m | 24 m | 30 m | 36 m | 42 m |
---|---|---|---|---|---|---|---|---|
1 | 1 | 100.0% | 82.8% | 68.9% | 53.3% | 38.1% | 26.8% | 22.6% |
1 | 0 | 100.0% | 75.9% | 52.8% | 41.1% | 28.9% | 23.7% | 17.5% |
2 | 1 | 95.4% | 70.0% | 43.4% | 31.1% | 22.2% | 13.3% | 8.8% |
2 | 0 | 88.5% | 53.3% | 32.6% | 23.5% | 16.0% | 10.2% | 5.8% |
3 | 1 | 61.4% | 31.4% | 26.7% | 22.5% | 13.4% | 8.7% | 4.4% |
3 | 0 | 33.4% | 12.7% | 3.0% | 1.5% | 1.5% | 1.5% | 1.5% |
4 | 1 | 60.5% | 29.7% | 4.7% | 3.9% | 2.4% | 1.5% | 0.7% |
4 | 0 | 13.6% | 0.2% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matysiak, K.; Hojdis, A.; Szewczuk, M. Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition. Nutrients 2025, 17, 2414. https://doi.org/10.3390/nu17152414
Matysiak K, Hojdis A, Szewczuk M. Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition. Nutrients. 2025; 17(15):2414. https://doi.org/10.3390/nu17152414
Chicago/Turabian StyleMatysiak, Konrad, Aleksandra Hojdis, and Magdalena Szewczuk. 2025. "Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition" Nutrients 17, no. 15: 2414. https://doi.org/10.3390/nu17152414
APA StyleMatysiak, K., Hojdis, A., & Szewczuk, M. (2025). Survival Modelling Using Machine Learning and Immune–Nutritional Profiles in Advanced Gastric Cancer on Home Parenteral Nutrition. Nutrients, 17(15), 2414. https://doi.org/10.3390/nu17152414