Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = high-resolution radiography

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3260 KiB  
Article
The Implementation and Application of a Saudi Voxel-Based Anthropomorphic Phantom in OpenMC for Radiological Imaging and Dosimetry
by Ali A. A. Alghamdi
Diagnostics 2025, 15(14), 1764; https://doi.org/10.3390/diagnostics15141764 - 12 Jul 2025
Viewed by 426
Abstract
Objectives: This study aimed to implement a high-resolution Saudi voxel-based anthropomorphic phantom in the OpenMC Monte Carlo (MC) simulation framework. The objective was to evaluate its applicability in radiological simulations, including radiographic imaging and effective dose calculations, tailored to the Saudi population. [...] Read more.
Objectives: This study aimed to implement a high-resolution Saudi voxel-based anthropomorphic phantom in the OpenMC Monte Carlo (MC) simulation framework. The objective was to evaluate its applicability in radiological simulations, including radiographic imaging and effective dose calculations, tailored to the Saudi population. Methods: A voxel phantom comprising 30 segmented organs/tissues and over 32 million voxels were constructed from full-body computed tomography data and integrated into OpenMC. The implementation involved detailed voxel mapping, material definition using ICRP/ICRU-116 recommendations, and lattice geometry construction. The simulations included X-ray radiography projections using mesh tallies and anterior–posterior effective dose calculations across 20 photon energies (10 keV–1 MeV). The absorbed dose was calculated using OpenMC’s heating tally and converted to an effective dose using tissue weighting factors. Results: The phantom was successfully modeled and visualized in OpenMC, demonstrating accurate anatomical representation. Radiographic projections showed optimal contrast at 70 keV. The effective dose values for 29 organs were calculated and compared with MCNPX, the ICRP-116 reference phantom, and XGBoost-based machine learning (ML) predictions. OpenMC results showed good agreement, with maximum deviations of −35.5% against ICRP-116 at 10 keV. Root mean square error (RMSE) comparisons confirmed reasonable alignment, with OpenMC displaying higher RMSEs relative to other methods due to expanded organ modeling and material definitions. Conclusions: The integration of the Saudi voxel phantom into OpenMC demonstrates its utility for high-resolution dosimetry and radiographic simulations. OpenMC’s Python (version 3.10.14) interface and open-source nature make it a promising tool for radiological research. Future work will focus on combining MC and ML approaches for enhanced predictive dosimetry. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

22 pages, 2988 KiB  
Review
Impact of Optical Coherence Tomography (OCT) for Periodontitis Diagnostics: Current Overview and Advances
by Pietro Rigotti, Alessandro Polizzi, Anna Elisa Verzì, Francesco Lacarrubba, Giuseppe Micali and Gaetano Isola
Dent. J. 2025, 13(7), 305; https://doi.org/10.3390/dj13070305 - 4 Jul 2025
Viewed by 449
Abstract
Optical coherence tomography (OCT) is a non-invasive imaging technique that provides high-resolution, real-time visualization of soft and hard periodontal tissues. It offers micrometer-level resolution (typically ~10–15 μm) and a scan depth ranging from approximately 0.5 to 2 mm, depending on tissue type and [...] Read more.
Optical coherence tomography (OCT) is a non-invasive imaging technique that provides high-resolution, real-time visualization of soft and hard periodontal tissues. It offers micrometer-level resolution (typically ~10–15 μm) and a scan depth ranging from approximately 0.5 to 2 mm, depending on tissue type and system configuration. The field of view generally spans a few millimeters, which is sufficient for imaging gingiva, sulcus, and superficial bone contours. Over the past two decades, its application in periodontology has gained increasing attention due to its ability to detect structural changes in gingival and alveolar tissues without the need for ionizing radiation. Various OCT modalities, including time-domain, Fourier-domain, and swept-source OCT, have been explored for periodontal assessment, offering valuable insights into tissue morphology, disease progression, and treatment outcomes. Recent innovations include the development of three-dimensional (3D) OCT imaging and OCT angiography (OCTA), enabling the volumetric visualization of periodontal structures and microvascular patterns in vivo. Compared to conventional imaging techniques, such as radiography and cone beam computed tomography (CBCT), OCT offers superior soft tissue contrast and the potential for dynamic in vivo monitoring of periodontal conditions. Recent advancements, including the integration of artificial intelligence (AI) and the development of portable OCT systems, have further expanded its diagnostic capabilities. However, challenges, such as limited penetration depth, high costs, and the need for standardized clinical protocols, must be addressed before widespread clinical implementation. This narrative review provides an updated overview of the principles, applications, and technological advancements of OCT in periodontology. The current limitations and future perspectives of this technology are also discussed, with a focus on its potential role in improving periodontal diagnostics and personalized treatment approaches. Full article
(This article belongs to the Special Issue Optical Coherence Tomography (OCT) in Dentistry)
Show Figures

