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Abstract: A high-precision current-mode bandgap reference (BGR) circuit with a high-order tem-
perature compensation is presented in this paper. In order to achieve a high-precision BGR circuit,
the equation of the nonlinear current has been modified and the high-order term of the current
flowing into the nonlinear compensation bipolar junction transistor (NLCBJT) is compensated further.
According to the modified equation, two solutions are designed to improve the output accuracy
of BGR circuits. The first solution is to divide the NLCBJT branch into two branches to reduce the
coefficient of the nonlinear temperature compensation current. The second solution is to inject the
nonlinear current into the two branches based on the first one to further eliminate the temperature
coefficient (TC) of the current flowing into the NLCBJT. The proposed BGR circuit has been designed
using the Semiconductor Manufacturing International Corporation (SMIC) 55 nm CMOS process.
The simulation results show that the variations in currents flowing into NLCBJTs improved from
148.41 nA to 69.35 nA and 7.4 nA, respectively, the TC of the output reference current of the proposed
circuit is approximately 3.78 ppm/◦C at a temperature range of −50 ◦C to 120 ◦C with a supply
voltage of 3.3 V, the quiescent current consumption of the entire BGR circuit is 42.13 µA, and the size
of the BGR layout is 0.044 mm2, leading to the development of a high-precision BGR circuit.

Keywords: bandgap current reference; high-order curvature-compensated technique; temperature
coefficient (TC); current-mode reference

1. Introduction

Bandgap reference (BGR) circuits are critical modules in most integrated circuit sys-
tems and are widely used in analog circuits, digital circuits, and mixed-signal circuits,
such as memory circuits, A/D converters, and low dropout linear regulators. BGR circuits
provide temperature-independent voltages or currents for the system-on-a-chip (SoC),
and their performance determines the quality of the entire SoC. With the development of
the CMOS process, the feature size of integrated circuits continues to decrease, and the
operation voltage of the electronic system is becoming increasingly lower. Low-voltage
and high-precision BGR circuits have received widespread attention.

The output voltage of conventional voltage-mode BGR circuits with first-order tem-
perature compensation is 1.25 V approximately, which can achieve a TC of about a few tens
of ppm/°C. In order to achieve more accurate reference voltages, higher-order temperature-
compensated techniques are required for BGR circuits. Rincon-Mora et al. [1] adjusted the
reference voltage by optimizing the temperature component with the trimming process
and achieved high accuracy of the output voltage. Leung et al. [2] proposed that the ratio
of resistors with the same type and size is independent of temperature, which can be used
to reduce temperature drift. Ker et al. [3] used a subtraction circuit to cancel the convex
curve or the concave curve of the output reference current of two BGR circuits. Exponential
temperature compensation [4], quadratic temperature compensation [5], and third-order
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compensation [6] were also used to cancel the high-order terms of the emitter-base voltage
VEB, eliminate the temperature drift, and obtain a reference voltage with a very small TC.

In modern CMOS technology, the operation voltage of CMOS devices is lower than
1.2 V, so a reference voltage should be lower than 1.2 V. Banba et al. [7] proposed a sub-1V
BGR circuit in which the current-mode technique is adopted to scale down the output
reference voltage, and a variety of high-precision BGR circuits are developed.

Compared to the first-order temperature compensation in [7], Malcovati [8] introduced
a high-order temperature compensation, which is based on the theory that the current in the
nonlinear compensation bipolar junction transistor (NLCBJT) is temperature-independent.
However, high-order temperature residue terms still exist in the NLCBJT currents in this
circuit, which require further rejection or elimination.

In this paper, the accuracy of the BGR is further improved on the basis of [8]. The
rest of this paper is organized as follows: Section 2 describes the operation principle of a
conventional current-mode BGR circuit; Section 3 describes the two proposed solutions for
nonlinear compensation BGR circuits; Section 4 presents the simulation results that verify
the accuracy of the proposed high-order terms compensated circuit; and the conclusions
are provided in Section 5.

2. Principle of Conventional Current-Mode BGR Circuits

The low-voltage BGR circuit proposed by Banba et al. [7] is a current-mode BGR
circuit whose output reference current IREF is realized by the sum of two currents. One
is complementary to the absolute temperature ICTAT, and the other is proportional to
the absolute temperature IPTAT. First, a temperature-independent reference current was
generated.

