Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = high oxygen affinity hemoglobin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9170 KiB  
Article
Convergent High O2 Affinity but Distinct ATP-Mediated Allosteric Regulation of Hemoglobins in Oviparous and Viviparous Eremias Lizards from the Qinghai-Tibet Plateau
by Peng Pu, Zhiyi Niu, Ming Ma, Xiaolong Tang and Qiang Chen
Animals 2024, 14(10), 1440; https://doi.org/10.3390/ani14101440 - 11 May 2024
Cited by 1 | Viewed by 1786
Abstract
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet [...] Read more.
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet Plateau. The Hbs of high-altitude E. argus and E. multiocellata were characterized by significantly high overall and intrinsic Hb-O2 affinity compared to their low-altitude populations. Despite the similarly low Cl sensitivities, the Hbs of high-altitude E. argus exhibited higher ATP sensitivity and ATP-dependent Bohr effects than that of E. multiocellata, which could facilitate O2 unloading in respiring tissues. Eremias lizards Hbs exhibited similarly low temperature sensitivities and relatively high Bohr effects at lower temperatures, which could help to stably deliver and release O2 to cold extremities at low temperatures. The oxygenation properties of Hbs in high-altitude populations might be attributed to varying ratios of β2/β1 globin and substitutions on the β2-type globin. Notably, the Asn12Ala in lowland E. argus could cause localized destabilization of the E-helix in the tetrameric Hb by elimination of hydrogen bonds, thereby resulting in its lowest O2 affinity. This study provides a valuable reference for the high-altitude adaptation mechanisms of hemoglobins in reptiles. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

8 pages, 1154 KiB  
Brief Report
High-Oxygen-Affinity Hemoglobins—Case Series and Review of the Literature
by Veroniki Komninaka, Pagona Flevari, Evangelia-Eleni Ntelaki, Eleni Yfanti, Theodoros Androutsakos, Ioannis Ntanasis-Stathopoulos and Evangelos Terpos
J. Clin. Med. 2024, 13(2), 458; https://doi.org/10.3390/jcm13020458 - 14 Jan 2024
Cited by 2 | Viewed by 2324
Abstract
Modifications of the hemoglobin (Hb) structure in regions involving the regulation of oxygen transport may lead to an increased oxygen affinity for the hemoglobin molecule and impaired oxygen delivery to the tissues. Herein, we present six patients with high-oxygen-affinity Hb variants, either in [...] Read more.
Modifications of the hemoglobin (Hb) structure in regions involving the regulation of oxygen transport may lead to an increased oxygen affinity for the hemoglobin molecule and impaired oxygen delivery to the tissues. Herein, we present six patients with high-oxygen-affinity Hb variants, either in heterozygous form or in compound heterozygosity (such as heterozygosity for Hb Hiroshima, Köln, Crete, and compound heterozygosity Hb Crete with β or δβ thalassemia), in order to demonstrate the need for prompt and accurate diagnosis and enrich the limited literature due to the rarity of such cases. Hb Crete, Hb Hiroshima, and Hb Köln have distinct pathophysiologies and may result in different clinical phenotypes. In conclusion, high-oxygen-affinity hemoglobins are rare and inherited within a dominant autosomal manner, have various clinical presentations, and should always be suspected in patients with erythrocytosis. Their management (as phlebotomy or low-dose aspirin) should be based on an individualized assessment of the risk of complications, the medical history, concomitant symptoms, and quality of life. Full article
(This article belongs to the Special Issue Diagnosis and Management of Blood Diseases)
Show Figures

