Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = high education innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1119 KiB  
Article
Smartphone-Assisted Experimentation as a Medium of Understanding Human Biology Through Inquiry-Based Learning
by Giovanna Brita Campilongo, Giovanna Tonzar-Santos, Maria Eduarda dos Santos Verginio and Camilo Lellis-Santos
Educ. Sci. 2025, 15(8), 1005; https://doi.org/10.3390/educsci15081005 - 6 Aug 2025
Abstract
The integration of Inquiry-Based Learning (IBL) and mobile technologies can transform science education, offering experimentation opportunities to students from budget-constrained schools. This study investigates the efficacy of smartphone-assisted experimentation (SAE) within IBL to enhance pre-service science teachers’ understanding of human physiology and presents [...] Read more.
The integration of Inquiry-Based Learning (IBL) and mobile technologies can transform science education, offering experimentation opportunities to students from budget-constrained schools. This study investigates the efficacy of smartphone-assisted experimentation (SAE) within IBL to enhance pre-service science teachers’ understanding of human physiology and presents a newly developed and validated rubric for assessing their scientific skills. Students (N = 286) from a Science and Mathematics Teacher Education Program participated in a summative IBL activity (“Investigating the Human Physiology”—iHPhys) where they designed experimental projects using smartphone applications to collect body sign data. The scoring rubric, assessing seven criteria including hypothesis formulation, methodological design, data presentation, and conclusion writing, was validated as substantial to almost perfect inter-rater reliability. Results reveal that students exhibited strong skills in hypothesis clarity, theoretical grounding, and experimental design, with a high degree of methodological innovation observed. However, challenges persisted in predictive reasoning and evidence-based conclusion writing. The students were strongly interested in inquiring about the cardiovascular and nervous systems. Correlational analyses suggest a positive relationship between project originality and overall academic performance. Thus, integrating SAE and IBL fosters critical scientific competencies, creativity, and epistemic cognition while democratizing access to scientific experimentation and engaging students in tech-savvy pedagogical practices. Full article
(This article belongs to the Special Issue Inquiry-Based Learning and Student Engagement)
Show Figures

Figure 1

12 pages, 469 KiB  
Communication
The Certificate of Advanced Studies in Brain Health of the University of Bern
by Simon Jung, David Tanner, Jacques Reis and Claudio Lino A. Bassetti
Clin. Transl. Neurosci. 2025, 9(3), 35; https://doi.org/10.3390/ctn9030035 - 4 Aug 2025
Viewed by 118
Abstract
Background: Brain health is a growing public health priority due to the high global burden of neurological and mental disorders. Promoting brain health across the lifespan supports individual and societal well-being, creativity, and productivity. Objective: To address the need for specialized education in [...] Read more.
Background: Brain health is a growing public health priority due to the high global burden of neurological and mental disorders. Promoting brain health across the lifespan supports individual and societal well-being, creativity, and productivity. Objective: To address the need for specialized education in this field, the University of Bern developed a Certificate of Advanced Studies (CAS) in Brain Health. This article outlines the program’s rationale, structure, and goals. Program Description: The one-year, 15 ECTS-credit program is primarily online and consists of four modules: (1) Introduction to Brain Health, (2) Brain Disorders, (3) Risk Factors, Protective Factors and Interventions, and (4) Brain Health Implementation. It offers a multidisciplinary, interprofessional, life-course approach, integrating theory with practice through case studies and interactive sessions. Designed for healthcare and allied professionals, the CAS equips participants with skills to promote brain health in clinical, research, and public health contexts. Given the shortage of trained professionals in Europe and globally, the program seeks to build a new generation of brain health advocates. It aims to inspire action and initiatives that support the prevention, early detection, and management of brain disorders. Conclusions: The CAS in Brain Health is an innovative educational response to a pressing global need. By fostering interdisciplinary expertise and practical skills, it enhances professional development and supports improved brain health outcomes at individual and population levels. Full article
(This article belongs to the Special Issue Brain Health)
Show Figures

