Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = highly stable flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7931 KiB  
Article
Enhanced Pool Boiling via Binder-Jetting 3D-Printed Porous Copper Structures: CHF and HTC Investigation
by Lilian Aketch Okwiri, Takeshi Mochizuki, Kairi Koito, Noriaki Fukui and Koji Enoki
Appl. Sci. 2025, 15(14), 7892; https://doi.org/10.3390/app15147892 - 15 Jul 2025
Viewed by 268
Abstract
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical [...] Read more.
The escalating heat flux densities in high-performance electronics necessitate superior thermal management. This study enhanced pool-boiling heat transfer, a method offering high heat removal capacity, by leveraging Binder Jetting 3D Printing (BJ3DP) to create complex porous copper structures without the need for chemical treatments. This approach enables a reliable utilization of phenomena like capillarity for improved performance. Three types of porous copper structures, namely Large Lattice, Small Lattice, and Staggered, were fabricated on pure copper substrates and tested via pool boiling of de-ionized and de-gassed water at atmospheric pressure. Compared to a plain polished copper surface, which exhibited a critical heat flux (CHF) of 782 kW/m2 at a wall superheat of 18 K, the 3D-printed porous copper surfaces showed significantly improved heat transfer performance. The Staggered surface achieved a conventional CHF of 2342.4 kW/m2 (a 199.7% enhancement) at a wall superheat of 24.6 K. Notably, the Large Lattice and Small Lattice structures demonstrated exceptionally stable boiling without reaching the typical catastrophic CHF within the experimental parameters. These geometries continued to increase in heat flux, reaching maximums of 2397.7 kW/m2 (206.8% higher at a wall superheat of 55.6 K) and 2577.2 kW/m2 (229.7% higher at a wall superheat of 39.5 K), respectively. Subsequently, a gradual decline in heat flux was observed with an increasing wall superheat, demonstrating an outstanding resistance to the boiling crisis. These improvements are attributed to the formation of distinct vapor–liquid pathways within the porous structures, which promotes the efficient rewetting of the heated surface through capillary action. This mechanism supports a highly efficient, self-sustaining boiling configuration, emphasizing the superior rewetting and vapor management capabilities of these 3D-printed porous structures, which extend the boundaries of sustained high heat flux performance. The porous surfaces also demonstrated a higher heat transfer coefficient (HTC), particularly at lower heat fluxes (≤750 kW/m2). High-speed digital camera visualization provided further insight into the boiling phenomenon. Overall, the findings demonstrate that these BJ3DP structured surfaces produce optimized vapor–liquid pathways and capillary-enhanced rewetting, offering significantly superior heat transfer performance compared to smooth surfaces and highlighting their potential for advanced thermal management. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

15 pages, 3993 KiB  
Article
Study on the Electrospinning Fabrication of PCL/CNTs Fiber Membranes and Their Oil–Water Separation Performance
by Desheng Feng, Yanru Li, Yanjun Zheng, Jinlong Chen, Xiaoli Zhang, Kun Li, Junfang Shen and Xiaoqin Guo
Polymers 2025, 17(12), 1705; https://doi.org/10.3390/polym17121705 - 19 Jun 2025
Viewed by 393
Abstract
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. [...] Read more.
This study focused on the preparation of poly(ε-caprolactone)/carbon nanotubes (PCL/CNTs) composite membranes via electrospinning technology and investigated their performance in oil–water separation. The effects of varying CNTs contents and spinning parameters on the structure and properties of the membrane materials were systematically studied. A highly uniform diameter distribution of the PCL fiber was achieved by using the dichloromethane/dimethylformamide (DCM/DMF) composite solvent with volume ratio of 7:3, as well as a PCL concentration of ca. 17 wt.%. The optimal electrospinning parameters were identified as an applied voltage of 18 kV and a syringe pump flow rate of 1 mL·h−1, which collectively ensured uniform fiber morphology under the specified processing conditions. The critical threshold concentration of CNTs in the composite system was determined to be 1 wt.%, above which the composite fibers exhibit a significant increase in diameter heterogeneity. Both pristine PCL fibrous membranes and PCL/CNTs composite membranes demonstrated excellent and stable oil–water separation performance, with separation efficiencies consistently around 90%. Notably, no significant attenuation in separation efficiency was observed after ten consecutive separation cycles. Furthermore, when incorporating 0.5 wt.% CNTs, the PCL/CNT composite membranes exhibited a 20% increase in separation flux for heavy oils compared to pristine PCL membranes. Additionally, CNTs, as a prototypical class of nanofillers for polymer matrix reinforcement, can potentially enhance the mechanical properties of composite films, thus effectively prolonging their service life. Full article
(This article belongs to the Special Issue Development in Carbon-Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

