High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Thewlis, J. Neutron radiography. Br. J. Appl. Phys. 1956, 7, 345–350. [Google Scholar] [CrossRef]
- Tengattini, A.; Kardjilov, N.; Helfen, L.; Douissard, P.-A.; Lenoir, N.; Markötter, H.; Hilger, A.; Arlt, T.; Paulisch, M.; Turek, T.; et al. Compact and versatile neutron imaging detector with sub-4μm spatial resolution based on a single-crystal thin-film scintillator. Opt. Express 2022, 30, 14461–14477. [Google Scholar] [CrossRef] [PubMed]
- Tötzke, C.; Manke, I.; Hilger, A.; Choinka, G.; Kardjilov, N.; Arlt, T.; Markötter, H.; Schröder, A.; Wippermann, K.; Stolten, D.; et al. Large area high resolution neutron imaging detector for fuel cell research. J. Power Sources 2011, 196, 4631–4637. [Google Scholar] [CrossRef]
- Scatigno, C.; Festa, G. Neutron Imaging and Learning Algorithms: New Perspectives in Cultural Heritage Applications. J. Imaging 2022, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Trtik, P.; Ren, F.; Schmid, T.; Dreimol, C.H.; Angst, U. Dynamic effect of water penetration on steel corrosion in carbonated mortar: A neutron imaging, electrochemical, and modeling study. Cement 2022, 9, 100043. [Google Scholar] [CrossRef]
- Kim, K.H.; Klann, R.T.; Raju, B.B. Fast neutron radiography for composite materials evaluation and testing. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 1999, 422, 929–932. [Google Scholar] [CrossRef]
- Trtik, P.; Hovind, J.; Grünzweig, C.; Bollhalder, A.; Thominet, V.; David, C.; Kaestner, A.; Lehmann, E.H. Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut–The Neutron Microscope Project. Phys. Procedia 2015, 69, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Hussey, D.S.; LaManna, J.M.; Baltic, E.; Jacobson, D.L. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2017, 866, 9–12. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Mannes, D.; Strobl, M.; Walfort, B.; Losko, A.; Schillinger, B.; Schulz, M.; Vogel, S.C.; Schaper, D.C.; Gautier, D.C.; et al. Improvement in the spatial resolution for imaging with fast neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2021, 988, 164809. [Google Scholar] [CrossRef]
- Li, J.J.; Dong, Y.S.; Yu, B.; Chen, Z.J.; Zheng, J.H.; Yao, L.; Yang, J.M. An estimation method of the spatial resolution for magnifying fast neutron radiography. AIP Adv. 2022, 12, 055117. [Google Scholar] [CrossRef]
- Fujine, S.; Yoneda, K.; Yoshii, K.; Kamata, M.; Tamaki, M.; Ohkubo, K.; Ikeda, Y.; Kobayashi, H. Development of imaging techniques for fast neutron radiography in Japan. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 1999, 424, 190–199. [Google Scholar] [CrossRef]
- Bin, T.; Heyong, H.; Ke, T.; Rogers, J.; Haste, M.; Christodoulou, M. The New Cold Neutron Radiography Facility (CNRF) at the Mianyang Research Reactor of the China Academy of Engineering Physics. Phys. Procedia 2015, 69, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Huo, H.; Li, H.; Wu, Y.; Zhu, S.; Liu, B.; Sun, Y.; Wang, S.; Cao, C.; Yin, W.; Tang, B.; et al. Development of Cold Neutron Radiography Facility (CNRF) based on China Mianyang Research Reactor (CMRR). Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2020, 953, 163063. [Google Scholar] [CrossRef]