As presented in Figure 1, due to the effect of negative feedback, the relationship
VA = VB = VEB1 and a PTAT current IPTAT proportional to VT is achieved. With additional
equal resistors R1 and R2 (R1 = R2 = R1,2), the BGR circuit achieves a CTAT current ICTAT
proportional to VEB. The currents I1 and I2 are the sum of the currents IPTAT and ICTAT,
flowing through the current mirror that consists of the transistors M0, M1, and M2 with the
same aspect ratio. The currents can be expressed as follows:

I1 = I2 = IREF =
vT ln N

R0
+

VEB1

R1,2
=

kT
qR0

ln N +
VEB1

R1,2
(1)
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Then, a low reference voltage VREF can be generated and expressed as

VREF = IREFR3 = I1R3 = I2R3 =

(
∆VEB

R0
+

VEB1

R1,2

)
R3 (2)

However, the current-mode BGR circuit shown in Figure 1 still belongs to first-order
temperature compensation. A large high-order temperature current flows into the emitter
of Q1, which affects the accuracy of VREF. According to the study by Tsividis et al. [9], an
accurate analysis of the temperature effects on VEB-T characteristics can be expressed as

VEB(T) = VG0(Tr) +

(
T
Tr

)
[VEB(Tr)−VG0(Tr)]− (n− δ)

kT
q

ln
(

T
Tr

)
(3)

where VG0(Tr) is the bandgap voltage of silicon at the reference temperature Tr, n is a
temperature-independent and process-dependent constant around 4, and δ is a factor of
the temperature dependent on the collector current, which is equal to 1 if the current in
the BJT is PTAT and becomes 0 when the current is temperature-independent. VT is the
thermal voltage, k is Boltzmann’s constant, and q is the electric charge.

In Equation (3), the second item has a first-order TC, whereas the third item is a
high-order temperature nonlinear term that should be rejected or eliminated to achieve a
high-precision BGR.

On the basis of [7], Malcovati et al. [8] presented a high-precision BGR circuit with
a low supply voltage, where nonlinear currents were generated to compensate for the
high-order errors, as shown in Figure 2.
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The currents flowing into Q0 and Q1 are proportional to the absolute temperature so
that the parameter δ in the expression of VEB is equal to 1. Since the currents flowing into
Q2 are temperature-independent, the parameter δ is equal to 0 [8].

The VEB of Q0 and Q1 can be expressed as

VEB,Q0,1 = VG0

(
1− T

Tr

)
+ VEB0

(
T
Tr

)
− (n− 1)

kT
q

ln
(

T
Tr

)
(4)

The current in M0 is
IREF = IPTAT + ICTAT − INL (5)
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which is the current with a low TC after high-order temperature nonlinear compensation.
The current is copied by M2 and injected into a diode connected to NLCBJT Q2, which is
expressed by

IQ2 = IPTAT + ICTAT − 3INL (6)

Because the nonlinear current INL is very small, its TC can be ignored [8]. Then, a VEB
with δ = 0 is produced across Q2, which can be expressed as

VEB,Q2 = VG0,Q2

(
1− T

Tr

)
+ VEB0,Q2

(
T
Tr

)
− n

kT
q

ln
(

T
Tr

)
(7)

Equation (7) is subtracted from (4) and leads to a nonlinear voltage VNL, which is
expressed as

VNL = VEB,Q2 −VEB,Q0,1 = − kT
q

ln
(

T
Tr

)
+ ∆VEB,Q2,Q1

(
T
Tr

)
(8)

where the first term in the equation is the nonlinear term of temperature, and the second
term is the error of the linear term of the VEB of two BJT Q1 and Q2 with the same geometry;
however, the emitter currents IE,Q1 and IE,Q2 are not equal, so the error of the linear term is
not equal to zero. Equation (8) is then corrected.