24 pages, 7568 KiB  
Article
Developing a Superhydrophilic/Underwater Superoleophobic Plasma-Modified PVDF Microfiltration Membrane with Copolymer Hydrogels for Oily Water Separation
by Hasan Ali Hayder, Peng Shi and Sama M. Al-Jubouri
Appl. Sci. 2025, 15(12), 6654; https://doi.org/10.3390/app15126654 - 13 Jun 2025
Viewed by 556
Abstract
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust [...] Read more.
Polymer membranes often face challenges of oil fouling and rapid water flux decline during the separation of oil-in-water emulsions, making them a focal point of ongoing research and development efforts. Coating PVDF membranes with a hydrogel layer equips the developed membranes with robust potential to mitigate oil fouling. However, developing a controllable thickness of a stable hydrogel layer to prevent the blocking of membrane pores remains a critical issue. In this work, atmospheric pressure low-temperature plasma was used to prepare the surface of a PVDF membrane to improve its wettability and adhesion properties for coating with a thin hydrophilic film of an AM-NaA copolymer hydrogel. The AM-NaA/PVDF membrane exhibited superhydrophilic and underwater superoleophobic properties, along with exceptional anti-crude oil-fouling characteristics and a self-cleaning function. The AM-NaA/PVDF membrane achieved high separation efficiency, exceeding 99% for various oil-in-water emulsions, with residual oil content in the permeate of less than 10 mg/L after a single-step separation. Additionally, it showed a high-water flux of 5874 L/m2·h for crude oil-in-water emulsions. The AM-NaA/PVDF membrane showed good stability and easy cleaning by water washing over multiple crude oil-in-water emulsion separation and regeneration cycles. Adding CaCl2 destabilized emulsions by promoting oil droplet coalescence, further boosting flux. This strategy provides a practical pathway for the development of highly reusable and oil-fouling-resistant membranes for the efficient separation of emulsified oily water. Full article
Show Figures

Figure 1

24 pages, 7525 KiB  
Article
Study on Experimental Parameters of Alkali-Assisted Extraction of Aluminum from Fly Ash
by Bingchao Zhao, Yufeng Guo, Wei Wang, Xin Wan, Shenglin He and Tongxiaoyu Wang
Materials 2025, 18(7), 1568; https://doi.org/10.3390/ma18071568 - 30 Mar 2025
Cited by 3 | Viewed by 475
Abstract
Extracting aluminum from FA is an effective way to improve its utilization rate. Since aluminum oxide is found in high polymerization degree, inert substances such as mullite and sodium aluminosilicate make the reaction process difficult because of their stable chemical properties; within these [...] Read more.
Extracting aluminum from FA is an effective way to improve its utilization rate. Since aluminum oxide is found in high polymerization degree, inert substances such as mullite and sodium aluminosilicate make the reaction process difficult because of their stable chemical properties; within these highly polymerized matrices, the chemical stability of alumina typically persists across a broad temperature range from 1000 °C to over 1600 °C. To address the issue of stable mullite structure that hinders aluminum extraction, a combined acid-base method using sodium carbonate as an activating agent and hydrochloric acid at a temperature of 100 °C as a leaching agent is employed. XRD and SEM were used to analyze the phase characterization and microstructure of fly ash before and after activation and acid leaching, examining the effects of activation parameters and acid leaching parameters on the activation of FA and the aluminum extraction rate. The research results indicate that after calcination activation, mullite is transformed into zeolite, which is easily soluble in acid, and the aluminum within the activated molten material is transferred to the filtrate through acid leaching, achieving the goal of extracting aluminum. Under the activating conditions with sodium carbonate flux, the Al-O bonds in mullite are broken, the crystal structure is transformed, and the aluminum compounds obtained from hydrochloric acid leaching have a stable form of existence, which has a low impact on the error of the experimental results. When the material ratio of fly ash to sodium carbonate is 1:0.7, after reacting at a calcination temperature of 880 °C for 1.5 h, and leaching in 6 mol/L hydrochloric acid at 100 °C with a solid-liquid ratio of 1:6 for 2 h, the extraction rate of aluminum in fly ash is the highest, reaching 97%. Full article
Show Figures