Figure 1

20 pages, 9007 KiB  
Review
Marine-Derived Collagen and Chitosan: Perspectives on Applications Using the Lens of UN SDGs and Blue Bioeconomy Strategies
by Mariana Almeida and Helena Vieira
Mar. Drugs 2025, 23(8), 318; https://doi.org/10.3390/md23080318 - 1 Aug 2025
Viewed by 284
Abstract
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across [...] Read more.
Marine biomass, particularly from waste streams, by-products, underutilized, invasive, or potential cultivable marine species, offers a sustainable source of high-value biopolymers such as collagen and chitin. These macromolecules have gained significant attention due to their biocompatibility, biodegradability, functional versatility, and broad applicability across health, food, wellness, and environmental fields. This review highlights recent advances in the uses of marine-derived collagen and chitin/chitosan. In alignment with the United Nations Sustainable Development Goals (SDGs), we analyze how these applications contribute to sustainability, particularly in SDGs related to responsible consumption and production, good health and well-being, and life below water. Furthermore, we contextualize the advancement of product development using marine collagen and chitin/chitosan within the European Union’s Blue bioeconomy strategies, highlighting trends in scientific research and technological innovation through bibliometric and patent data. Finally, the review addresses challenges facing the development of robust value chains for these marine biopolymers, including collaboration, regulatory hurdles, supply-chain constraints, policy and financial support, education and training, and the need for integrated marine resource management. The paper concludes with recommendations for fostering innovation and sustainability in the valorization of these marine resources. Full article
Show Figures

Graphical abstract

15 pages, 317 KiB  
Review
The Contribution of Artificial Intelligence in Nursing Education: A Scoping Review of the Literature
by Federico Cucci, Dario Marasciulo, Mattia Romani, Giovanni Soldano, Donato Cascio, Giorgio De Nunzio, Cosimo Caldararo, Ivan Rubbi, Elsa Vitale, Roberto Lupo and Luana Conte
Nurs. Rep. 2025, 15(8), 283; https://doi.org/10.3390/nursrep15080283 - 1 Aug 2025
Viewed by 218
Abstract
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies [...] Read more.
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies on the application of AI in university-level nursing education, focusing on its benefits, challenges, and future prospects. Methods: A scoping review was conducted using the Population, Concept, and Context (PCC) framework, targeting nursing students and educators in academic settings. A comprehensive search was carried out across the PubMed, Scopus, and Web of Science databases. Only peer-reviewed original studies published in English were included. Two researchers independently screened the studies, resolving any disagreements through team discussion. Data were synthesized narratively. Results: Of the 569 articles initially identified, 11 original studies met the inclusion criteria. The findings indicate that AI-based tools—such as virtual simulators and ChatGPT—can enhance students’ learning experiences, communication skills, and clinical preparedness. Nonetheless, several challenges were identified, including increased simulation-related anxiety, potential misuse, and ethical concerns related to data quality, privacy, and academic integrity. Conclusions: AI offers significant opportunities to enhance nursing education; however, its implementation must be approached with critical awareness and responsibility. It is essential that students develop both digital competencies and ethical sensitivity to fully leverage AI’s potential while ensuring high-quality education and responsible nursing practice. Full article
Show Figures

Figure 1

11 pages, 441 KiB  
Article
Medical Education: Are Reels a Good Deal in Video-Based Learning?
by Daniel Humberto Pozza, Fani Lourença Neto, José Tiago Costa-Pereira and Isaura Tavares
Educ. Sci. 2025, 15(8), 981; https://doi.org/10.3390/educsci15080981 (registering DOI) - 31 Jul 2025
Viewed by 257
Abstract
Based on our question, “Are reels/short-videos the real deal in video-based learning?” this study explores the effectiveness of short (around 2 min) video-based learning in engaging medical students from the second large medical Portuguese school. With the increasing integration of digital tools in [...] Read more.
Based on our question, “Are reels/short-videos the real deal in video-based learning?” this study explores the effectiveness of short (around 2 min) video-based learning in engaging medical students from the second large medical Portuguese school. With the increasing integration of digital tools in education, video content has emerged as a dynamic method to enhance learning experiences. This cross-sectional survey was conducted by using anonymous self-administered questionnaires, prepared with reference to previous studies, and distributed to 264 informed students who voluntarily agreed to participate. This sample represented 75.5% of the students attending the classes. The questionnaires included topics related to the 65 short videos about practical classes, as well as the students’ learning preferences. The collected data were analyzed using descriptive and comparative statistics. The students considered that the content and format of the videos were adequate (99.6% and 100%, respectively). Specifically, the videos helped the students to better understand the practical classes, consolidate and retain the practical content, and simplify the study for the exams. Additionally, the videos were praised for their high-quality audiovisual content, being innovative, complete, concise, short and/or adequate, or better than other formats such as printed information. The combination of written and audiovisual support materials for teaching and studying is important and has been shown to improve students’ performance. This pedagogical methodology is well-suited for the current generation of students, aiding not only in study and exam preparation but also in remote learning. Full article
(This article belongs to the Special Issue Higher Education Development and Technological Innovation)
Show Figures

