Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = hollow silica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6808 KiB  
Communication
Research on Preventing High-Density Materials from Settling in Liquid Resin
by Lixin Xuan, Zhiqiang Wang, Xuan Yang, Xiao Wu, Junjiao Yang and Shijun Zheng
Materials 2025, 18(15), 3469; https://doi.org/10.3390/ma18153469 - 24 Jul 2025
Viewed by 249
Abstract
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing [...] Read more.
The applications of magnetic particles in anti-counterfeiting and anti-absorbing coatings and other functional materials are becoming increasingly widespread. However, due to their high density, the magnetic particles rapidly settle in organic resin media, significantly affecting the quality of the related products. Thereby, reducing the density of the particles is essential. To achieve this goal, high-density magnetic particles were coated onto the surface of hollow silica using anion–cation composite technology. Further, the silane coupling agent N-[3-(trimethoxysilyl)propyl]ethylenediamine was bonded to the surface of magnetic particles to form an amino-covered interfacial layer with a pH value of 9.28, while acrylic acid was polymerized and coated onto the surface of hollow silica to form a carboxyl-covered interfacial layer with a pH value of 4.65. Subsequently, the two materials were compounded to obtain a low-density composite magnetic material. The morphologies and structural compositions of the magnetic composite materials were studied by FTIR, SEM, SEM-EDS, XRD, and other methods. The packing densities of the magnetic composite materials were compared using the particle packing method, thereby solving the problem of magnetic particles settling in the resin solution. Full article
Show Figures

Figure 1

27 pages, 40365 KiB  
Article
Formation of Hybrid Spherical Silica Particles Using a Novel Alkoxy-Functional Polysilsesquioxane Macromonomer as a Precursor in an Acid-Catalyzed Sol-Gel Process
by Anna Kowalewska, Kamila Majewska-Smolarek, Agata S. Herc, Sławomir Kaźmierski and Joanna Bojda
Materials 2025, 18(14), 3357; https://doi.org/10.3390/ma18143357 - 17 Jul 2025
Viewed by 467
Abstract
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a [...] Read more.
The interest in macromolecular alkoxysilyl-functionalized hybrids (self-assembling or nanostructured), which could be used as precursors in biomimetic silica precipitation and for the synthesis of hollow spherical silica particles, is growing. Nevertheless, reports on all-organosilicon systems for bioinspired silica precipitation are scarce. Therefore, a new kind of polyalkoxysilane macromonomer–linear polysilsesquioxane (LPSQ) of ladder-like backbone, functionalized in side chains with trimethoxysilyl groups (LPSQ-R-Si(OMe)3), was designed following this approach. It was obtained by photoinitiated thiol-ene addition of 3-mercaptopropyltrimethoxysilane to the vinyl-functionalized polysilsesquioxane precursor, carried out in situ in tetraethoxysilane (TEOS). The mixture of LPSQ-R-Si(OMe)3 and TEOS (co-monomers) was used in a sol–gel process conducted under acidic conditions (0.5 M HCl/NaCl) in the presence of Pluronic® F-127 triblock copolymer as a template. LPSQ-R-Si(OMe)3 played a key role for the formation of microparticles of a spherical shape that were formed under the applied conditions, while their size (as low as 3–4 µm) was controlled by the stirring rate. The hybrid materials were hydrophobic and showed good thermal and oxidative stability. Introduction of zinc acetate (Zn(OAc)2) as an additive in the sol–gel process influenced the pH of the reaction medium, which resulted in structural reinforcement of the hybrid microparticles owing to more effective condensation of silanol groups and a relative increase of the content of SiO2. The proposed method shows directions in designing the properties of hybrid materials and can be translated to other silicon–organic polymers and oligomers that could be used to produce hollow silica particles. The established role of various factors (macromonomer structure, pH, and stirring rate) allows for the modulation of particle morphology. Full article
Show Figures