Figure 1

17 pages, 6382 KiB  
Article
Prediction of Solar Flux Density Distribution Concentrated by a Heliostat Using a Ray Tracing-Assisted Generative Adversarial Neural Network
by Fen Xu, Yanpeng Sun and Minghuan Guo
Energies 2025, 18(6), 1451; https://doi.org/10.3390/en18061451 - 15 Mar 2025
Viewed by 696
Abstract
Predicting the solar flux density distribution formed by heliostats in a concentrated solar tower power (CSP) plant is important for the optimization and stable operation of a CSP plant. However, the high temperature and blackbody attribute of the receiver makes direct measurement of [...] Read more.
Predicting the solar flux density distribution formed by heliostats in a concentrated solar tower power (CSP) plant is important for the optimization and stable operation of a CSP plant. However, the high temperature and blackbody attribute of the receiver makes direct measurement of the concentrated solar irradiance distribution a difficult task. To address this issue, indirect methods have been proposed. Nevertheless, these methods are either costly or not accurate enough. This study proposes a ray tracing-assisted deep learning method for the prediction of the concentrated solar flux density distribution formed by a heliostat. Namely, a generative adversarial neural network (GAN) model using Monte Carlo ray tracing results as the input was built for the prediction of solar flux density distribution concentrated by a heliostat. Experiments showed that the predicted solar flux density distributions were highly consistent with the concentrated solar spots on the Lambertian target formed by the same heliostat. This ray tracing-assisted deep learning method can be extended to other heliostats in the CSP plant and pave the way for the prediction of the solar flux density distribution concentrated by the whole heliostat field in a CSP plant. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

19 pages, 6086 KiB  
Article
Remote Sensing Estimation of CDOM for Songhua River of China: Distributions and Implications
by Pengju Feng, Kaishan Song, Zhidan Wen, Hui Tao, Xiangfei Yu and Yingxin Shang
Remote Sens. 2024, 16(23), 4608; https://doi.org/10.3390/rs16234608 - 8 Dec 2024
Cited by 2 | Viewed by 1268
Abstract
Rivers are crucial pathways for transporting organic carbon from land to ocean, playing a vital role in the global carbon cycle. Dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) are major components of dissolved organic matter and have significant impacts on [...] Read more.
Rivers are crucial pathways for transporting organic carbon from land to ocean, playing a vital role in the global carbon cycle. Dissolved organic carbon (DOC) and chromophoric dissolved organic matter (CDOM) are major components of dissolved organic matter and have significant impacts on maintaining the stability of river ecosystems and driving the global carbon cycle. In this study, the in situ samples of aCDOM(355) and DOC collected along the main stream of the Songhua River were matched with Sentinel-2 imagery. Multiple linear regression and five machine learning models were used to analyze the data. Among these models, XGBoost demonstrated a superior, highly stable performance on the validation set (R2 = 0.85, RMSE = 0.71 m−1). The multiple linear regression results revealed a strong correlation between CDOM and DOC (R2 = 0.73), indicating that CDOM can be used to indirectly estimate DOC concentrations. Significant seasonal variations in the CDOM distribution in the Songhua River were observed: aCDOM(355) in spring (6.23 m−1) was higher than that in summer (5.3 m−1) and autumn (4.74 m−1). The aCDOM(355) values in major urban areas along the Songhua River were generally higher than those in non-urban areas. Using the predicted DOC values and annual flow data at the sites, the annual DOC flux in Harbin was calculated to be approximately 0.2275 Tg C/Yr. Additionally, the spatial variation in annual CDOM was influenced by both natural changes in the watershed and human activities. These findings are pivotal for a deeper understanding of the role of river systems in the global carbon cycle. Full article
Show Figures