- Jiang, X.; Xiu, Q.; Zhou, J.; Yang, J.; Tan, J.; Yang, W.; Zhang, L.; Xia, Y.; Zhou, X.; Zhou, J.; et al. Study on the neutron imaging detector with high spatial resolution at China spallation neutron source. Nucl. Eng. Technol. 2021, 53, 1942–1946. [Google Scholar] [CrossRef]
- Yasuda, R.; Katagiri, M.; Matsubayashi, M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2012, 680, 139–144. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, W.-H.; Luo, X.-X.; Fu, Y. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. J. Alloys Compd. 2007, 433, 313–317. [Google Scholar] [CrossRef]
- Fern, G.; Ireland, T.; Silver, J.; Withnall, R.; Michette, A.; McFaul, C.; Pfauntsch, S. Characterisation of Gd2O2S:Pr phosphor screens for water window X-ray detection. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2009, 600, 434–439. [Google Scholar] [CrossRef]
- Wang, F.; Liu, D.; Yang, B.; Dai, Y. Characteristics and synthesis mechanism of Gd2O2S:Tb phosphors prepared by vacuum firing method. Vacuum 2013, 87, 55–59. [Google Scholar] [CrossRef]
- Xia, T.; Cao, W.; Luo, X.; Tian, Y. Combustion synthesis and spectra characteristic of Gd2O2S:Tb3+ and La2O2S:Eu3+ X-ray phosphors. J. Mater. Res. 2005, 20, 2274–2278. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, S.; Xia, H.; Tian, Y.; Zhang, J.; Xu, S. Controlled synthesis of lanthanide-doped Gd2O2S nanocrystals with novel excitation-dependent multicolor emissions. Nanoscale 2017, 9, 5718–5724. [Google Scholar] [CrossRef]
- Xing, M.; Cao, W.; Pang, T.; Ling, X.; Chen, N. Preparation and characterization of monodisperse spherical particles of X-ray nano-phosphors based on Gd2O2S:Tb. Chin. Sci. Bull. 2009, 54, 2982–2986. [Google Scholar] [CrossRef]
- Trtik, P.; Lehmann, E.H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2015, 788, 67–70. [Google Scholar] [CrossRef]
- Crha, J.; Vila-Comamala, J.; Lehmann, E.; David, C.; Trtik, P. Light yield enhancement of 157-gadolinium oxysulfide scintillator screens for the high-resolution neutron imaging. MethodsX 2019, 6, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Y.; Huo, H.; Tang, B.; Ma, X.; Wang, J.; Sun, C.; Sun, J.; Zhou, S. Nanoscale Gd2O2S:Tb Scintillators for High-Resolution Fluorescent Imaging of Cold Neutrons. ACS Appl. Nano Mater. 2022, 5, 8440–8447. [Google Scholar] [CrossRef]
- Nakamura, R.; Yamada, N.; Ishii, M. Effects of Halogen Ions on the X-Ray Characteristics of Gd2O2S:Pr Ceramic Scintillators. Jpn. J. Appl. Phys. 1999, 38, 6923. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, S.; Seto, T.; Wang, Y. A Highly Efficient Eu2+ Excited Phosphor with Luminescence Tunable in Visible Range and Its Applications for Plant Growth. Adv. Opt. Mater. 2021, 9, 2101173. [Google Scholar] [CrossRef]
- Zheng, T.; Luo, L.; Du, P.; Lis, S.; Rodríguez-Mendoza, U.R.; Lavín, V.; Runowski, M. Highly-efficient double perovskite Mn4+-activated Gd2ZnTiO6 phosphors: A bifunctional optical sensing platform for luminescence thermometry and manometry. Chem. Eng. J. 2022, 446, 136839. [Google Scholar] [CrossRef]
- Dolo, J.J.; Swart, H.C.; Terblans, J.J.; Coetsee, E.; Ntwaeaborwa, O.M.; Dejene, B.F. X-ray photoelectron spectroscopy analysis for undegraded and degraded Gd2O2S:Tb3+ phosphor thin films. Phys. B 2012, 407, 1586–1590. [Google Scholar] [CrossRef]