Graphical abstract

42 pages, 473 KiB  
Review
Non-Destructive Testing and Evaluation of Hybrid and Advanced Structures: A Comprehensive Review of Methods, Applications, and Emerging Trends
by Farima Abdollahi-Mamoudan, Clemente Ibarra-Castanedo and Xavier P. V. Maldague
Sensors 2025, 25(12), 3635; https://doi.org/10.3390/s25123635 - 10 Jun 2025
Viewed by 1278
Abstract
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, [...] Read more.
Non-destructive testing (NDT) and non-destructive evaluation (NDE) are essential tools for ensuring the structural integrity, safety, and reliability of critical systems across the aerospace, civil infrastructure, energy, and advanced manufacturing sectors. As engineered materials evolve into increasingly complex architectures such as fiber-reinforced polymers, fiber–metal laminates, sandwich composites, and functionally graded materials, traditional NDT techniques face growing limitations in sensitivity, adaptability, and diagnostic reliability. This comprehensive review presents a multi-dimensional classification of NDT/NDE methods, structured by physical principles, functional objectives, and application domains. Special attention is given to hybrid and multi-material systems, which exhibit anisotropic behavior, interfacial complexity, and heterogeneous defect mechanisms that challenge conventional inspection. Alongside established techniques like ultrasonic testing, radiography, infrared thermography, and acoustic emission, the review explores emerging modalities such as capacitive sensing, electromechanical impedance, and AI-enhanced platforms that are driving the future of intelligent diagnostics. By synthesizing insights from the recent literature, the paper evaluates comparative performance metrics (e.g., sensitivity, resolution, adaptability); highlights integration strategies for embedded monitoring and multimodal sensing systems; and addresses challenges related to environmental sensitivity, data interpretation, and standardization. The transformative role of NDE 4.0 in enabling automated, real-time, and predictive structural assessment is also discussed. This review serves as a valuable reference for researchers and practitioners developing next-generation NDT/NDE solutions for hybrid and high-performance structures. Full article
(This article belongs to the Special Issue Digital Image Processing and Sensing Technologies—Second Edition)
22 pages, 10058 KiB  
Review
Treatment Strategy for Subaxial Minimal Facet/Lateral Mass Fractures: A Comprehensive Clinical Review
by Chae-Gwan Kong and Jong-Beom Park
J. Clin. Med. 2025, 14(8), 2554; https://doi.org/10.3390/jcm14082554 - 8 Apr 2025
Viewed by 624
Abstract
Minimal facet and lateral mass fractures of the subaxial cervical spine (C3–C7) are a distinct subset of spinal injuries that present diagnostic and therapeutic challenges. These fractures often result from low-energy trauma or hyperextension mechanisms. They are frequently stable. However, subtle fracture instability [...] Read more.
Minimal facet and lateral mass fractures of the subaxial cervical spine (C3–C7) are a distinct subset of spinal injuries that present diagnostic and therapeutic challenges. These fractures often result from low-energy trauma or hyperextension mechanisms. They are frequently stable. However, subtle fracture instability and associated soft tissue injuries may lead to delayed instability, neurological compromise, and/or chronic severe pain if not properly identified. Accurate diagnosis relies on a combination of plain radiography, high-resolution computed tomography (CT), and magnetic resonance imaging (MRI) to assess bony and ligamentous integrity. Treatment strategy is determined based on fracture stability, neurological status, and radiographic findings. Most stable fractures can be effectively treated with conservative treatment, allowing for natural healing while minimizing complications. However, when instability is suspected—such as those with significant disc and ligamentous injuries, progressive deformity, or neurological deficits—surgical stabilization may be considered. The presence of vertebral artery injury (VAI) can further complicate management. To mitigate the risk of stroke, a multidisciplinary approach that includes neurosurgery, vascular surgery, and interventional radiology is needed. Surgical treatment aims to restore spinal alignment, maintain stability, and prevent further neurological deterioration with approaches tailored to individual fracture patterns and patient-specific factors. Advances in surgical techniques, perioperative management, and endovascular interventions for VAI continue refining treatment options to improve clinical outcomes while minimizing complications. Despite increasing knowledge of these fractures and associated vascular injuries, optimal treatment strategies remain unclear due to limited high-quality evidence. This review provides a comprehensive analysis of the anatomy, biomechanics, classification, imaging modalities, and treatment strategies for minimal facet and lateral mass fractures in the subaxial cervical spine, highlighting recent advancements in diagnostic tools, therapeutic approaches, and managing vertebral artery injuries. A more precise understanding of the natural history and optimal management of these injuries will help spine specialists refine clinical decision-making and improve patient outcomes. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