Figure 1

35 pages, 3894 KiB  
Article
Building an Adaptive AI-Powered Higher Education Class for the Future of Engineering: A Case Study from NTUA
by Maria Karoglou, Ioana Ghergulescu, Marina Stramarkou, Christos Boukouvalas and Magdalyni Krokida
Appl. Sci. 2025, 15(15), 8524; https://doi.org/10.3390/app15158524 (registering DOI) - 31 Jul 2025
Viewed by 97
Abstract
This study presents the outcomes of the Erasmus+ European project Higher Education Classroom of the Future (HECOF), with a particular focus on chemical engineering education. In the digital era, the integration and advancement of artificial intelligence (AI) in higher education, especially in engineering, [...] Read more.
This study presents the outcomes of the Erasmus+ European project Higher Education Classroom of the Future (HECOF), with a particular focus on chemical engineering education. In the digital era, the integration and advancement of artificial intelligence (AI) in higher education, especially in engineering, are increasingly important. The main goal of the HECOF project is to establish a system of new higher education teaching practices and national reforms in education. This system has been developed and tested through an innovative personalized and adaptive method of teaching that exploited digital data from students’ learning activity in immersive environments, with the aid of computational analysis techniques from data science. The unit operations—extraction process course—a fundamental component of the chemical engineering curriculum, was selected as the case study for the development of the HECOF learning system. A group of undergraduate students evaluated the system’s usability and educational efficiency. The findings showed that the HECOF system contributed positively to students’ learning—although the extent of improvement varied among individuals—and was associated with a high level of satisfaction, suggesting that HECOF was effective in delivering a positive and engaging learning experience. Full article
Show Figures

Figure 1

40 pages, 1885 KiB  
Review
Potential Application of Plant By-Products in Biomedicine: From Current Knowledge to Future Opportunities
by Silvia Estarriaga-Navarro, Teresa Valls, Daniel Plano, Carmen Sanmartín and Nieves Goicoechea
Antioxidants 2025, 14(8), 942; https://doi.org/10.3390/antiox14080942 (registering DOI) - 31 Jul 2025
Viewed by 315
Abstract
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of [...] Read more.
Plant by-products have gained significant attention due to their rich content in bioactive compounds, which exhibit promising antioxidant, antimicrobial, and antitumor properties. In European countries, vegetable waste generation ranged from 35 to 78 kg per capita in 2022, highlighting both the scale of the challenge and the potential for valorization. This review provides an overview of key studies investigating the potential of plant residues in biomedicine, highlighting their possible contents of antioxidant compounds, their antimicrobial and antitumor properties, as well as their applications in dermocosmetics and nutraceuticals. However, despite their potential, several challenges must be addressed, such as the standardization of extraction protocols, as bioactive compound profiles can vary with plant source, processing conditions, and storage methods. Effective segregation and storage protocols for household organic waste also require optimization to ensure the quality and usability of plant by-products in biomedicine. Emerging 4.0 technologies could help to identify suitable plant by-products for biomedicine, streamlining their selection process for high-value applications. Additionally, the transition from in vitro studies to clinical trials is hindered by gaps in the understanding of Absorption, Distribution, Metabolism, and Excretion (ADME) properties, as well as interaction and toxicity profiles. Nonetheless, environmental education and societal participation are crucial to enabling circular bioeconomy strategies and sustainable biomedical innovation. Full article
Show Figures

