Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-order curvature-compensated technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5797 KiB  
Article
Curvature-Compensated Bandgap Voltage Reference with Low Temperature Coefficient
by Xiaohui Li, Jitao Li, Ming Qiao and Bo Zhang
Electronics 2024, 13(22), 4490; https://doi.org/10.3390/electronics13224490 - 15 Nov 2024
Viewed by 1477
Abstract
Resistance errors in bandgap reference (BGR) circuits often cause deviations in design indicators, and it is true that utilizing various compensation techniques mitigates the impact of resistance errors. In this paper, an original BGR circuit with 180 nm BCD processing is presented, which [...] Read more.
Resistance errors in bandgap reference (BGR) circuits often cause deviations in design indicators, and it is true that utilizing various compensation techniques mitigates the impact of resistance errors. In this paper, an original BGR circuit with 180 nm BCD processing is presented, which uses an improved high-order compensation and curvature compensation. The proposed BGR contains four main blocks, including a start-up stage, a first-order temperature compensation stage, a high-order temperature compensation stage, and a curvature compensation stage. Meanwhile, a trimming resistor array structure is designed to revise the temperature coefficient (TC) deviation of the test output voltage from the theoretical design value. Through wafer-level laser trimming technology, the measurement results are achieved with very little difference from the theoretical design value. The proposed BGR provides a stable reference voltage at 1.25 V with a low TC and strong power supply rejection (PSR). Within temperatures ranging from −45 °C to 125 °C, the measured TC shows an optimal value at 4.2 ppm/°C and the measured PSR shows −100 dB. Full article
Show Figures

Figure 1

13 pages, 4117 KiB  
Article
A High-Precision Bandgap Reference with Chopper Stabilization and V-Curve Compensation Technique
by Enming Chen, Thomas Wu, Jianhai Yu and Liang Yin
Micromachines 2024, 15(1), 74; https://doi.org/10.3390/mi15010074 - 29 Dec 2023
Cited by 3 | Viewed by 3211
Abstract
The MEMS sensor converts the physical signal of nature into an electrical signal. The output signal of the MEMS sensor is so weak and basically in the low-frequency band that the MEMS sensor interface circuit has a rigorous requirement for the noise/offset and [...] Read more.
The MEMS sensor converts the physical signal of nature into an electrical signal. The output signal of the MEMS sensor is so weak and basically in the low-frequency band that the MEMS sensor interface circuit has a rigorous requirement for the noise/offset and temperature coefficient, especially in the bandgap reference block. However, the traditional amplifier has low-frequency noise and offset voltage, which will decrease the precision of the bandgap reference. In order to satisfy the need of the MEMS sensor interface circuit, a high-precision and low-noise bandgap reference is proposed in this paper. A novel operational amplifier with a chopper-stabilization technique is adopted to reduce offset and low-frequency noise. At the same time, the V-curve compensation circuit is used to realize the second-order curvature compensation. The circuit is implemented under the 0.18 μm standard of the CMOS process. The test result shows that the temperature coefficient of the bandgap is 2.31 ppm/°C in the range of −40–140 °C, while the output voltage noise is only 616 nV/sqrt(Hz)@1 Hz and the power-supply rejection ratio is 73 dB@10 kHz. The linear adjustment rate is 0.33 mV/V for supply voltages of 1.2–1.8 V at room temperature, the power consumption is only 107 μW at 1.8 V power supply voltage, and the chip active area is 0.21 × 0.28 mm2. Full article
Show Figures

Figure 1

13 pages, 5228 KiB  
Article
A High-Precision Current-Mode Bandgap Reference with Nonlinear Temperature Compensation
by Zhizhi Chen, Qian Wang, Xi Li, Sannian Song, Houpeng Chen and Zhitang Song
Micromachines 2023, 14(7), 1420; https://doi.org/10.3390/mi14071420 - 14 Jul 2023
Cited by 6 | Viewed by 6321
Abstract
A high-precision current-mode bandgap reference (BGR) circuit with a high-order temperature compensation is presented in this paper. In order to achieve a high-precision BGR circuit, the equation of the nonlinear current has been modified and the high-order term of the current flowing into [...] Read more.
A high-precision current-mode bandgap reference (BGR) circuit with a high-order temperature compensation is presented in this paper. In order to achieve a high-precision BGR circuit, the equation of the nonlinear current has been modified and the high-order term of the current flowing into the nonlinear compensation bipolar junction transistor (NLCBJT) is compensated further. According to the modified equation, two solutions are designed to improve the output accuracy of BGR circuits. The first solution is to divide the NLCBJT branch into two branches to reduce the coefficient of the nonlinear temperature compensation current. The second solution is to inject the nonlinear current into the two branches based on the first one to further eliminate the temperature coefficient (TC) of the current flowing into the NLCBJT. The proposed BGR circuit has been designed using the Semiconductor Manufacturing International Corporation (SMIC) 55 nm CMOS process. The simulation results show that the variations in currents flowing into NLCBJTs improved from 148.41 nA to 69.35 nA and 7.4 nA, respectively, the TC of the output reference current of the proposed circuit is approximately 3.78 ppm/°C at a temperature range of −50 °C to 120 °C with a supply voltage of 3.3 V, the quiescent current consumption of the entire BGR circuit is 42.13 μA, and the size of the BGR layout is 0.044 mm2, leading to the development of a high-precision BGR circuit. Full article
(This article belongs to the Special Issue System-on-a-Chip (SoC): Design and Applications)
Show Figures

Figure 1

12 pages, 5028 KiB  
Article
A Curvature Compensation Technique for Low-Voltage Bandgap Reference
by Jie Shen, Houpeng Chen, Shenglan Ni and Zhitang Song
Energies 2021, 14(21), 7193; https://doi.org/10.3390/en14217193 - 2 Nov 2021
Cited by 4 | Viewed by 5317
Abstract
Based on the standard 40 nm Complementary Metal Oxide Semiconductor (CMOS) process, a curvature compensation technique is proposed. Two low-voltage, low-power, high-precision bandgap voltage reference circuits are designed at a 1.2 V power supply. By adding IPTAT (positive temperature coefficient current) and ICTAT [...] Read more.
Based on the standard 40 nm Complementary Metal Oxide Semiconductor (CMOS) process, a curvature compensation technique is proposed. Two low-voltage, low-power, high-precision bandgap voltage reference circuits are designed at a 1.2 V power supply. By adding IPTAT (positive temperature coefficient current) and ICTAT (negative temperature coefficient current) to the output resistance, the first-order compensation bandgap voltages can be obtained. Meanwhile, the third high-order compensation current is also superimposed on the same resistance. We make use of the collector current of the bipolar transistor to compensate for the nonlinear term of VBE. The simulation results show that TC (temperature coefficient) of the first circuit reference could be reduced from 29.1 × 10−6/°C to 5.71 × 10−6/°C over the temperature range of −25 to 125 °C after temperature compensation. The second one could be reduced from 17 × 10−6/°C to 5.22 × 10−6/°C. Full article
Show Figures

Figure 1

Back to TopTop