21 pages, 351 KiB  
Review
Beyond the Surface: Nutritional Interventions Integrated with Diagnostic Imaging Tools to Target and Preserve Cartilage Integrity: A Narrative Review
by Salvatore Lavalle, Rosa Scapaticci, Edoardo Masiello, Valerio Mario Salerno, Renato Cuocolo, Roberto Cannella, Matteo Botteghi, Alessandro Orro, Raoul Saggini, Sabrina Donati Zeppa, Alessia Bartolacci, Vilberto Stocchi, Giovanni Piccoli and Francesco Pegreffi
Biomedicines 2025, 13(3), 570; https://doi.org/10.3390/biomedicines13030570 - 24 Feb 2025
Cited by 2 | Viewed by 1552
Abstract
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like [...] Read more.
This narrative review provides an overview of the various diagnostic tools used to assess cartilage health, with a focus on early detection, nutrition intervention, and management of osteoarthritis. Early detection of cartilage damage is crucial for effective patient management. Traditional diagnostic tools like radiography and conventional magnetic resonance imaging (MRI) sequences are more suited to detecting late-stage structural changes. This paper highlights advanced imaging techniques, including sodium MRI, T2 mapping, T1ρ imaging, and delayed gadolinium-enhanced MRI of cartilage, which provide valuable biochemical information about cartilage composition, particularly the glycosaminoglycan content and its potential links to nutrition-related factors influencing cartilage health. Cartilage degradation is often linked with inflammation and measurable via markers like CRP and IL-6 which, although not specific to cartilage breakdown, offer insights into the inflammation affecting cartilage. In addition to imaging techniques, biochemical markers, such as collagen breakdown products and aggrecan fragments, which reflect metabolic changes in cartilage, are discussed. Emerging tools like optical coherence tomography and hybrid positron emission tomography–magnetic resonance imaging (PET-MRI) are also explored, offering high-resolution imaging and combined metabolic and structural insights, respectively. Finally, wearable technology and biosensors for real-time monitoring of osteoarthritis progression, as well as the role of artificial intelligence in enhancing diagnostic accuracy through pattern recognition in imaging data are addressed. While these advanced diagnostic tools hold great potential for early detection and monitoring of osteoarthritis, challenges remain in clinical translation, including validation in larger populations and integration into existing clinical workflows and personalized treatment strategies for cartilage-related diseases. Full article
(This article belongs to the Special Issue Applications of Imaging Technology in Human Diseases)
4 pages, 1765 KiB  
Interesting Images
Dynamic Digital Radiography (DDR) in the Diagnosis of a Diaphragm Dysfunction
by Elisa Calabrò, Tiana Lisnic, Maurizio Cè, Laura Macrì, Francesca Lucrezia Rabaiotti and Michaela Cellina
Diagnostics 2025, 15(1), 2; https://doi.org/10.3390/diagnostics15010002 - 24 Dec 2024
Cited by 1 | Viewed by 1418
Abstract
Dynamic digital radiography (DDR) is a recent imaging technique that allows for real-time visualization of thoracic and pulmonary movement in synchronization with the breathing cycle, providing useful clinical information. A 46-year-old male, a former smoker, was evaluated for unexplained dyspnea and reduced exercise [...] Read more.
Dynamic digital radiography (DDR) is a recent imaging technique that allows for real-time visualization of thoracic and pulmonary movement in synchronization with the breathing cycle, providing useful clinical information. A 46-year-old male, a former smoker, was evaluated for unexplained dyspnea and reduced exercise tolerance. His medical history included a SARS-CoV-2 infection in 2021. On physical examination, decreased breath sounds were noted at the right-lung base. Spirometry showed results below predicted values. A standard chest radiograph revealed an elevated right hemidiaphragm, a finding not present in a previous CT scan performed during his SARS-CoV-2 infection. To better assess the diaphragmatic function, a posteroanterior DDR study was performed in the standing position with X-ray equipment (AeroDR TX, Konica Minolta Inc., Tokyo, Japan) during forced breath, with the following acquisition parameters: tube voltage, 100 kV; tube current, 50 mA; pulse duration of pulsed X-ray, 1.6 ms; source-to-image distance, 2 m; additional filter, 0.5 mm Al + 0.1 mm Cu. The exposure time was 12 s. The pixel size was 388 × 388 μm, the matrix size was 1024 × 768, and the overall image area was 40 × 30 cm. The dynamic imaging, captured at 15 frames/s, was then assessed on a dedicated workstation (Konica Minolta Inc., Tokyo, Japan). The dynamic acquisition showed a markedly reduced motion of the right diaphragm. The diagnosis of diaphragm dysfunction can be challenging due to its range of symptoms, which can vary from mild to severe dyspnea. The standard chest X-ray is usually the first exam to detect an elevated hemidiaphragm, which may suggest motion impairment or paralysis but fails to predict diaphragm function. Ultrasound (US) allows for the direct visualization of the diaphragm and its motion. Still, its effectiveness depends highly on the operator’s experience and could be limited by gas and abdominal fat. Moreover, ultrasound offers limited information regarding the lung parenchyma. On the other hand, high-resolution CT can be useful in identifying causes of diaphragmatic dysfunction, such as atrophy or eventration. However, it does not allow for the quantitative assessment of diaphragmatic movement and the differentiation between paralysis and dysfunction, especially in bilateral dysfunction, which is often overlooked due to the elevation of both hemidiaphragms. Dynamic Digital Radiography (DDR) has emerged as a valuable and innovative imaging technique due to its unique ability to evaluate diaphragm movement in real time, integrating dynamic functional information with static anatomical data. DDR provides both visual and quantitative analysis of the diaphragm’s motion, including excursion and speed, which leads to a definitive diagnosis. Additionally, DDR offers a range of post-processing techniques that provide information on lung movement and pulmonary ventilation. Based on these findings, the patient was referred to a thoracic surgeon and deemed a candidate for surgical plication of the right diaphragm. Full article
(This article belongs to the Special Issue Diagnosis of Cardio-Thoracic Diseases)
Show Figures