Figure 1

10 pages, 2779 KiB  
Article
Surfactant Phospholipid Kinetics in Ventilated Children after Therapeutic Surfactant Supplementation
by Victoria M. Goss, Ahilanandan Dushianthan, Jenni McCorkell, Katy Morton, Kevin C. W. Goss, Michael J. Marsh, John V. Pappachan and Anthony D. Postle
Int. J. Mol. Sci. 2024, 25(19), 10480; https://doi.org/10.3390/ijms251910480 - 29 Sep 2024
Viewed by 1167
Abstract
Acute lung Injury leads to alterations in surfactant lipid composition and metabolism. Although several mechanisms contribute to dysregulated surfactant metabolism, studies investigating in vivo surfactant metabolism are limited. The aim of this study is to characterise surfactant phospholipid composition and flux utilising a [...] Read more.
Acute lung Injury leads to alterations in surfactant lipid composition and metabolism. Although several mechanisms contribute to dysregulated surfactant metabolism, studies investigating in vivo surfactant metabolism are limited. The aim of this study is to characterise surfactant phospholipid composition and flux utilising a stable isotope labelling technique in mechanically ventilated paediatric patients. Paediatric patients (<16 years of age) received 3.6 mg/kg intravenous methyl-D9-choline chloride followed by the endotracheal instillation of 100 mg/kg of exogenous surfactant after 24 h. Bronchioalveolar fluid samples were taken at baseline and 12, 24, 36, 48, 72 and 96 h after methyl-D9-choline infusion. Nine participants (median age of 48 days) were recruited. The primary phosphatidylcholine (PC) composition consisted of PC16:0/16:0 or DPPC (32.0 ± 4.5%). Surfactant supplementation resulted in a 30% increase in DPPC. Methyl-D9 PC enrichment was detected after 12 h and differed significantly between patients, suggesting variability in surfactant synthesis/secretion by the CDP-choline pathway. Peak enrichment was achieved (0.94 ± 0.15% of total PC) at 24 h after methyl-D9-choline infusion. There was a trend towards reduced enrichment with the duration of mechanical ventilation prior to study recruitment; however, this was not statistically significant (p = 0.19). In this study, we demonstrated the fractional molecular composition and turnover of surfactant phospholipids, which was highly variable between patients. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Acute Lung Injury)
Show Figures

Figure 1

13 pages, 7105 KiB  
Article
Design of CO2-Resistant High-Entropy Perovskites Based on Ba0.5Sr0.5Co0.8Fe0.2O3-δ Materials
by Yongfan Zhu, Jia Liu, Zhengkun Liu, Gongping Liu and Wanqin Jin
Materials 2024, 17(18), 4672; https://doi.org/10.3390/ma17184672 - 23 Sep 2024
Cited by 2 | Viewed by 1379
Abstract
High-entropy perovskite materials (HEPMs), characterized by their multi-element composition and highly disordered structure, can incorporate multiple rare earth elements at the A-site, producing perovskites with enhanced CO2 resistance, making them stay high performance and structurally stable in the CO2 atmosphere. However, [...] Read more.
High-entropy perovskite materials (HEPMs), characterized by their multi-element composition and highly disordered structure, can incorporate multiple rare earth elements at the A-site, producing perovskites with enhanced CO2 resistance, making them stay high performance and structurally stable in the CO2 atmosphere. However, this modification may result in reduced oxygen permeability. In this study, we investigated La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.8Fe0.2O3-δ (L0.2M1.8) high-entropy perovskite materials, focusing on enhancing their oxygen permeability in both air and CO2 atmospheres through strategic design modifications at the B-sites and A/B-sites. We prepared Ni-substituted La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.7Fe0.2Ni0.1O3-δ (L0.2M1.7N0.1) HEPMs by introducing Ni elements at the B-site, and further innovatively introduced A-site defects to prepare La0.2Pr0.2Nd0.2Ba0.2Sr0.2Co0.7Fe0.2Ni0.1O3-δ (L0.1M1.7N0.1) materials. In a pure CO2 atmosphere, the oxygen permeation flux of the L0.1M1.7N0.1 membrane can reach 0.29 mL·cm−2·min−1. Notably, the L0.1M1.7N0.1 membrane maintained a good perovskite structure after stability tests extending up to 120 h under 20% CO2/80% He atmosphere. These findings suggest that A-site-defect high-entropy perovskites hold great promise for applications in CO2 capture, storage, and utilization. Full article
(This article belongs to the Special Issue Ionic Transport Membranes)
Show Figures