Figure 1

10 pages, 741 KiB  
Review
Is It Time to Redefine Fetal Decelerations in Cardiotocography?
by Serena Xodo and Ambrogio P. Londero
J. Pers. Med. 2022, 12(10), 1552; https://doi.org/10.3390/jpm12101552 - 21 Sep 2022
Cited by 6 | Viewed by 7953
Abstract
Historically, fetal heart rate (FHR) decelerations were classified into “early”, “late”, and “variable” based on their relationship with uterine contractions. So far, three different putative etiologies were taken for granted. Recently, this belief, passed down through generations of birth attendants, has been questioned [...] Read more.
Historically, fetal heart rate (FHR) decelerations were classified into “early”, “late”, and “variable” based on their relationship with uterine contractions. So far, three different putative etiologies were taken for granted. Recently, this belief, passed down through generations of birth attendants, has been questioned by physiologists. This narrative review aimed to assess the evidence on pathophysiology behind intrapartum FHR decelerations. This narrative review is based on information sourced from online peer-reviewed articles databases and recommendations from the major scientific societies in the field of obstetrics. Searches were performed in MEDLINE/PubMed, EMBASE, and Scopus and selection criteria included studies in animals and humans, where the physiology behind FHR decelerations was explored. The greater affinity for oxygen of fetal hemoglobin than the maternal, the unicity of fetal circulation, and the high anaerobic reserve of the myocardium, ensure adequate oxygenation to the fetus, under basal conditions. During acute hypoxic stress the efficiency of these mechanisms are increased because of the peripheral chemoreflex. This reflex, activated at each uterine contraction, is characterized by the simultaneous activation of two neural arms: the parasympathetic arm, which reduces the myocardial consumption of oxygen by decreasing the FHR and the sympathetic component, which promotes an intense peripheric vasoconstriction, thus centralizing the fetal blood volume. This review summarizes the evidence supporting the hypoxic origin of FHR decelerations, therefore archiving the historical belief that FHR decelerations have different etiologies, according to their shape and relationship with uterine contractions. The present review suggests that it is time to welcome the new scientific evidence and to update the CTG classification systems. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

6 pages, 236 KiB  
Article
Importance of Sequencing HBA1, HBA2 and HBB Genes to Confirm the Diagnosis of High Oxygen Affinity Hemoglobin
by Mathilde Filser, Betty Gardie, Mathieu Wemeau, Patricia Aguilar-Martinez, Muriel Giansily-Blaizot and François Girodon
Genes 2022, 13(1), 132; https://doi.org/10.3390/genes13010132 - 12 Jan 2022
Cited by 6 | Viewed by 3961
Abstract
High oxygen affinity hemoglobin (HOAH) is the main cause of constitutional erythrocytosis. Mutations in the genes coding the alpha and beta globin chains (HBA1, HBA2 and HBB) strengthen the binding of oxygen to hemoglobin (Hb), bringing about tissue hypoxia and [...] Read more.
High oxygen affinity hemoglobin (HOAH) is the main cause of constitutional erythrocytosis. Mutations in the genes coding the alpha and beta globin chains (HBA1, HBA2 and HBB) strengthen the binding of oxygen to hemoglobin (Hb), bringing about tissue hypoxia and a secondary erythrocytosis. The diagnosis of HOAH is based upon the identification of a mutation in HBA1, HBA2 or HBB in specialized laboratories. Phenotypic studies of Hb are also useful, but electrophoretic analysis can be normal in 1/3 of cases. The establishment of the dissociation curve of Hb can be used as another screening test, a shift to the left indicating an increased affinity for Hb. The direct measurement of venous P50 using a Hemox Analyzer is of great importance, but due to specific analytic conditions, it is only available in a few specialized laboratories. Alternatively, an estimated measurement of the P50 can be obtained in most of the blood gas analyzers on venous blood. The aim of our study was therefore to determine whether a normal venous P50 value could rule out HOAH. We sequenced the HBB, HBA1 and HBA2 genes of 75 patients with idiopathic erythrocytosis. Patients had previously undergone an exhaustive medical check-up after which the venous P50 value was defined as normal. Surprisingly, sequencing detected HOAH in three patients (Hb Olympia in two patients, and Hb St Nazaire in another). A careful retrospective examination of their medical files revealed that (i) one of the P50 samples was arterial; (ii) there was some air in another sample; and (iii) the P50 measurement was not actually done in one of the patients. Our study shows that in real life conditions, due to pre-analytical contingencies, a venous P50 value that is classified as being normal may not be sufficient to rule out a diagnosis of HOAH. Therefore, we recommend the systematic sequencing of the HBB, HBA1 and HBA2 genes in the exploration of idiopathic erythrocytosis. Full article
(This article belongs to the Special Issue Genetics and Genomics of Erythrocytosis)
17 pages, 776 KiB  
Article
Effects of Short-Term Phosphate Loading on Aerobic Capacity under Acute Hypoxia in Cyclists: A Randomized, Placebo-Controlled, Crossover Study
by Kamila Płoszczyca, Małgorzata Chalimoniuk, Iwona Przybylska and Miłosz Czuba
Nutrients 2022, 14(2), 236; https://doi.org/10.3390/nu14020236 - 6 Jan 2022
Cited by 1 | Viewed by 3507
Abstract
The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg−1 of FFM/day) or placebo for six days in a randomized, crossover study, with a [...] Read more.
The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg−1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3–5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation. Full article
(This article belongs to the Special Issue Nutrient Intervention in Competitive Athletes)
Show Figures