The values of resistors R3 and R4 are equal, and the INLs generated on them are equal.
Then, the current of IPTAT + ICTAT − INL follows M4 and R5, as shown in Figure 3.
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The output reference voltage VREF becomes

VREF = VT
R5ln(N)

R0
+ VEB,Q0,1

R5

R1,2
+ VNL

R5

R3,4
=

R5

R1,2

(
R1,2ln(N)

R0
VT + VEB,Q0,1 −

R1,2

R3,4
VNL

)
(9)

where the third term is the nonlinear part, and it can be used to effectively compensate
for the nonlinear item of the second term, VEB,Q0,1. By substituting (4) into (9) and setting
n − 1 equal to R1,2

R3,4
, the nonlinear temperature term in VREF can be eliminated, and a

high-precision reference voltage can be achieved.
This BGR circuit achieves an output reference voltage of 0.536 V and obtains a TC of

7.5 ppm/K over a wide temperature range of 80 ◦C (from 0 ◦C to 80 ◦C). Compared to the
BGR circuit without the curvature correction technique, the BGR circuit is improved by
about three times.
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However, in this structure, the expression for the emitter current of Q2 is actually

IE,Q2 = IPTAT + ICTAT − 3INL (10)

where there are excess high-order temperature terms with a certain impact on IREF. The
coefficient of this current can be further reduced, and a more accurate IREF can be achieved.

3. Proposed High-Precision Current-Mode BGR Circuit

In order to completely eliminate high-order temperature terms in the current flowing
through Q2, a novel high-precision compensation BGR structure is proposed in this paper.

On the basis of the conventional curvature-compensated BGR circuit, the transistor M3
is first added to mirror the current in M0 flowing into BJT Q3 and then form a new branch,
which can share the nonlinear current flowing into the same BJT, as shown in Figure 3.

At this time, the current flowing through Q2 and Q3 is

IE,Q2,3 = IPTAT + ICTAT − 2INL (11)

The TC of the nonlinear compensation BJT current is reduced, which makes the output
reference current more accurate.

In order to further eliminate high-order temperature terms, a BGR circuit with high-
order temperature compensation was designed, as shown in Figure 4.
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Let R5 be equal to R3 and R4 (R3 = R4 = R5). Based on the characteristics of the
operational amplifier (OPAMP) A1 and A2, two branches, each with a nonlinear current
similar to INL, are formed and injected into Q2 and Q3 to offset the excess high-order
temperature terms.

The circuit of the OPAMP A0, A1, and A2 is provided in Figure 5, where the input
stage of this circuit mainly consists of a PMOS transistor differential pair M21 and M22
and an NMOS transistor differential pair M23 and M24 placed in parallel as a rail-to-rail
differential input stage, whose range of input common-mode voltage can be from ground
to VDD. The dominant pole of the circuit is located at the output port. The product of the
equivalent impedance and capacitance is large, so the position of the pole is close to the DC
point. And the non-dominant pole of the circuit is located at the node between the drain of
M32 and the source of M33, and the other pole is located between the source of M34 and the
drain of M35. The output impedance and parasitic capacitance of these two nodes are both
small so that their poles are far from the dominant pole. So this circuit can be regarded as
only one pole approximately and is kept stable through simple compensation.
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Finally, the current is

IE,Q2,3 = IPTAT + ICTAT − INL (12)

This formation is theoretically completely independent of temperature.
The design details of the proposed high-precision current-mode BGR and OPAMP

circuits A0, A1, and A2 are provided in Table 1.

Table 1. Component sizes used in the proposed BGR circuit.

Component Parameter

M0, M1, M2, M3 and M8 W = 9 µm, L = 6 µm

M4, M5 and M6 W = 6 µm, L = 6 µm

M7 W = 3 µm, L = 6 µm

M9 and M10 W = 3 µm, L = 8 µm

M11, M14 and M17 W = 1 µm, L = 12 µm

M12 W = 1.8 µm, L = 6 µm

M13, M16, M19, M29 and M33 W = 1.5 µm, L = 6 µm

M15 and M18 W = 1.5 µm, L = 12 µm

M22, M28 and M32 W = 1.5 µm, L = 12 µm, m = 2

M23 and M24 W = 3 µm, L = 6 µm, m = 4

M25 and M26 W = 5 µm, L = 2.6 µm, m = 4

M20 W = 1.5 µm, L = 8 µm

M21, M30 and M34 W = 1 µm, L = 12 µm

M27, M31 and M35 W = 1 µm, L = 12 µm, m = 2

Q0 8 × (5.6 µm × 5.6 µm)

Q1, Q2 and Q3 1 × (5.6 µm × 5.6 µm)