Graphical abstract

16 pages, 6994 KiB  
Article
Effects of Silica Aerogel Content on the Properties of Waterborne Organic Thermal Insulation Coatings
by Zikang Chen, Dingwei Li, Shengjie Yao, Yumin Duan, Jiahui Chen, Miao Liu, Taoying Liu and Zhi Li
Gels 2025, 11(7), 547; https://doi.org/10.3390/gels11070547 - 15 Jul 2025
Viewed by 578
Abstract
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have [...] Read more.
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have low thermal conductivity and excellent thermal insulation properties. These waterborne coatings are environmentally friendly and were synthesized without organic solvents. Comprehensive testing verified that the coatings met practical requirements. Specifically, the addition of 18% SA resulted in minimal thermal conductivity (0.0433 W/m·K), the lowest density (0.177 g/cm3), as well as a reduced gross calorific value. At a heating surface temperature of 200 °C, the 5 mm coating’s cooling surface temperature was 108.7 °C, yielding a 91.3 °C temperature difference and demonstrating remarkable thermal insulation performance. Furthermore, the coatings showed favorable results in terms of water resistance, corrosion resistance, wear resistance, and adhesion, achieving satisfactory engineering standards. In this work, the influence of different contents of SA on various properties of the coating was studied, with the aim of providing a reference for the modulation of the comprehensive performance of SA thermal insulation coatings. Full article
(This article belongs to the Special Issue Aerogels: Recent Progress in Novel Applications)
Show Figures

Graphical abstract

11 pages, 1825 KiB  
Article
Polyarylene Ether Nitrile/Modified Hollow Silica Composite Films for Ultralow Dielectric Properties and Enhanced Thermal Resistance
by Shuning Liu, Jinqi Wu, Yani Chen, Ting Zhang, Lifen Tong and Xiaobo Liu
Polymers 2025, 17(12), 1623; https://doi.org/10.3390/polym17121623 - 11 Jun 2025
Viewed by 470
Abstract
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content [...] Read more.
Highly heat-resistant and low-dielectric materials are crucial for achieving high-frequency communication, high-density integration, and high-temperature stability in modern electronics. In this work, surface modification of hollow silica microspheres (HGMs) using a silane coupling agent ((3-aminopropyl)triethoxysilane, KH550) yielded KHGM particles with a coating content of approximately 9.3 wt%, which were subsequently incorporated into high-performance polyarylene ether nitrile (PEN) polymers to fabricate composite films. The modified nanoparticles demonstrated significantly enhanced compatibility with the polymer matrix, while their hollow structure effectively reduced the dielectric constant of the composite film. When loaded with 50 wt% KHGM particles, the PEN-based composite film exhibited an elevated glass transition temperature of 198 °C and achieved a dielectric constant as low as 2.32 at 1 MHz frequency, coupled with dielectric loss below 0.016; compared with pure PEN, the dielectric constant of PEN/KHGM-50% decreased by 26.47%. Additionally, the composite demonstrated excellent water repellency. These advancements provide high-performance material support for applications in electronic communications, aerospace, and related fields. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

14 pages, 4437 KiB  
Article
Integrated Smart Packaging of Modified Silica/Anthocyanin/Nanocellulose for Preservation and Monitoring
by Yu Ren, Jing Guo, Zehao Zhong, Jinjin Chen, Peng Jin, Yonghua Zheng and Zhengguo Wu
Foods 2025, 14(11), 1888; https://doi.org/10.3390/foods14111888 - 26 May 2025
Cited by 1 | Viewed by 941
Abstract
Smart packaging not only has a preservation effect on food, but can also monitor the change of food quality in real time to ensure food safety. In this study, hollow mesoporous silica loaded with cinnamaldehyde was used as the antimicrobial agent, anthocyanin as [...] Read more.
Smart packaging not only has a preservation effect on food, but can also monitor the change of food quality in real time to ensure food safety. In this study, hollow mesoporous silica loaded with cinnamaldehyde was used as the antimicrobial agent, anthocyanin as the color developer, and nanocellulose as the film matrix, to obtain smart packaging with excellent antimicrobial activity and pH-responsive color development (CBF). Modified silica has a good regulatory characteristic on the release of cinnamaldehyde, and the cumulative release rate of cinnamaldehyde in the NH2-HMSN@CA preservative reaches 72% after 7 days. Additionally, the film has good antibacterial properties, with inhibition rates of 82% and 92% against E. coli and S. aureus, respectively. In addition, the film has good mechanical properties and water vapor permeability. In terms of pH response, the film shows excellent color rendering and good stability. Therefore, the CBF films can be applied to preservation and real-time monitoring of fruits and vegetables, meat, and other food products, which has great potential for intelligent food packaging. Full article
(This article belongs to the Special Issue Micro and Nanomaterials in Sustainable Food Encapsulation)
Show Figures