Figure 1

13 pages, 3456 KiB  
Article
High-Density Glass Scintillators for Proton Radiography—Relative Luminosity, Proton Response, and Spatial Resolution
by Ethan Stolen, Ryan Fullarton, Rain Hein, Robin L. Conner, Luiz G. Jacobsohn, Charles-Antoine Collins-Fekete, Sam Beddar, Ugur Akgun and Daniel Robertson
Sensors 2024, 24(7), 2137; https://doi.org/10.3390/s24072137 - 27 Mar 2024
Cited by 2 | Viewed by 2509
Abstract
Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several [...] Read more.
Proton radiography is a promising development in proton therapy, and researchers are currently exploring optimal detector materials to construct proton radiography detector arrays. High-density glass scintillators may improve integrating-mode proton radiography detectors by increasing spatial resolution and decreasing detector thickness. We evaluated several new scintillators, activated with europium or terbium, with proton response measurements and Monte Carlo simulations, characterizing relative luminosity, ionization quenching, and proton radiograph spatial resolution. We applied a correction based on Birks’s analytical model for ionization quenching. The data demonstrate increased relative luminosity with increased activation element concentration, and higher relative luminosity for samples activated with europium. An increased glass density enables more compact detector geometries and higher spatial resolution. These findings suggest that a tungsten and gadolinium oxide-based glass activated with 4% europium is an ideal scintillator for testing in a full-size proton radiography detector. Full article
Show Figures