Graphical abstract

11 pages, 262 KiB  
Article
Use of a Peer Equity Navigator Intervention to Increase Access to COVID-19 Vaccination Among African, Caribbean and Black Communities in Canada
by Josephine Etowa, Ilene Hyman and Ubabuko Unachukwu
Int. J. Environ. Res. Public Health 2025, 22(8), 1195; https://doi.org/10.3390/ijerph22081195 - 31 Jul 2025
Viewed by 192
Abstract
African, Caribbean, and Black (ACB) communities face increased COVID-19 morbidity and mortality, coupled with significant barriers to vaccine acceptance and uptake. Addressing these challenges requires innovative, multifaceted strategies. Peer-led interventions, grounded in critical health literacy (CHL) and critical racial literacy (CRL), and integrating [...] Read more.
African, Caribbean, and Black (ACB) communities face increased COVID-19 morbidity and mortality, coupled with significant barriers to vaccine acceptance and uptake. Addressing these challenges requires innovative, multifaceted strategies. Peer-led interventions, grounded in critical health literacy (CHL) and critical racial literacy (CRL), and integrating collaborative equity learning processes, can enhance community capacity, empowerment, and health outcomes, contributing to long-term health equity. This paper describes and presents the evaluative outcomes of a peer-led intervention aimed at enhancing COVID-19 vaccine confidence and acceptance. The Peer-Equity Navigator (PEN) intervention consisted of a specialized training curriculum grounded in CHL and CRL. Following training, PENs undertook a 5-month practicum in community or health settings, engaging in diverse outreach and educational activities to promote vaccine literacy in ACB communities. The evaluation utilized a modified Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) Framework, using quantitative and qualitative methods to collect data. Sources of data included tracking records with community feedback, and a PEN focus group, to assess program feasibility, outreach, and effectiveness. From 16 September 2022, to 28 January 2023, eight trained PENs conducted 56+ community events, reaching over 1500 community members. Both PENs and community members reported high engagement, endorsing peer-led, community-based approaches and increased vaccine literacy. The PEN approach proves feasible, acceptable, and effective in promoting positive health behaviors among ACB communities. This intervention has clear implications for health promotion practice, policy, and research in equity-deserving communities, including immigrants and refugees, who also face multiple and intersecting barriers to health information and care. Full article
25 pages, 4837 KiB  
Article
Multimodal Computational Approach for Forecasting Cardiovascular Aging Based on Immune and Clinical–Biochemical Parameters
by Madina Suleimenova, Kuat Abzaliyev, Ainur Manapova, Madina Mansurova, Symbat Abzaliyeva, Saule Doskozhayeva, Akbota Bugibayeva, Almagul Kurmanova, Diana Sundetova, Merey Abdykassymova and Ulzhas Sagalbayeva
Diagnostics 2025, 15(15), 1903; https://doi.org/10.3390/diagnostics15151903 - 29 Jul 2025
Viewed by 219
Abstract
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, [...] Read more.
Background: This study presents an innovative approach to cardiovascular disease (CVD) risk prediction based on a comprehensive analysis of clinical, immunological and biochemical markers using mathematical modelling and machine learning methods. Baseline data include indices of humoral and cellular immunity (CD59, CD16, IL-10, CD14, CD19, CD8, CD4, etc.), cytokines and markers of cardiovascular disease, inflammatory markers (TNF, GM-CSF, CRP), growth and angiogenesis factors (VEGF, PGF), proteins involved in apoptosis and cytotoxicity (perforin, CD95), as well as indices of liver function, kidney function, oxidative stress and heart failure (albumin, cystatin C, N-terminal pro B-type natriuretic peptide (NT-proBNP), superoxide dismutase (SOD), C-reactive protein (CRP), cholinesterase (ChE), cholesterol, and glomerular filtration rate (GFR)). Clinical and behavioural risk factors were also considered: arterial hypertension (AH), previous myocardial infarction (PICS), aortocoronary bypass surgery (CABG) and/or stenting, coronary heart disease (CHD), atrial fibrillation (AF), atrioventricular block (AB block), and diabetes mellitus (DM), as well as lifestyle (smoking, alcohol consumption, physical activity level), education, and body mass index (BMI). Methods: The study included 52 patients aged 65 years and older. Based on the clinical, biochemical and immunological data obtained, a model for predicting the risk of premature cardiovascular aging was developed using mathematical modelling and machine learning methods. The aim of the study was to develop a predictive model allowing for the early detection of predisposition to the development of CVDs and their complications. Numerical methods of mathematical modelling, including Runge–Kutta, Adams–Bashforth and backward-directed Euler methods, were used to solve the prediction problem, which made it possible to describe the dynamics of changes in biomarkers and patients’ condition over time with high accuracy. Results: HLA-DR (50%), CD14 (41%) and CD16 (38%) showed the highest association with aging processes. BMI was correlated with placental growth factor (37%). The glomerular filtration rate was positively associated with physical activity (47%), whereas SOD activity was negatively correlated with it (48%), reflecting a decline in antioxidant defence. Conclusions: The obtained results allow for improving the accuracy of cardiovascular risk prediction, and form personalised recommendations for the prevention and correction of its development. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