Figure 1

31 pages, 8478 KiB  
Article
Pervaporation Membranes Based on Polyelectrolyte Complex of Sodium Alginate/Polyethyleneimine Modified with Graphene Oxide for Ethanol Dehydration
by Mariia Dmitrenko, Olga Mikhailovskaya, Roman Dubovenko, Anna Kuzminova, Danila Myznikov, Anton Mazur, Konstantin Semenov, Yury Rusalev, Alexander Soldatov, Sergey Ermakov and Anastasia Penkova
Polymers 2024, 16(9), 1206; https://doi.org/10.3390/polym16091206 - 25 Apr 2024
Cited by 9 | Viewed by 2149
Abstract
Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of [...] Read more.
Pervaporation is considered the most promising technology for dehydration of bioalcohols, attracting increasing attention as a renewable energy source. In this regard, the development of stable and effective membranes is required. In this study, highly efficient membranes for the enhanced pervaporation dehydration of ethanol were developed by modification of sodium alginate (SA) with a polyethylenimine (PEI) forming polyelectrolyte complex (PEC) and graphene oxide (GO). The effect of modifications with GO or/and PEI on the structure, physicochemical, and transport characteristics of dense membranes was studied. The formation of a PEC by ionic cross-linking and its interaction with GO led to changes in membrane structure, confirmed by spectroscopic and microscopic methods. The physicochemical properties of membranes were investigated by a thermogravimetric analysis, a differential scanning calorimetry, and measurements of contact angles. The theoretical consideration using computational methods showed favorable hydrogen bonding interactions between GO, PEI, and water, which caused improved membrane performance. To increase permeability, supported membranes without treatment and cross-linked were developed by the deposition of a thin dense layer from the optimal PEC/GO (2.5%) composite onto a developed porous substrate from polyacrylonitrile. The cross-linked supported membrane demonstrated more than two times increased permeation flux, higher selectivity (above 99.7 wt.% water in the permeate) and stability for separating diluted mixtures compared to the dense pristine SA membrane. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films III)
Show Figures

Figure 1

16 pages, 4485 KiB  
Article
The Use of an Advanced Intelligent–Responsive Polymer for the Study of Dynamic Water–Carbon Dioxide Alternating Displacement
by Feng Zhang, Jingong Zhang, Yidong Yuan, Zishu Yong, Zhuoyue Yan, Jiayuan Zhang and Guochao Lu
Polymers 2024, 16(8), 1040; https://doi.org/10.3390/polym16081040 - 10 Apr 2024
Viewed by 1406
Abstract
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) [...] Read more.
Addressing the issue of inadequate temperature tolerance in traditional polymers, in this study, we successfully executed a one-step synthesis of intelligent–responsive polymers which have excellent adaptability in water–gas alternating displacement scenarios. Utilizing the fatty acid method, we produced OANND from oleic acid (OA) and N,N-dimethyl-1,3-propanediamine (NND). Upon testing the average particle size in the aqueous solution both prior and subsequent to CO2 passage, it became evident that OANND assumes the form of a small-molecule particle in the aqueous phase, minimizing damage during formation. Notably, upon CO2 exposure, it promptly organizes into stable micelles with an average size of 88 nm and a relatively uniform particle distribution. This unique characteristic endows it with a rapid CO2 response mechanism and the ability to form a highly resilient gel. In the exploration of viscoelastic fluids, we observed the remarkable behavior of the AONND aqueous solution when CO2/N2 was introduced. This system displayed repeatable transitions between aqueous and gel states, with the highest viscosity peaking at approximately 3895 mPa·s, highlighting its viscosity reversibility and reusability properties. The rheological property results that we obtained indicate that an elongated micellar structure is present in the solution system, with the optimal concentration ratio for its formation determined as 0.8, which is the molar ratio of the OANND-NaOA system. In the sealing performance tests, a 1.0 wt% concentration of the gel system exhibited excellent injectability properties. At 80 °C, this gel effectively reduced the permeability of a sand-filled model to 94.5% of its initial value, effectively sealing potential leakage paths or gas fluxes. This remarkable ability to block leakage paths and reduce seepage capacity highlights the material’s superior blocking effect and erosion resistance properties. Furthermore, even at a temperature of 90 °C and an injection pore volume (PV) of 3, this plugging system could reduce the permeability of a high-permeability sand-filled model to over 90% of its initial value. Full article
(This article belongs to the Special Issue Advanced Polymer Composites in Oil Industry)
Show Figures