Figure 1

11 pages, 2333 KiB  
Article
Optimal Intermittent Administration Interval of Abaloparatide for Bone Morphogenetic Protein-Induced Bone Formation in a Rat Spinal Fusion Model
by Tetsutaro Abe, Masashi Miyazaki, Noriaki Sako, Shozo Kanezaki, Yuta Tsubouchi and Nobuhiro Kaku
Int. J. Mol. Sci. 2024, 25(7), 3655; https://doi.org/10.3390/ijms25073655 - 25 Mar 2024
Viewed by 1547
Abstract
Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group [...] Read more.
Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses. Full article
(This article belongs to the Special Issue Regeneration for Spinal Diseases 4.0)
Show Figures

Figure 1

17 pages, 6640 KiB  
Review
Portable Dynamic Chest Radiography: Literature Review and Potential Bedside Applications
by Maurizio Cè, Giancarlo Oliva, Francesca Lucrezia Rabaiotti, Laura Macrì, Sharon Zollo, Alessandro Aquila and Michaela Cellina
Med. Sci. 2024, 12(1), 10; https://doi.org/10.3390/medsci12010010 - 7 Feb 2024
Cited by 5 | Viewed by 5645
Abstract
Dynamic digital radiography (DDR) is a high-resolution radiographic imaging technique using pulsed X-ray emission to acquire a multiframe cine-loop of the target anatomical area. The first DDR technology was orthostatic chest acquisitions, but new portable equipment that can be positioned at the patient’s [...] Read more.
Dynamic digital radiography (DDR) is a high-resolution radiographic imaging technique using pulsed X-ray emission to acquire a multiframe cine-loop of the target anatomical area. The first DDR technology was orthostatic chest acquisitions, but new portable equipment that can be positioned at the patient’s bedside was recently released, significantly expanding its potential applications, particularly in chest examination. It provides anatomical and functional information on the motion of different anatomical structures, such as the lungs, pleura, rib cage, and trachea. Native images can be further analyzed with dedicated post-processing software to extract quantitative parameters, including diaphragm motility, automatically projected lung area and area changing rate, a colorimetric map of the signal value change related to respiration and motility, and lung perfusion. The dynamic diagnostic information along with the significant advantages of this technique in terms of portability, versatility, and cost-effectiveness represents a potential game changer for radiological diagnosis and monitoring at the patient’s bedside. DDR has several applications in daily clinical practice, and in this narrative review, we will focus on chest imaging, which is the main application explored to date in the literature. However, studies are still needed to understand deeply the clinical impact of this method. Full article
Show Figures

Figure 1

8 pages, 2759 KiB  
Communication
Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Optics
by Bartlomiej Lechowski, Kristina Kutukova, Joerg Grenzer, Iuliana Panchenko, Peter Krueger, Andre Clausner and Ehrenfried Zschech
Nanomaterials 2024, 14(2), 233; https://doi.org/10.3390/nano14020233 - 21 Jan 2024
Cited by 6 | Viewed by 2762
Abstract
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick–Baez) condenser optic and [...] Read more.
High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick–Baez) condenser optic and a high aspect-ratio multilayer Laue lens—results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/Cu6Sn5/Cu microbump interconnects fabricated using solid–liquid interdiffusion (SLID) bonding. Full article
Show Figures

Figure 1

21 pages, 30447 KiB  
Article
Paul Delvaux: The Study of Nine Paintings by Non-Invasive Methods
by Edène Derzelle, David Strivay, Antoine Defeyt, Sarah-Jane Klein, Francisca Vandepitte and Catherine Defeyt
Heritage 2023, 6(11), 7181-7201; https://doi.org/10.3390/heritage6110376 - 17 Nov 2023
Cited by 1 | Viewed by 3853
Abstract
Paul Delvaux (1897–1994) was a Belgian Surrealist painter known for his dreamlike and enigmatic compositions. His works often featured nude or semi-nude women and deserted urban landscapes, evoking a sense of mystery and intrigue. Delvaux’s meticulous attention to detail and masterful use of [...] Read more.
Paul Delvaux (1897–1994) was a Belgian Surrealist painter known for his dreamlike and enigmatic compositions. His works often featured nude or semi-nude women and deserted urban landscapes, evoking a sense of mystery and intrigue. Delvaux’s meticulous attention to detail and masterful use of light and shadow added depth and realism to his surrealistic style, making him one of the leading figures of the Belgian Surrealist movement. Although writings about Paul Delvaux’s work are not lacking, the literature mainly deals with the stylistic and iconographic aspects of his work. Taking an interest in painting materials and the painter’s technique allows us to understand his personality and to apprehend his work in a different way. In order to collect such information, the early painted production of Delvaux was studied in situ with imaging methods (high-resolution photography, infrared reflectography and X-ray radiography) and non-invasive analytical techniques (MA-XRF and Raman spectroscopy). The results obtained for nine oil paintings produced from 1928 to 1958 are discussed in terms of the support, the preparatory layer, the preparatory drawing, the changes in composition and reuse of paintings, the pictorial layer and the dripping phenomenon. Full article
(This article belongs to the Special Issue Pigment Identification of Cultural Heritage Materials)
Show Figures