20 pages, 1421 KiB  
Article
A Learning Design Framework for International Blended and Virtual Activities in Higher Education
by Ania Maria Hildebrandt, Alice Barana, Vasiliki Eirini Chatzea, Kelly Henao, Marina Marchisio Conte, Daniel Samoilovich, Nikolas Vidakis and Georgios Triantafyllidis
Trends High. Educ. 2025, 4(3), 40; https://doi.org/10.3390/higheredu4030040 - 29 Jul 2025
Viewed by 307
Abstract
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such [...] Read more.
Blended and virtual learning have become an integral part in international higher education, especially in the wake of the COVID-19 pandemic and the European Union’s Digital Education Action Plan. These modalities have enabled more inclusive, flexible, and sustainable forms of international collaboration, such as Collaborative Online International Learning (COIL) and Blended Intensive Programs (BIPs), reshaping the landscape of global academic mobility. This paper introduces the INVITE Learning Design Framework (LDF), developed to support higher education instructors in designing high-quality, internationalized blended and virtual learning experiences. The framework addresses the growing need for structured, theory-informed approaches to course design that foster student engagement, intercultural competence, and motivation in non-face-to-face settings. The INVITE LDF was developed through a rigorous scoping review of existing models and frameworks, complemented by needs-identification analysis and desk research. It integrates Self-Determination Theory, Active Learning principles, and the ADDIE instructional design model to provide a comprehensive, adaptable structure for course development. The framework was successfully implemented in a large-scale online training module for over 1000 educators across Europe. Results indicate that the INVITE LDF enhances educators’ ability to create engaging, inclusive, and pedagogically sound international learning environments. Its application supports institutional goals of internationalization by making global learning experiences more accessible and scalable. The findings suggest that the INVITE LDF can serve as a valuable tool for higher education institutions worldwide, offering a replicable model for fostering intercultural collaboration and innovation in digital education. This contributes to the broader transformation of international higher education, promoting equity, sustainability, and global citizenship through digital pedagogies. Full article
Show Figures

Figure 1

18 pages, 417 KiB  
Article
The Role of Service Quality in Enhancing Technological Innovation, Satisfaction, and Loyalty Among University Students in Northern Cyprus
by Birgül Gürbüzer and Ahmet Münir Acuner
Sustainability 2025, 17(15), 6832; https://doi.org/10.3390/su17156832 - 28 Jul 2025
Viewed by 336
Abstract
In the increasingly competitive landscape of higher education, student satisfaction and loyalty are recognized as essential components for institutional sustainability and long-term success. This study aims to examine the interrelationships between service quality, technological innovation, student satisfaction, and student loyalty within higher education [...] Read more.
In the increasingly competitive landscape of higher education, student satisfaction and loyalty are recognized as essential components for institutional sustainability and long-term success. This study aims to examine the interrelationships between service quality, technological innovation, student satisfaction, and student loyalty within higher education institutions in the Turkish Republic of Northern Cyprus (TRNC). Grounded in relationship marketing theory and the expectancy–disconfirmation paradigm, the research develops and tests a structural model that investigates the impact of perceived service quality on technological innovation, student satisfaction, and loyalty. The data were collected from 448 undergraduate students studying in the faculties of education at five leading private universities in TRNC, selected based on their international academic rankings. The analysis, conducted using structural equation modelling (SEM), reveals that service quality significantly and directly influences technological innovation, student satisfaction, and student loyalty. Additionally, technological innovation has a positive but comparatively weaker effect on student loyalty. Among the variables, student satisfaction emerges as the strongest determinant of loyalty, serving as a key mediator in the relationship between service quality and loyalty. This research contributes to the higher education literature by extending the traditional service quality–loyalty framework with the inclusion of technological innovation. The findings offer practical insights for university administrators, emphasizing the importance of delivering high-quality educational services combined with continuous digital innovation to enhance the student experience and foster long-term student commitment. Full article
Show Figures