R0 31.47 kΩ

R1 and R2 249.52 kΩ

R3, R4 and R5 62.38 kΩ

R6 160 kΩ

With the same power supply voltage, the same component sizes, and the same tem-
perature range from −50 ◦C to 120 ◦C, the current IPTAT + ICTAT − 3INL flowing into Q2 in
Figure 2, the current IPTAT + ICTAT − 2INL flowing into Q2 or Q3 in Figure 3, and the current



Micromachines 2023, 14, 1420 7 of 13

IPTAT + ICTAT − INL flowing into Q2 or Q3 in Figure 4 simulated in the SMIC 55 nm CMOS
process are shown in Figure 6.
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Figure 6. Currents flowing into Q2 or Q3 of the structures shown in Figures 2–4.

Compared to Figures 2 and 3, the current curve in Figure 4 is the most stable, and the
variation is the smallest. In other words, the temperature stability is the best.

And the output reference currents IREF of the structures in Figures 2–4 simulated in
the SMIC 55 nm CMOS process are shown in Figure 7.
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The IREF of the circuit in Figure 2 varies from the minimum of 4.2049 µA to the
maximum of 4.2227 µA with a change of 17.8 nA, the IREF in Figure 3 varies from the
minimum of 4.1817 µA to the maximum of 4.1926 µA with a change of 10.9 nA, and the
IREF in Figure 4 varies from the minimum of 4.1539 µA to the maximum of 4.1563 µA with
a change of 2.4 nA. It can be seen that the IREF of the proposed high-precision current-mode
BGR circuit is more stable significantly.

4. Simulation Results

The proposed current-mode BGR circuit with a high-order temperature compensation
was designed using the SMIC 55 nm CMOS process. The size of the layout of the proposed
circuit including dummies turned out to be 300.43 µm × 148.67 µm, which is illustrated in
Figure 8.
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Figure 8. The layout of the proposed high-precision current-mode BGR circuit.

A. The output reference current

With a supply voltage of 3.3 V, the IREF of the proposed circuit measured from −50 ◦C
to 120 ◦C is presented in Figure 9.
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The equation of TC can be expressed as

TC =
VREF,max −VREF,min

VREF,ave × (Tmax − Tmin)
× 106 (13)

In the current-mode BGR circuit, the VREF in the above equation should be replaced
by IREF, while the rest remains unchanged. IREF over the whole temperature range is
about 2.4 nA, varying from 3.6829 µA to 3.6853 µA. So, the typical TC can be calculated as
3.78 ppm/◦C.

B. Monte Carlo simulation

The Monte Carlo simulation is conducted to assess the circuit stability due to the
influence of the process and mismatched variations. Three hundred iterations of the
generated IREF are shown in Figure 10.
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Figure 10. Monte Carlo simulation (300 iterations) for mismatch and process variations: (a) IREF

across temperature; (b) Temperature coefficient.

The simulation results show that IREF varied from 3.6789 µA to 3.6881 µA under the
worst-case scenario in Figure 10a, whose TC is about 7.64 ppm/◦C. And it can be calculated
that the mean value µ of TC is 4.51 ppm/°C, and the mean square error σ is 0.615 ppm/◦C
in Figure 10b.

The Monte Carlo simulation covers over 95% of the process corners and mismatches,
which ensures a certain qualification rate for the product. However, the process corners
have significant process variations under extreme conditions and require to be trimmed.
Under the process corner of ss, there is a maximum deviation of 6 nA from the typical
value in this paper. Due to the accuracy requirements of the BGR circuit, trims need to be
made. Three-bit trimming is adopted, which means that there are eight trimming states.
Three states greater than the typical value are set, and each state can be stepped by 3 nA, so
a total of 9 nA can be stepped. Four trimming states below the typical value are set, and
each state can be stepped by 3 nA, and a total of 12 nA can be stepped. Because trimming
is an engineering implementation process, this paper does not provide detailed circuit
implementation steps.