Figure 1

20 pages, 1334 KiB  
Review
Salinity-Induced Changes in Heavy Metal Behavior and Mobility in Semi-Arid Coastal Aquifers: A Comprehensive Review
by Rakesh Roshan Gantayat and Vetrimurugan Elumalai
Water 2024, 16(7), 1052; https://doi.org/10.3390/w16071052 - 5 Apr 2024
Cited by 9 | Viewed by 3001
Abstract
Semi-arid coastal aquifers face critical challenges characterized by lower rainfall, higher evaporation rates, and looming risk of over-exploitation. These conditions, coupled with climate change, are conducive to seawater intrusion and promote mechanisms associated with it. The understanding of metal behavior in such environments [...] Read more.
Semi-arid coastal aquifers face critical challenges characterized by lower rainfall, higher evaporation rates, and looming risk of over-exploitation. These conditions, coupled with climate change, are conducive to seawater intrusion and promote mechanisms associated with it. The understanding of metal behavior in such environments is limited, and hence, an attempt is made through this review to bridge the knowledge gap. A study on the behavior of trace metals within a specific context of semi-arid coastal aquifers was carried out, and 11 aquifers from 6 different countries were included. The review observed that trace metals within semi-arid coastal aquifers exhibit distinctive behaviors influenced by their surrounding environment. The prevalence of evaporation and continuous seawater intrusion played a pivotal role in shaping trace metal dynamics by curtailing groundwater flux. The findings suggest that the formation of stable Cl and organic ligands under increased alkaline conditions (pH > 8) has higher control over Zn, Pb, and Cd toxicity in a highly ionic reactive condition. In addition, dominant control of Fe/Mn-hydroxide association with Pb and high organic affinity of Zn played a pivotal role in controlling its bioavailability in aquifers such as WFB, Saudi Arabia NW-C and India. On the contrary, under prevailing acidic conditions (pH < 6), carbonate and SO4-ligands become more dominant, controlling the bioavailability/desorption of Cu irrespective of its origin. The behavior of Ni is found to be controlled by stable organic ligands increasing salinity. An increase in salinity in the considered aquifers shows an increase in bioavailability of Ni, except UmC, South Africa, where organic ligands act as a sink for the metal, even at low pH conditions (pH < 5.5). This study indicates that factors such as mineral saturation, carbonate complexes, pH variations (pH > 8), and chloride complexes govern the distribution of trace metals further enhanced by prolonged water residence time. Nonetheless, specific conditions, such as a reducing and acidic environment, could potentially elevate the solubility of highly toxic Cr (VI) released from anthropogenic sources. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogeology: Featured Reviews)
Show Figures