Figure 1

14 pages, 7058 KiB  
Article
Manufacturing Process and Characteristics of Silica Nanostructures for Anti-Reflection at 355 nm
by Anne Gärtner, Mihai-George Mureșan, Christian Mühlig, Tobias Herffurth, Nadja Felde, Hanjörg Wagner, Ulrike Schulz, Astrid Bingel, Sven Schröder, Tomáš Mocek and Andreas Tünnermann
Coatings 2025, 15(5), 556; https://doi.org/10.3390/coatings15050556 - 6 May 2025
Viewed by 469
Abstract
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. [...] Read more.
Recent advancements in photonics have intensified the performance requirements for optical systems and present significant challenges for optical coating technologies. Conventional interference coating systems often prove to be insufficient, especially in applications requiring large angles of light incidence or a wide wavelength range. Nanostructures, which consist of an air material mixture, offer promising alternatives. In this work, silica nanostructures are manufactured by the AR-plas2 method, in which first an organic layer is evaporated onto a substrate. This organic layer forms self-organizing nanostructures by a plasma etching step, which are subsequently coated with silica. Finally, the organic residues are removed by additional plasma etching and heat treatment steps, which results in hollow silica structures. The work examines the optical and functional properties of these structures designed for 355 nm to demonstrate their use as anti-reflective coatings for advanced optical systems. Full article
Show Figures

Graphical abstract

20 pages, 2708 KiB  
Article
Sustainable Pest Management with Hollow Mesoporous Silica Nanoparticles Loaded with β-Cypermethrin
by Min Li, Linmiao Xue, Teng Gao, Zhuo Zhang, Dan Zhao, Xing Li and Zhanhai Kang
Agronomy 2025, 15(3), 737; https://doi.org/10.3390/agronomy15030737 - 19 Mar 2025
Cited by 1 | Viewed by 827
Abstract
β-cypermethrin (BCP) is a broad-spectrum insecticide known for its rapid efficacy. However, it is highly toxic to non-target organisms such as bees and fish, and its effectiveness is limited by a short duration of action. Improving the release profile of BCP is essential [...] Read more.
β-cypermethrin (BCP) is a broad-spectrum insecticide known for its rapid efficacy. However, it is highly toxic to non-target organisms such as bees and fish, and its effectiveness is limited by a short duration of action. Improving the release profile of BCP is essential for reducing its environmental toxicity while preserving its effectiveness. In this study, hollow mesoporous silica nanoparticles (HMSNs) were synthesized using a self-templating method, and BCP-loaded HMSNs were prepared through physical adsorption. The structural and physicochemical properties of the nanoparticles were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption analysis, Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The BCP release profile was assessed using the dialysis bag method. The results showed that the synthesized nanoparticles exhibited uniform morphology, thin shells, and large internal cavities. The HMSNs had a pore size of 3.09 nm, a specific surface area of 1318 m2·g−1, a pore volume of 1.52 cm3·g−1, and an average particle size of 183 nm. TEM, FT-IR, and TGA analyses confirmed the successful incorporation of BCP into the HMSNs, achieving a drug loading efficiency of 32.53%. The BCP-loaded nanoparticles exhibited sustained-release properties, with an initial burst followed by gradual release, extending efficacy for 30 days. Safety evaluations revealed minimal toxicity to maize seedlings, confirming the biocompatibility of the nanoparticles. These findings indicate that BCP-loaded HMSNs can enhance the efficacy of BCP while reducing its environmental toxicity, providing a biocompatible and environmentally friendly solution for pest control. Full article
Show Figures