Figure 1

18 pages, 5474 KiB  
Article
A Multi-Analytical Study of a 17th-Century Wallachian Icon Depicting the “Mother of God with Child”
by Lucian Cristian Ratoiu, Sister Serafima, Ioana Maria Cortea and Octavian G. Duliu
Heritage 2023, 6(10), 6931-6948; https://doi.org/10.3390/heritage6100362 - 23 Oct 2023
Cited by 3 | Viewed by 2467
Abstract
As part of a detailed investigation project focused on the painting materials and technical features used in Wallachia during the 17th and 18th century, the imperial icon “Mother of God with Child” from the Orthodox Church of the “Annunciation” in Râmnicu Vâlcea, Romania, [...] Read more.
As part of a detailed investigation project focused on the painting materials and technical features used in Wallachia during the 17th and 18th century, the imperial icon “Mother of God with Child” from the Orthodox Church of the “Annunciation” in Râmnicu Vâlcea, Romania, was investigated before the restoration intervention. A minimally invasive multi-analytical approach consisting of high-resolution digital radiography, hyperspectral imaging, UV fluorescence imaging, portable X-ray fluorescence, and Fourier transform infrared spectroscopy was used. The results emphasized several key features, such as: the structure of the wooden panel, the nature of pigments and of the painting technique frequently used at that time, and various defects of the pictorial layer including traces of previous restoration works, most probably made at the end of the 18th century. Full article
Show Figures

Figure 1

11 pages, 2874 KiB  
Article
High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging
by Bin Tang, Wei Yin, Qibiao Wang, Long Chen, Heyong Huo, Yang Wu, Hongchao Yang, Chenghua Sun and Shuyun Zhou
Molecules 2023, 28(4), 1815; https://doi.org/10.3390/molecules28041815 - 15 Feb 2023
Cited by 11 | Viewed by 2791
Abstract
High-resolution neutron radiography provides novel and stirring opportunities to investigate the structures of light elements encased by heavy elements. For this study, a series of Gd2O2S:Tb, F particles were prepared using a high-temperature solid phase method and then used [...] Read more.
High-resolution neutron radiography provides novel and stirring opportunities to investigate the structures of light elements encased by heavy elements. For this study, a series of Gd2O2S:Tb, F particles were prepared using a high-temperature solid phase method and then used as a scintillation screen. Upon reaching 293 nm excitation, a bright green emission originated from the Tb3+ luminescence center. The level of F doping affected the fluorescence intensity. When the F doping level was 8 mol%, the fluorescence intensity was at its highest. The absolute quantum yield of the synthesized particles reached as high as 77.21%. Gd2O2S:Tb, F particles were applied to the scintillation screen, showing a resolution on the neutron radiograph as high as 12 μm. These results suggest that the highly efficient Gd2O2S:Tb, F particles are promising scintillators for the purposes of cold neutron radiography. Full article
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
Plasma Cytokine Profiling Reveals Differences between Silicotic Patients with Simple Silicosis and Those with Progressive Massive Fibrosis Caused by Engineered Stone
by Antonio Campos-Caro, Gema Jiménez-Gómez, Alejandro García-Núñez, Antonio Hidalgo-Molina and Antonio León-Jiménez
Int. J. Mol. Sci. 2023, 24(2), 1541; https://doi.org/10.3390/ijms24021541 - 12 Jan 2023
Cited by 3 | Viewed by 2221
Abstract
Engineered stone silicosis has become an occupational epidemic disease that progresses rapidly to progressive massive fibrosis with respiratory failure and death, and there is no effective treatment. Silica deposition in the lung triggers a series of inflammatory reactions with the participation of multiple [...] Read more.
Engineered stone silicosis has become an occupational epidemic disease that progresses rapidly to progressive massive fibrosis with respiratory failure and death, and there is no effective treatment. Silica deposition in the lung triggers a series of inflammatory reactions with the participation of multiple cytokines and cellular mediators whose role in the development and progression of the disease is largely unknown. We hypothesized that differences in plasma cytokine levels exist between patients diagnosed with simple silicosis (SS) and patients diagnosed with progressive massive fibrosis (PMF). Plasma samples from 91 ES silicosis patients, diagnosed and classified by chest radiography and/or high-resolution computed tomography with SS (n = 53) and PMF (n = 38), were assayed by multiplex assays for levels of 34 cytokines. Additionally, a healthy volunteer control group (n = 22) was included. Plasma levels of a high number of cytokines were significantly higher in subjects with silicosis than in healthy control subjects. Moreover, the levels of IL-1RA, IL-8, IL-10, IL-16, IL-18, TNF-α, MIP-1α, G-CSF and VEGF were significantly elevated in PMF compared to SS patients. This study shows that plasma cytokine levels differ between healthy people and silicosis patients, and some of them are also significantly elevated in patients with PMF compared with patients with SS, which could indicate their involvement in the severity of the disease, be considered as biomarkers and could be explored as future therapeutic targets for the disease. Full article
(This article belongs to the Special Issue Advances in the Molecular Biology of Lung Disease)
Show Figures