Figure 11 shows the simulation result of the output IREF versus the temperature of
the process corners, including ff, fs, sf, and ss, where the process corners of ss and fs
are trimmed in one step to obtain better results, and those of ff and sf are maintained in
the set state of tt without any trimming. At the worst process corner ff, the TC is about
7.97 ppm/◦C.
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Figure 11. IREF with temperature sweep of process corners including ff, fs, sf, and ss.
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C. Stability

Figure 12 shows the AC analysis results of the BGR for the gain and phase frequency
response of the process corners, including tt, ff, fs, sf, and ss of the proposed circuit.
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It can be observed that the phase margin is better than 76.63 degrees, and the gain
margin is about 16.64 dB. When the gain is 0 dB, the phase margin is much greater than
60 degrees, which is very stable.

D. Transient response

Figure 13 illustrates the start-up process of the proposed circuit with a supply voltage
VDD step from 0 V to 3.3 V at an edge time of 1 ms, and when IREF flows through a high-
precision resistor with a temperature compensation of 160 kΩ, the proposed BGR circuit
takes 0.14 ms to reach the normal operating state.
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E. Comparison between the simulated characteristics of the proposed design and other
works

The performance of the proposed BGR circuit is compared to that of other previous
BGR circuits [10–14], as shown in Table 2.

Table 2. Performance summary and comparisons with other previous studies.

Parameters This Work Ref. [10] Ref. [11] Ref. [12] Ref. [13] Ref. [14] Ref. [15]

Year 2023 2021 2019 2018 2012 2012 2010

Process CMOS
55 nm

CMOS
65 nm

CMOS
0.18 µm

CMOS
0.5 µm

BiCMOS
0.5 µm

CMOS
0.35 µm

CMOS
0.5 µm

Supply
voltage (V) 3.3 1.0–1.4 3.5–5 2.1–5 3.6 2.5 3.6

Layout area
(mm2) 0.044 (*) 0.2225 0.053 0.04 0.102 0.1

Temp range
(◦C) −50 to 120 −40 to 100 −40 to 130 −5 to 125 −40 to 100 −15 to 150 −40 to 120

Best TC
(ppm/◦C) 3.78 5 4.6 3.98 5 3.9 11.8

Trimming No No No Yes Yes Yes Yes

IQ (µA) 42.13 5.2 108 38 25 38 18

PSR@27 ◦C −63.1 dB
@100 Hz

−28.8 dB
@10 kHz

−92 dB
@100 Hz

−84 dB
@100 Hz

−70 dB
@10 kHz (*) −31.8 dB

@10 Hz

FOM 67.36 155.08 31.48 72.2 78.4 (*) 24

(*) Not listed.

It can be observed from Table 2 that due to more accurate high-order compensation,
the TC of the proposed structure is superior to that of previous works over a wider range of
temperatures, and there are also certain comprehensive advantages in layout area, current
consumption, and PSR.

In order to evaluate the overall performance of the BGR circuits, an evaluation param-
eter figure-of-merit (FOM) defined in this paper can be expressed as

FOM =
|PSR| × Temp range

Best TC× IQ
(14)

Because the layout area is related to the process, for the purpose of a fair comparison,
the parameter of the layout area is not used in FOM, which only uses the temperature
range, best TC, quiescent current, and PSR. It can be seen from the results that the value of
FOM in this paper is much higher than that in [11,15], almost similar to that in [12,13], but
lower than that in [10]. However, the FOM of [10] is only because of the excellent parameter
of IQ, while the rest of the performance is ordinary. The most important parameter of the
BGR circuit is the temperature coefficient, which is best identified in this paper.

F. Post-layout simulation

The results of the post-layout simulations are shown in Table 3.
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Table 3. Post layout simulations of this work.

Specification Parameter

Process CMOS 55 nm

Supply voltage (V) 3.3

Temp range (◦C) −50 to 120

TC (ppm/◦C) 6.02

Phase margin (degree) 63.5

IQ (µA) 46.8

PSR (dB) 53.6 dB@DC

5. Conclusions

In this study, the equation of the nonlinear current was modified, the high-order term
of the current flowing into the NLCBJT was compensated further, and a high-precision
current-mode BGR circuit with a high-order temperature compensation was designed
and simulated using Cadence SPECTRE with a SMIC CMOS 55 nm process. The simula-
tion results verify that the output reference current has good temperature independence
(TC ≈ 3.78 ppm/◦C) with a supply voltage of 3.3 V, a better layout area, and power supply
rejection ability (PSR ≈ −63.1 dB at 100 frequency). These results display an effective
enhancement in the performance of the BGR circuit.
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