Figure 1

13 pages, 2308 KiB  
Article
A Large-Scale Preparation Approach for Daytime Radiative Cooling Using SiO2 Hollow Microsphere Composite Film
by Changhai Li, Xiaojie Sun, Yuting Yang, Baojian Liu, Haotian Zhang, Rong He, Rongjun Zhang, Yuxiang Zheng, Songyou Wang, Young-Pak Lee and Liangyao Chen
Coatings 2025, 15(3), 340; https://doi.org/10.3390/coatings15030340 - 14 Mar 2025
Viewed by 1125
Abstract
Radiative cooling is a passive cooling strategy that dissipates heat externally through the atmospheric window (8–13 μm). This study presents a radiative cooling film with a simple and cost-effective fabrication process. The film was fabricated by mixing SiO2 hollow microspheres with a [...] Read more.
Radiative cooling is a passive cooling strategy that dissipates heat externally through the atmospheric window (8–13 μm). This study presents a radiative cooling film with a simple and cost-effective fabrication process. The film was fabricated by mixing SiO2 hollow microspheres with a UV-curable resin, employing a photopolymerization-induced phase separation method. The resulting gradient refractive index structure enhanced thermal radiation emissivity. At an optimal silica-to-resin mass ratio of 1:1.5 and a film thickness of 1.1 mm, the film achieved a solar reflectivity of 85% and an emissivity of 91% within the atmospheric window. Outdoor experiments conducted in both summer and winter demonstrated stable cooling performance. Under a solar irradiance of 796.9 W/m2 (summer), the film reduced surface temperature by 10 °C compared to ambient air and 20 °C compared to an uncoated glass substrate, achieving a radiative cooling power of 76.7 W/m2. In winter (solar irradiance of 588.8 W/m2), the film maintained a significant cooling effect, though with reduced efficiency due to lower solar exposure. Furthermore, long-term stability tests over six months showed that the film retained high solar reflectivity and infrared emissivity, indicating good durability. Overall, the developed radiative cooling films demonstrate excellent optical properties, structural stability, and cooling efficiency, making it a promising candidate for real-world radiative cooling applications. Further studies on environmental resilience and optimization under diverse climatic conditions are necessary for broader deployment. Full article
Show Figures

Figure 1

14 pages, 109001 KiB  
Article
Construction and Regulation of Polymer@Silica Microspheres with Double-Shell Hollow Structures
by Mingxiu Jiang, Yuanyuan Yang, Jiawei Feng, Zhaopan Wang and Wei Deng
Molecules 2025, 30(4), 954; https://doi.org/10.3390/molecules30040954 - 18 Feb 2025
Cited by 4 | Viewed by 805
Abstract
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres [...] Read more.
Microspheres with well-defined hollow structures have been attracting interest due to their unique morphology and fascinating properties. Herein, a strategy for morphology and size control of hollow polymer@silica microspheres is proposed. Multilayer core–shell polymer microspheres, containing substantial carboxyl groups inside, evolve into microspheres with a 304 nm hollow structure after alkali treatment, which are used to construct hollow polymer@silica microspheres by coating the inorganic layer using the layer-by-layer (LBL) and sol–gel methods, respectively. The inorganic shell thickness of hollow polymer@silica microspheres can be adjusted from 15 nm to 33 nm by the self-assembled layers in the LBL method and from 15 nm to 63 nm by the dosage of precursor in the sol–gel method. Compared to the LBL method, the hollow polymer@silica microspheres prepared via the sol–gel method have a uniform and dense inorganic shell, thus ensuring the complete spherical morphology of the microspheres after calcination, even if the inorganic shell thickness is only 15 nm. Moreover, the hollow polymer@silica microspheres prepared via the sol–gel method exhibit improved compression resistance and good opacity, remaining intact at 16,000 psi and providing the corresponding coating with transmittance lower than 35.1%. This work highlights the morphology regulation of microspheres prepared by different methods and provides useful insights for the design of composites microspheres with controllable structures. Full article
Show Figures