Figure 1

12 pages, 6758 KiB  
Article
Flexible Composite Electrolyte Membranes with Fast Ion Transport Channels for Solid-State Lithium Batteries
by Xiaojun Ma, Dongxu Mao, Wenkai Xin, Shangyun Yang, Hao Zhang, Yanzhu Zhang, Xundao Liu, Dehua Dong, Zhengmao Ye and Jiajie Li
Polymers 2024, 16(5), 565; https://doi.org/10.3390/polym16050565 - 20 Feb 2024
Cited by 6 | Viewed by 2148
Abstract
Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast [...] Read more.
Numerous endeavors have been dedicated to the development of composite polymer electrolyte (CPE) membranes for all-solid-state batteries (SSBs). However, insufficient ionic conductivity and mechanical properties still pose great challenges in practical applications. In this study, a flexible composite electrolyte membrane (FCPE) with fast ion transport channels was prepared using a phase conversion process combined with in situ polymerization. The polyvinylidene fluoride-hexafluoro propylene (PVDF-HFP) polymer matrix incorporated with lithium lanthanum zirconate (LLZTO) formed a 3D net-like structure, and the in situ polymerized polyvinyl ethylene carbonate (PVEC) enhanced the interface connection. This 3D network, with multiple rapid pathways for Li+ that effectively control Li+ flux, led to uniform lithium deposition. Moreover, the symmetrical lithium cells that used FCPE exhibited high stability after 1200 h of cycling at 0.1 mA cm−2. Specifically, all-solid-state lithium batteries coupled with LiFePO4 cathodes can stably cycle for over 100 cycles at room temperature with high Coulombic efficiencies. Furthermore, after 100 cycles, the infrared spectrum shows that the structure of FCPE remains stable. This work demonstrates a novel insight for designing a flexible composite electrolyte for highly safe SSBs. Full article
(This article belongs to the Special Issue Novel Nanoparticles and Their Enhanced Polymer Composites)
Show Figures

Figure 1

12 pages, 3281 KiB  
Article
Stable Emissions from a Four-Rod Nd:YAG Solar Laser with ±0.5° Tracking Error Compensation Capacity
by Miguel Catela, Dawei Liang, Joana Almeida, Hugo Costa, Dário Garcia, Bruno D. Tibúrcio, Emmanuel Guillot and Cláudia R. Vistas
Photonics 2023, 10(9), 1047; https://doi.org/10.3390/photonics10091047 - 14 Sep 2023
Cited by 5 | Viewed by 2049
Abstract
Conventional solar-pumped lasers rely on expensive and highly accurate solar tracking systems, which present a significant economic barrier to both solar laser research and practical applications. To address this challenge, an end-side-pumped four-rod solar laser head was designed and built for testing at [...] Read more.
Conventional solar-pumped lasers rely on expensive and highly accurate solar tracking systems, which present a significant economic barrier to both solar laser research and practical applications. To address this challenge, an end-side-pumped four-rod solar laser head was designed and built for testing at PROMES-CNRS. Solar radiation was collected and concentrated using a heliostat–parabolic mirror system. A fused silica aspheric lens further concentrated the solar rays into a flux homogenizer within which four Nd:YAG rods were symmetrically positioned around a reflective cone and cooled by water. Four partially reflective mirrors were precisely aligned to extract continuous-wave 1064 nm solar laser power from each laser rod. The prototype demonstrated stable multibeam solar laser operation with the solar tracking system turned on. Even when the tracking system was turned off, the total output power extracted from the solar-pumped laser remained stable for 1 min, representing, to the best of our knowledge, the first successful demonstration of a stable multibeam solar laser operation without solar tracking. For typical solar tracking errors up to ±0.5°, the loss in the total solar laser power produced was only about 1%, representing an 8.0-fold improvement over the previous solar laser experiments under tracking error conditions. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications)
Show Figures

Figure 1

16 pages, 4488 KiB  
Article
Hydrogen Permeability of Composite Pd–Au/Pd–Cu Membranes and Methods for Their Preparation
by Polina Pushankina, Georgy Andreev and Iliya Petriev
Membranes 2023, 13(7), 649; https://doi.org/10.3390/membranes13070649 - 6 Jul 2023
Cited by 11 | Viewed by 2664
Abstract
Thin Pd–40%Cu films were obtained via the classical melting and rolling method, magnetron sputtering, and modified with nanostructured functional coatings to intensify the process of hydrogen transportation. The films were modified by electrodeposition, according to the classical method of obtaining palladium black and [...] Read more.
Thin Pd–40%Cu films were obtained via the classical melting and rolling method, magnetron sputtering, and modified with nanostructured functional coatings to intensify the process of hydrogen transportation. The films were modified by electrodeposition, according to the classical method of obtaining palladium black and “Pd–Au nanoflowers” with spherical and pentagonal particles, respectively. The experiment results demonstrated the highest catalytic activity (89.47 mA cm−2), good resistance to CO poisoning and long-term stability of Pd–40%Cu films with a pentagonal structured coating. The investigation of the developed membranes in the hydrogen transport processes in the temperature range of 25–300 °C also demonstrated high and stable fluxes of up to 475.28 mmol s−1 m−2 (deposited membranes) and 59.41 mmol s−1 m−2 (dense metal membranes), which were up to 1.5 higher, compared with membrane materials with classic niello. For all-metal modified membranes, the increase in flux was up to sevenfold, compared with a smooth membrane made of pure palladium, and for deposited films, this difference was manyfold. The membrane materials’ selectivity was also high, up to 4419. The developed strategy for modifying membrane materials with functional coatings of a fundamentally new complex geometry can shed new light on the development and fabrication of durable and highly selective palladium-based membranes for gas steam reformers. Full article
Show Figures