Figure 1

19 pages, 3453 KiB  
Article
Quercetin Completely Ameliorates Hypoxia–Reoxygenation-Induced Pathophysiology Severity in NY1DD Transgenic Sickle Mice: Intrinsic Mild Steady State Pathophysiology of the Disease in NY1DD Is Also Reversed
by Sangeetha Thangaswamy, Craig A. Branch, Kamalakar Ambadipudi and Seetharama A. Acharya
Biomolecules 2021, 11(10), 1473; https://doi.org/10.3390/biom11101473 - 6 Oct 2021
Cited by 7 | Viewed by 2704
Abstract
The vaso-occlusive crisis (VOC) is a major complication of sickle cell disease (SCD); thus, strategies to ameliorate vaso-occlusive episodes are greatly needed. We evaluated the therapeutic benefits of quercetin in a SCD transgenic sickle mouse model. This disease model exhibited very mild disease [...] Read more.
The vaso-occlusive crisis (VOC) is a major complication of sickle cell disease (SCD); thus, strategies to ameliorate vaso-occlusive episodes are greatly needed. We evaluated the therapeutic benefits of quercetin in a SCD transgenic sickle mouse model. This disease model exhibited very mild disease pathophysiology in the steady state. The severity of the disease in the NY1DD mouse was amplified by subjecting mice to 18 h of hypoxia followed by 3 h of reoxygenation. Quercetin (200 mg/kg body weight) administered to hypoxia challenged NY1DD mice in a single intraperitoneal (i.p.) dose at the onset of reoxygenation completely ameliorated all hypoxia reoxygenation (H/R)-induced pathophysiology. Additionally, it ameliorated the mild intrinsic steady state pathophysiology. These results are comparable with those seen with semisynthetic supra plasma expanders. In control mice, C57BL/6J, hypoxia reoxygenation-induced vaso-occlusion was at significantly lower levels than in NY1DD mice, reflecting the role of sickle hemoglobin (HbS) in inducing vaso-occlusion; however, the therapeutic benefits from quercetin were significantly muted. We suggest that these findings represent a unique genotype of the NY1DD mice, i.e., the presence of high oxygen affinity red blood cells (RBCs) with chimeric HbS, composed of mouse α-chain and human βS-chain, as well as human α-chain and mouse β-chain (besides HbS). The anti-anemia therapeutic benefits from high oxygen affinity RBCs in these mice exert disease severity modifications that synergize with the therapeutic benefits of quercetin. Combining the therapeutic benefits of high oxygen affinity RBCs generated in situ by chemical or genetic manipulation with the therapeutic benefits of antiadhesive therapies is a novel approach to treat sickle cell patients with severe pathophysiology. Full article
(This article belongs to the Topic Compounds with Medicinal Value)
Show Figures

Figure 1

9 pages, 335 KiB  
Review
Genetic Background of Congenital Erythrocytosis
by Mary Frances McMullin
Genes 2021, 12(8), 1151; https://doi.org/10.3390/genes12081151 - 28 Jul 2021
Cited by 16 | Viewed by 5553
Abstract
True erythrocytosis is present when the red cell mass is greater than 125% of predicted sex and body mass, which is reflected by elevated hemoglobin and hematocrit. Erythrocytosis can be primary or secondary and congenital or acquired. Congenital defects are often found in [...] Read more.
True erythrocytosis is present when the red cell mass is greater than 125% of predicted sex and body mass, which is reflected by elevated hemoglobin and hematocrit. Erythrocytosis can be primary or secondary and congenital or acquired. Congenital defects are often found in those diagnosed at a young age and with a family history of erythrocytosis. Primary congenital defects mainly include mutations in the Erythropoietin receptor gene but SH2B3 has also been implicated. Secondary congenital erythrocytosis can arise through a variety of genetic mechanisms, including mutations in the genes in the oxygen sensing pathway, with high oxygen affinity hemoglobin variants and mutations in other genes such as BPMG, where ultimately the production of erythropoietin is increased, resulting in erythrocytosis. Recently, mutations in PIEZ01 have been associated with erythrocytosis. In many cases, a genetic variant cannot be identified, leaving a group of patients with the label idiopathic erythrocytosis who should be the subject of future investigations. The clinical course in congenital erythrocytosis is hard to evaluate as these are rare cases. However, some of these patients may well present at a young age and with sometimes catastrophic thromboembolic events. There is little evidence to guide the management of congenital erythrocytosis but the use of venesection and low dose aspirin should be considered. Full article
(This article belongs to the Special Issue Genetics and Genomics of Erythrocytosis)
Show Figures