Figure 1

21 pages, 9454 KiB  
Article
Effects of Incorporating Fine Aggregates and Polypropylene Microfibres on the Cracking Control of 3D Printed Cementitious Mixtures
by Armando Vargas, Rafael Robayo-Salazar and Ruby Mejía de Gutiérrez
Buildings 2025, 15(1), 55; https://doi.org/10.3390/buildings15010055 - 27 Dec 2024
Cited by 1 | Viewed by 1182
Abstract
One of the most significant challenges for 3D printing of construction elements from cementitious materials is the control of cracking caused by various contraction–shrinkage mechanisms, such as drying, chemical, plastic and autogenous shrinkage. This study addresses the effects of incorporating fine aggregates (maximum [...] Read more.
One of the most significant challenges for 3D printing of construction elements from cementitious materials is the control of cracking caused by various contraction–shrinkage mechanisms, such as drying, chemical, plastic and autogenous shrinkage. This study addresses the effects of incorporating fine aggregates (maximum size ≤ 1.18 mm), both natural and recycled, as well as short (6 mm long) polypropylene (PP) fibres on the control of cracking in cementitious mixtures based on Portland cement. Admixtures and/or mineral additions (modifiers), such as metakaolin, micro-silica, calcium carbonate, and fine powders obtained from construction and demolition wastes were used in the mixtures. Mini-slump, flow rate and buildability tests were used to characterize the mixtures in their fresh state. Extrudability was evaluated using laboratory-scale 3D printing tests conducted with a plunger–piston extrusion system. It was demonstrated that the physical characteristics of the aggregates directly influence the extrusion capacity. Mixtures containing natural aggregates exhibited greater fluidity and lower water demand than those containing recycled aggregates. The results indicated that the maximum allowable volume of fibres was 0.75%. To evaluate the cracking susceptibility of the mixtures, both with and without reinforcement, hollow beams composed of seven layers were printed, and subsequently the elements were exposed to the outdoor natural environment and inspected for a period of 90 days. The inclusion of the PP fibres effectively prevented the occurrence of fissures and/or cracks associated with shrinkage phenomena throughout the inspection period, unlike in unreinforced mixtures, which cracked after 14 days of exposure to the environment. Full article
Show Figures

Figure 1

19 pages, 4441 KiB  
Article
Nature-Inspired Synthesis of Yeast Capsule Replicas Encased with Silica-Vinyl Functionality: New Fluorescent Hollow Hybrid Microstructures
by Beata Miksa, Katarzyna Trzeciak, Slawomir Kaźmierski, Artur Rozanski, Marek Potrzebowski, Krystyna Rozga-Wijas, Lukasz Sobotta, Magdalena Ziabka, Magdalena Płódowska and Karol Szary
Molecules 2024, 29(22), 5363; https://doi.org/10.3390/molecules29225363 - 14 Nov 2024
Cited by 1 | Viewed by 1313
Abstract
Yeast capsules (YCs) produced from Saccharomyces cerevisiae with encapsulated fluorescent phenosafranin and azure dyes were used as catalytic template guides for developing hybrid functional organic/inorganic hollow microstructures with silica (SiO2) deposited on their surface generated in the imidazole-buffered system without the [...] Read more.
Yeast capsules (YCs) produced from Saccharomyces cerevisiae with encapsulated fluorescent phenosafranin and azure dyes were used as catalytic template guides for developing hybrid functional organic/inorganic hollow microstructures with silica (SiO2) deposited on their surface generated in the imidazole-buffered system without the addition of any cationic surfactant. YCs-doped with SiO2 act as fluorescence emitters maintaining dye-loaded materials by sealing the microporous surface of YCs. We used vinyltrimethoxysilane as a precursor of SiO2 endowed with functional vinyl groups facilitating their further modification without disturbing the polysaccharide wall integrity. Consequently, the hybrid fluorescent polysaccharide/silica microcapsules (YC@dye@SiO2) are promising for wide-ranging optoelectronic applications in electrochromic and OLED devices with biocompatibility and biodegradability properties. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