Figure 1

21 pages, 6914 KiB  
Article
Quinine: Redesigned and Rerouted
by Chinazom Precious Agbo, Timothy Chukwuebuka Ugwuanyi, Osita Christopher Eze, Adaeze Linda Onugwu, Adaeze Chidiebere Echezona, Chinekwu Sherridan Nwagwu, Samuel Wisdom Uzondu, John Dike Ogbonna, Lydia Onyinyechi Ugorji, Petra Obioma Nnamani, Paul Achile Akpa, Joy Nneji Reginald-Opara, John Onyebuchi Ogbodo, Christopher McConville, Anthony Amaechi Attama, Mumuni Audu Momoh and Kenneth Chibuzor Ofokansi
Processes 2023, 11(6), 1811; https://doi.org/10.3390/pr11061811 - 14 Jun 2023
Cited by 5 | Viewed by 3209
Abstract
Quinine hydrochloride (QHCl) has remained a very relevant antimalarial drug 400 years after its effectiveness was discovered. Unlike other antimalarials, the development of resistance to quinine has been slow. Hence, this drug is to date still used for the treatment of severe and [...] Read more.
Quinine hydrochloride (QHCl) has remained a very relevant antimalarial drug 400 years after its effectiveness was discovered. Unlike other antimalarials, the development of resistance to quinine has been slow. Hence, this drug is to date still used for the treatment of severe and cerebral malaria, for malaria treatment in all trimesters of pregnancy, and in combination with doxycycline against multidrug-resistant malaria parasites. The decline in its administration over the years is mainly associated with poor tolerability due to its gastrointestinal (GIT) side effects such as cinchonism, complex dosing regimen and bitter taste, all of which result in poor compliance. Hence, our research was aimed at redesigning quinine using nanotechnology and investigating an alternative route for its administration for the treatment of malaria. QHCl nanosuspension (QHCl-NS) for intranasal administration was prepared using lipid matrices made up of solidified reverse micellar solutions (SRMS) comprising Phospholipon® 90H and lipids (Softisan® 154 or Compritol®) in a 1:2 ratio, while Poloxamer® 188 (P188) and Tween® 80 (T80) were used as a stabilizer and a surfactant, respectively. The QHCl-NS formulated were in the nanosize range (68.60 ± 0.86 to 300.80 ± 10.11 nm), and highly stable during storage, though zeta potential was low (≤6.95 ± 0.416). QHCl-NS achieved above 80% in vitro drug release in 6 h. Ex vivo permeation studies revealed that formulating QHCl as NS resulted in a 5-fold and 56-fold increase in the flux and permeation coefficient, respectively, thereby enhancing permeation through pig nasal mucosa better than plain drug solutions. This implies that the rate of absorption as well as ease of drug permeation through porcine nasal mucosa was impressively enhanced by formulating QHCl as NS. Most importantly, reduction in parasitaemia in mice infected with Plasmodium berghei ANKA by QHCl-NS administered through the intranasal route (51.16%) was comparable to oral administration (52.12%). Therefore, redesigning QHCl as NS for intranasal administration has great potential to serve as a more tolerable option for the treatment of malaria in endemic areas. Full article
(This article belongs to the Special Issue Drug Carriers Production Processes for Innovative Human Applications)
Show Figures

Graphical abstract

Back to TopTop