Figure 1

24 pages, 4008 KiB  
Article
Aryloxyalkanoic Acids as Non-Covalent Modifiers of the Allosteric Properties of Hemoglobin
by Abdelsattar M. Omar, Mona A. Mahran, Mohini S. Ghatge, Faida H. A. Bamane, Mostafa H. Ahmed, Moustafa E. El-Araby, Osheiza Abdulmalik and Martin K. Safo
Molecules 2016, 21(8), 1057; https://doi.org/10.3390/molecules21081057 - 13 Aug 2016
Cited by 5 | Viewed by 5676
Abstract
Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently [...] Read more.
Hemoglobin (Hb) modifiers that stereospecifically inhibit sickle hemoglobin polymer formation and/or allosterically increase Hb affinity for oxygen have been shown to prevent the primary pathophysiology of sickle cell disease (SCD), specifically, Hb polymerization and red blood cell sickling. Several such compounds are currently being clinically studied for the treatment of SCD. Based on the previously reported non-covalent Hb binding characteristics of substituted aryloxyalkanoic acids that exhibited antisickling properties, we designed, synthesized and evaluated 18 new compounds (KAUS II series) for enhanced antisickling activities. Surprisingly, select test compounds showed no antisickling effects or promoted erythrocyte sickling. Additionally, the compounds showed no significant effect on Hb oxygen affinity (or in some cases, even decreased the affinity for oxygen). The X-ray structure of deoxygenated Hb in complex with a prototype compound, KAUS-23, revealed that the effector bound in the central water cavity of the protein, providing atomic level explanations for the observed functional and biological activities. Although the structural modification did not lead to the anticipated biological effects, the findings provide important direction for designing candidate antisickling agents, as well as a framework for novel Hb allosteric effectors that conversely, decrease the protein affinity for oxygen for potential therapeutic use for hypoxic- and/or ischemic-related diseases. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

14 pages, 223 KiB  
Review
Replacing the Transfusion of 1–2 Units of Blood with Plasma Expanders that Increase Oxygen Delivery Capacity: Evidence from Experimental Studies
by Amy G. Tsai, Beatriz Y. Salazar Vázquez, Pedro Cabrales, Erik B. Kistler, Daniel M. Tartakovsky, Shankar Subramaniam, Seetharama A. Acharya and Marcos Intaglietta
J. Funct. Biomater. 2014, 5(4), 232-245; https://doi.org/10.3390/jfb5040232 - 27 Oct 2014
Cited by 4 | Viewed by 6579
Abstract
At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity [...] Read more.
At least a third of the blood supply in the world is used to transfuse 1–2 units of packed red blood cells for each intervention and most clinical trials of blood substitutes have been carried out at this level of oxygen carrying capacity (OCC) restoration. However, the increase of oxygenation achieved is marginal or none at all for molecular hemoglobin (Hb) products, due to their lingering vasoactivity. This has provided the impetus for the development of “oxygen therapeutics” using Hb-based molecules that have high oxygen affinity and target delivery of oxygen to anoxic areas. However it is still unclear how these oxygen carriers counteract or mitigate the functional effects of anemia due to obstruction, vasoconstriction and under-perfusion. Indeed, they are administered as a low dosage/low volume therapeutic Hb (subsequently further diluted in the circulatory pool) and hence induce extremely small OCC changes. Hyperviscous plasma expanders provide an alternative to oxygen therapeutics by increasing the oxygen delivery capacity (ODC); in anemia they induce supra-perfusion and increase tissue perfusion (flow) by as much as 50%. Polyethylene glycol conjugate albumin (PEG-Alb) accomplishes this by enhancing the shear thinning behavior of diluted blood, which increases microvascular endothelial shear stress, causes vasodilation and lowering peripheral vascular resistance thus facilitating cardiac function. Induction of supra-perfusion takes advantage of the fact that ODC is the product of OCC and blood flow and hence can be maintained by increasing either or both. Animal studies suggest that this approach may save a considerable fraction of the blood supply. It has an additional benefit of enhancing tissue clearance of toxic metabolites. Full article
(This article belongs to the Special Issue Blood Substitutes)
Back to TopTop