30 pages, 16269 KiB  
Article
Nanotechnology-Driven Delivery of Caffeine Using Ultradeformable Liposomes-Coated Hollow Mesoporous Silica Nanoparticles for Enhanced Follicular Delivery and Treatment of Androgenetic Alopecia
by Nattanida Thepphankulngarm, Suwisit Manmuan, Namon Hirun and Pakorn Kraisit
Int. J. Mol. Sci. 2024, 25(22), 12170; https://doi.org/10.3390/ijms252212170 - 13 Nov 2024
Cited by 8 | Viewed by 4191
Abstract
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to [...] Read more.
Androgenetic alopecia (AGA) is caused by the impact of dihydrotestosterone (DHT) on hair follicles, leading to progressive hair loss in men and women. In this study, we developed caffeine-loaded hollow mesoporous silica nanoparticles coated with ultradeformable liposomes (ULp-Caf@HMSNs) to enhance caffeine delivery to hair follicles. Caffeine, known to inhibit DHT formation, faces challenges in skin penetration due to its hydrophilic nature. We investigated caffeine encapsulated in liposomes, hollow mesoporous silica nanoparticles (HMSNs), and ultradeformable liposome-coated HMSNs to optimize drug delivery and release. For ultradeformable liposomes (ULs), the amount of polysorbate 20 and polysorbate 80 was varied. TEM images confirmed the mesoporous shell and hollow core structure of HMSNs, with a shell thickness of 25–35 nm and a hollow space of 80–100 nm. SEM and TEM analysis showed particle sizes ranging from 140–160 nm. Thermal stability tests showed that HMSNs coated with ULs exhibited a Td10 value of 325 °C and 70% residue ash, indicating good thermal stability. Caffeine release experiments indicated that the highest release occurred in caffeine-loaded HMSNs without a liposome coating. In contrast, systems incorporating ULp-Caf@HMSNs exhibited slower release rates, attributable to the dual encapsulation mechanism. Confocal laser scanning microscopy revealed that ULs-coated particles penetrated deeper into the skin than non-liposome particles. MTT assays confirmed the non-cytotoxicity of all HMSN concentrations to human follicle dermal papilla cells (HFDPCs). ULp-Caf@HMSNs promoted better cell viability than pure caffeine or caffeine-loaded HMSNs, highlighting enhanced biocompatibility without increased toxicity. Additionally, ULp-Caf@HMSNs effectively reduced ROS levels in DHT-damaged HFDPCs, suggesting they are promising alternatives to minoxidil for promoting hair follicle growth and reducing hair loss without increasing oxidative stress. This system shows promise for treating AGA. Full article
(This article belongs to the Special Issue Properties and Applications of Nanoparticles and Nanomaterials)
Show Figures