Figure 1

30 pages, 2922 KiB  
Article
Interaction Mechanism and Coupling Strategy of Higher Education and Innovation Capability in China Based on Interprovincial Panel Data from 2010 to 2022
by Shaoshuai Duan and Fang Yin
Sustainability 2025, 17(15), 6797; https://doi.org/10.3390/su17156797 - 25 Jul 2025
Viewed by 487
Abstract
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and [...] Read more.
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and regional innovation capacity using the entropy weight method. These are complemented by kernel density estimation, spatial autocorrelation analysis, Dagum Gini coefficient decomposition, and the Obstacle Degree Model. Together, these tools enable a comprehensive investigation into the spatiotemporal evolution and driving mechanisms of coupling coordination dynamics between the two systems. The results indicate the following: (1) Both higher education and regional innovation capacity indices exhibit steady growth, accompanied by a clear temporal gradient differentiation. (2) The coupling coordination degree shows an overall upward trend, with significant inter-regional disparities, notably “higher in the east and low in the west”. (3) The spatial distribution of the coupling coordination degree reveals positive spatial autocorrelation, with provinces exhibiting similar levels tending to form spatial clusters, most commonly of the low–low or high–high type. (4) The spatial heterogeneity is pronounced, with inter-regional differences driving overall imbalance. (5) Key obstacles hindering regional innovation include inadequate R&D investment, limited trade openness, and weak technological development. In higher education sectors, limitations stem from insufficient social service benefits and efficiency of flow. This study recommends promoting the synchronized advancement of higher education and regional innovation through region-specific development strategies, strengthening institutional infrastructure, and accurately identifying and addressing key barriers. These efforts are essential to fostering high-quality, coordinated regional development. Full article
Show Figures

Figure 1

19 pages, 2141 KiB  
Article
Augmented Reality 3D Multibase Blocks at the Future Classroom Lab Through Active Methodology: Analyzing Pre-Service Teachers’ Disposition in Mathematics Course
by Ana Isabel Montero-Izquierdo, Jin Su Jeong and David González-Gómez
Educ. Sci. 2025, 15(8), 954; https://doi.org/10.3390/educsci15080954 - 24 Jul 2025
Viewed by 282
Abstract
The use of augmented reality (AR) tools and innovative learning environments in education have increased over the last few years due to the rapid advancement of technology. In this study, an AR mathematics learning intervention has been proposed which consisted of the creation [...] Read more.
The use of augmented reality (AR) tools and innovative learning environments in education have increased over the last few years due to the rapid advancement of technology. In this study, an AR mathematics learning intervention has been proposed which consisted of the creation of 3D multibase blocks to perform AR arithmetic calculations conducted through active methodologies in the future classroom lab (FCL). The aim of this study was to analyze pre-service teachers’ (PSTs) affective domain (emotion, self-efficacy, and attitude), engagement, motivation, and confidence. The sample consisted of 97 PSTs enrolled on the second year of the Primary Education degree, who were attending the “Mathematics and its Didactics” subject. The findings revealed a significant increase in PSTs’ satisfaction, fun, confidence, and pride, and a decrease in uncertainty, nervousness, and concern. Regarding PSTs’ self-efficacy, a significant improvement was observed in knowing the necessary steps to teach mathematical concepts and work in the FCL. No significant differences were found in attitude, engagement, and motivation; however, the PSTs showed a high disposition in all of them before starting the intervention. Additionally, the PSTs reported to be more confident, and it enhanced their knowledge in the use of 3D design and AR applications to create multibase blocks to support the teaching–learning content of arithmetic operations. Full article
Show Figures