Figure 1

13 pages, 596 KiB  
Article
Is It Possible to Replace Conventional Radiography (CR) with a Dose Neutral Computed Tomography (CT) of the Cervical Spine in Emergency Radiology—An Experimental Cadaver Study
by Zsuzsanna Deak, Lindis Brummund, Sonja Kirchhoff, Markus Körner, Lucas Geyer, Fabian Mück, Mariano Scaglione, Maximilian Reiser and Ulrich Linsenmaier
Diagnostics 2022, 12(8), 1872; https://doi.org/10.3390/diagnostics12081872 - 2 Aug 2022
Cited by 3 | Viewed by 4137
Abstract
The purpose of this experimental study on recently deceased human cadavers was to investigate whether (I) the radiation exposure of the cervical spine CT can be reduced comparable to a dose level of conventional radiography (CR); and (II) whether and which human body [...] Read more.
The purpose of this experimental study on recently deceased human cadavers was to investigate whether (I) the radiation exposure of the cervical spine CT can be reduced comparable to a dose level of conventional radiography (CR); and (II) whether and which human body parameters can be predictive for higher dose reduction potential (in this context). Materials and Methods: Seventy serial CT scans of the cervical spine of 10 human cadavers undergoing postmortem virtual autopsy were taken using stepwise decreasing upper limits of the tube current (300 mAs, 150 mAs, 110 mAs, 80 mAs, 60 mAs, 40 mAs, and 20 mAs) at 120 kVp. An additional scan acquired at a fixed tube current of 300 mAs served as a reference. Images were reconstructed with filtered back projection and the upper (C1-4) and lower (C4-7) cervical spine were evaluated by three blinded readers for image quality, regarding diagnostic value and resolution of anatomical structures according to a semiquantitative three-point-scale. Dose values and individual physical parameters were recorded. The relationship of diagnostic IQ, dose reduction level, and patients’ physical parameters were investigated. The high-contrast resolution of the applied CT protocols was tested in an additional phantom study. Results: The IQ of the upper cervical spine was diagnostic at 1.69 ± 0.58 mGy (CTDI) corresponding to 0.20 ± 0.07 mSv (effective dose) in all cadavers. IQ of the lower cervical spine was diagnostic at 4.77 ± 1.86 mGy corresponding to 0.560 ± 0.21 mSv (effective dose) in seven cadavers and at 2.60 ± 0.93 mGy corresponding to 0.31 ± 0.11 mSv in four cadavers. Significant correlation was detected for BMI (0.8366; p = 0.002548) and the anteroposterior (a.p.) chest diameter (0.8363; p = 0.002566), shoulder positioning (0.79799; p = 0.00995), and radiation exposure. Conclusions: Conventional radiography can be replaced with a nearly dose-neutral CT scan of the cervical spine. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

Back to TopTop