Graphical abstract

12 pages, 5947 KiB  
Article
Preparation of Phosphorus/Hollow Silica Microsphere Modified Polyacrylonitrile-Based Carbon Fiber Composites and Their Thermal Insulation and Flame Retardant Properties
by Xiaohui Zhang, Guangsheng Huang and Guobin Wang
Processes 2024, 12(11), 2489; https://doi.org/10.3390/pr12112489 - 8 Nov 2024
Viewed by 1119
Abstract
Since thermal insulation materials with a single function cannot satisfy the increasing requirements for complex usage, the combination of thermal insulation with flame retardancy is desirable in multiple applications. Herein, phosphorous-containing flame retardant modifier (5.0 wt.%, 9.0 wt.%, and 13.0 wt.%) and hollow [...] Read more.
Since thermal insulation materials with a single function cannot satisfy the increasing requirements for complex usage, the combination of thermal insulation with flame retardancy is desirable in multiple applications. Herein, phosphorous-containing flame retardant modifier (5.0 wt.%, 9.0 wt.%, and 13.0 wt.%) and hollow silica microsphere (130 nm of diameter) were composited with polyacrylonitrile-based carbon nanofibers via electrospinning technique. Electrospun phosphorous/silica/carbon nanofibers (P/HSM/CF) exhibited a uniform and clear fibrous structure (508, 170, and 1550 nm of average fiber diameter) with modified uniform and complete spherical silica. Reduced thermal conductivity (39.9–41.2 mW/m/K) and enhanced limiting oxygen index (29.5–33.5%) were achieved, enabling fire protection grade of fiber membrane from UL-94 V-1 grade to UL-94 V-0 grade efficiently. Moreover, favorable tensile strength (8.64–9.27 MPa) and elongation at break (43.28–48.54%) were obtained, presenting expected applications in structural components. The findings of this work provided a valuable reference for the fabrication of carbon nanofiber-based thermal insulation materials with excellent flame retardant and mechanical properties. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

10 pages, 1944 KiB  
Article
Nanochannels in Fused Silica through NaOH Etching Assisted by Femtosecond Laser Irradiation
by Pasquale Barbato, Roberto Osellame and Rebeca Martínez Vázquez
Materials 2024, 17(19), 4906; https://doi.org/10.3390/ma17194906 - 7 Oct 2024
Viewed by 1516
Abstract
Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer [...] Read more.
Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer threshold as the minimum feature size. In this work, we systematically study the effect of NaOH solutions under different etching conditions (etchant concentration, temperature, and etching time) on the tracks created by tightly focused femtosecond laser pulses to assess the best practices for the fabrication of hollow nanostructures in bulk fused silica. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials)
Show Figures

Figure 1

20 pages, 7757 KiB  
Article
Synthesis and Characterization of Porous Hydrophobic and Hydrophilic Silica Microcapsules for Applications in Agriculture
by Yeela Elbaz, Taly Iline-Vul, Aviv Dombrovsky, Ayelet Caspi and Shlomo Margel
Materials 2024, 17(18), 4621; https://doi.org/10.3390/ma17184621 - 20 Sep 2024
Cited by 1 | Viewed by 1348
Abstract
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size [...] Read more.
Silica (SiO2) particles are widely used in various industries due to their chemical inertness, thermal stability, and wear resistance. The present study describes the preparation and potential use of porous hydrophobic and hydrophilic SiO2 microcapsules (MCs) of a narrow size distribution. First, various layers of SiO2 micro/nano-particles (M/NPs) were grafted onto monodispersed polystyrene (PS) microspheres of a narrow size distribution. Hydrophobic and hydrophilic sintered SiO2 MCs were then prepared by removing the core PS from the PS/SiO2 core–shell microspheres by burning off under normal atmospheric conditions or organic solvent dissolution, respectively. We examined how the size and quantity of the SiO2 M/NPs influence the MC’s properties. Additionally, we utilized two forms of hollow SiO2 MC for different applications; one form was incorporated into polymer films, and the other was free-floating. The hydrophobic microcapsules filled with 6% hydrogen peroxide were effective in killing the tomato brown rugose fruit virus (ToBRFV). The hydrophilic microcapsules filled with thymol and thin coated onto polypropylene films were successfully used to prevent mold formation for hay protection. Full article
(This article belongs to the Special Issue Applications of Silica and Silica-Based Composites)
Show Figures

Figure 1

Back to TopTop