Figure 1

16 pages, 1139 KiB  
Review
Student-Centered Curriculum: The Innovative, Integrative, and Comprehensive Model of “George Emil Palade” University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures
by Leonard Azamfirei, Lorena Elena Meliț, Cristina Oana Mărginean, Anca-Meda Văsieșiu, Ovidiu Simion Cotoi, Cristina Bică, Daniela Lucia Muntean, Simona Gurzu, Klara Brînzaniuc, Claudia Bănescu, Mark Slevin, Andreea Varga and Simona Muresan
Educ. Sci. 2025, 15(8), 943; https://doi.org/10.3390/educsci15080943 - 23 Jul 2025
Viewed by 391
Abstract
Medical education is the paradigm of 21st century education and the current changes involve the adoption of integrative and comprehensive patient-centered teaching and learning approaches. Thus, curricular developers from George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures (G.E. [...] Read more.
Medical education is the paradigm of 21st century education and the current changes involve the adoption of integrative and comprehensive patient-centered teaching and learning approaches. Thus, curricular developers from George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Targu Mures (G.E. Palade UMPhST of Targu Mures) have recently designed and implemented an innovative medical curriculum, as well as two valuable assessment tools for both theoretical knowledge and practical skills. Thus, during the first three preclinical years, the students will benefit from an organ- and system-centered block teaching approach, while the clinical years will focus on enabling students to achieve the most important practical skills in clinical practice, based on a patient bedside teaching system. In terms of theoretical knowledge assessment, the UNiX center at G.E. Palade UMPhST of Targu Mures, a recently designed center endowed with the latest next-generation technology, enables individualized, secured multiple-choice question-based assessments of the student’s learning outcomes. Moreover, an intelligent assessment tool for practical skills was also recently implemented in our branch in Hamburg, the Objective Structured Clinical Examination (O.S.C.E). This system uses direct observations for testing the student’s practical skills regarding anamnesis, clinical exams, procedures/maneuvers, the interpretation of laboratory tests and paraclinical investigations, differential diagnosis, management plans, communication, and medical counselling. The integrative, comprehensive, patient-centered curriculum and the intelligent assessment system, implemented in G.E Palade UMPhST of Targu Mures, help define innovation in education and enable the students to benefit from a high-quality medical education. Full article
Show Figures

Figure 1

22 pages, 2337 KiB  
Article
From Misunderstanding to Safety: Insights into COLREGs Rule 10 (TSS) Crossing Problem
by Ivan Vilić, Đani Mohović and Srđan Žuškin
J. Mar. Sci. Eng. 2025, 13(8), 1383; https://doi.org/10.3390/jmse13081383 - 22 Jul 2025
Viewed by 371
Abstract
Despite navigation advancements in enhanced sensor utilization and increased focus on maritime training and education, most marine accidents still involve collisions with high human involvement. Furthermore, navigators’ knowledge and application of the most often misunderstood Rule 10 Traffic Separation Schemes (TSS) according to [...] Read more.
Despite navigation advancements in enhanced sensor utilization and increased focus on maritime training and education, most marine accidents still involve collisions with high human involvement. Furthermore, navigators’ knowledge and application of the most often misunderstood Rule 10 Traffic Separation Schemes (TSS) according to the Convention on the International Regulations for Preventing Collisions at Sea (COLREG) represents the first focus in this study. To provide insight into the level of understanding and knowledge regarding COLREG Rule 10, a customized, worldwide survey has been created and disseminated among marine industry professionals. The survey results reveal a notable knowledge gap in Rule 10, where we initially assumed that more than half of the respondents know COLREG regulations well. According to the probability calculation and chi-square test results, all three categories (OOW, Master, and others) have significant rule misunderstanding. In response to the COLREG misunderstanding, together with the increasing density of maritime traffic, the implementation of Decision Support Systems (DSS) in navigation has become crucial for ensuring compliance with regulatory frameworks and enhancing navigational safety in general. This study presents a structural approach to vessel prioritization and decision-making within a DSS framework, focusing on the classification and response of the own vessel (OV) to bow-crossing scenarios within the TSS. Through the real-time integration of AIS navigational status data, the proposed DSS Architecture offers a structured, rule-compliant architecture to enhance navigational safety and the decision-making process within the TSS. Furthermore, implementing a Fall-Back Strategy (FBS) represents the key innovation factor, which ensures system resilience by directing operator response if opposing vessels disobey COLREG rules. Based on the vessel’s dynamic context and COLREG hierarchy, the proposed DSS Architecture identifies and informs the navigator regarding stand-on or give-way obligations among vessels. Full article
(This article belongs to the Special Issue Advances in Navigability and Mooring (2nd Edition))
Show Figures

Figure 1

Back to TopTop