- Du, P.; Ran, W.; Wang, C.; Luo, L.; Li, W. Facile Realization of Boosted Near-Infrared-Visible Light Driven Photocatalytic Activities of BiOF Nanoparticles through Simultaneously Exploiting Doping and Upconversion Strategy. Adv. Mater. Interfaces 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Ohno, Y. Electronic structure of the misfit-layer compounds PbTiS3 and SnNbS3. Phys. Rev. B 1991, 44, 1281–1291. [Google Scholar] [CrossRef]
- Kim, M.R.; Woo, S.I. Poisoning effect of SO2 on the catalytic activity of Au/TiO2 investigated with XPS and in situ FT-IR. Appl. Catal. A 2006, 299, 52–57. [Google Scholar] [CrossRef]
- Gruber, J.B.; Vetter, U.; Hofsäss, H.; Zandi, B.; Reid, M.F. Spectra and energy levels of Gd3+ (4f7) in AlN. Phys. Rev. B 2004, 69, 195202. [Google Scholar] [CrossRef]
- Song, Y.; You, H.; Huang, Y.; Yang, M.; Zheng, Y.; Zhang, L.; Guo, N. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln = Eu, Tb) submicrospheres: Solvothermal synthesis and luminescence properties. Inorg. Chem. 2010, 49, 11499–11504. [Google Scholar] [CrossRef]
- Chatterjee, S.; Shanker, V.; Chander, H. Thermoluminescence of Tb doped Gd2O2S phosphor. Mater. Chem. Phys. 2003, 80, 719–724. [Google Scholar] [CrossRef]
- Tian, X.; Lian, S.; Ji, C.; Huang, Z.; Wen, J.; Chen, Z.; Peng, H.; Wang, S.; Li, J.; Hu, J.; et al. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor. J. Alloys Compd. 2019, 784, 628–640. [Google Scholar] [CrossRef]
- Hui, J.; Zhang, X.; Zhang, Z.; Wang, S.; Tao, L.; Wei, Y.; Wang, X. Fluoridated HAp:Ln3+ (Ln = Eu or Tb) nanoparticles for cell-imaging. Nanoscale 2012, 4, 6967–6970. [Google Scholar] [CrossRef]
- Yamada, H. A scintillator Gd2O2S:Pr, Ce, F for X-ray computed tomography. J. Electrochem. Soc. 1989, 136, 2713–2716. [Google Scholar] [CrossRef]
- Li, G.; Li, G.; Mao, Q.; Pei, L.; Yu, H.; Liu, M.; Chu, L.; Zhong, J. Efficient luminescence lifetime thermometry with enhanced Mn4+-activated BaLaCa1−xMgxSbO6 red phosphors. Chem. Eng. J. 2022, 430, 132923. [Google Scholar] [CrossRef]
- Li, H.; Cao, C.; Huo, H.; Wang, S.; Wu, Y.; Yin, W.; Sun, Y.; Liu, B.; Tang, B. Inspection of the hydrogen gas pressure with metal shield by cold neutron radiography at CMRR. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2017, 851, 10–14. [Google Scholar] [CrossRef]
X | 0 | 0.01 | 0.04 | 0.08 | 0.15 | 0.3 |
---|---|---|---|---|---|---|
Lifetime/μs | 638 | 598 | 590 | 584 | 586 | 592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, B.; Yin, W.; Wang, Q.; Chen, L.; Huo, H.; Wu, Y.; Yang, H.; Sun, C.; Zhou, S. High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules 2023, 28, 1815. https://doi.org/10.3390/molecules28041815
Tang B, Yin W, Wang Q, Chen L, Huo H, Wu Y, Yang H, Sun C, Zhou S. High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules. 2023; 28(4):1815. https://doi.org/10.3390/molecules28041815
Chicago/Turabian StyleTang, Bin, Wei Yin, Qibiao Wang, Long Chen, Heyong Huo, Yang Wu, Hongchao Yang, Chenghua Sun, and Shuyun Zhou. 2023. "High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging" Molecules 28, no. 4: 1815. https://doi.org/10.3390/molecules28041815
APA StyleTang, B., Yin, W., Wang, Q., Chen, L., Huo, H., Wu, Y., Yang, H., Sun, C., & Zhou, S. (2023). High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging. Molecules, 28(4), 1815. https://doi.org/10.3390/molecules28041815