Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,087)

Search Parameters:
Keywords = heuristic search

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 267 KiB  
Article
Student Surpasses the Teacher: Apprenticeship Learning for Quadratic Unconstrained Binary Optimisation
by Jack Cakebread, Warren G. Jackson, Daniel Karapetyan, Andrew J. Parkes and Ender Özcan
Algorithms 2025, 18(8), 516; https://doi.org/10.3390/a18080516 - 15 Aug 2025
Abstract
This study introduces a novel train-and-test approach referred to as apprenticeship learning (AL) for generating selection hyper-heuristics to solve the Quadratic Unconstrained Binary Optimisation (QUBO) problem. The primary goal is to automate the design of hyper-heuristics by learning from a state-of-the-art expert and [...] Read more.
This study introduces a novel train-and-test approach referred to as apprenticeship learning (AL) for generating selection hyper-heuristics to solve the Quadratic Unconstrained Binary Optimisation (QUBO) problem. The primary goal is to automate the design of hyper-heuristics by learning from a state-of-the-art expert and to evaluate whether the apprentice can outperform that expert. The proposed method collects detailed search trace data from the expert and trains the apprentice based on the machine learning models to predict heuristic selection and parameter settings. Multiple data filtering and class balancing techniques are explored to enhance model performance. The empirical results on unseen QUBO instances show that indeed, “student surpasses the teacher”; the hyper-heuristic with the generated heuristic selection not only outperforms the expert but also generalises quite well by solving unseen QUBO instances larger than the ones on which the apprentice was trained. These findings highlight the potential of AL to generalise expert behaviour and improve heuristic search performance. Full article
Show Figures

Figure 1

18 pages, 768 KiB  
Article
Uncertainty-Aware Design of High-Entropy Alloys via Ensemble Thermodynamic Modeling and Search Space Pruning
by Roman Dębski, Władysław Gąsior, Wojciech Gierlotka and Adam Dębski
Appl. Sci. 2025, 15(16), 8991; https://doi.org/10.3390/app15168991 - 14 Aug 2025
Abstract
The discovery and design of high-entropy alloys (HEAs) faces significant challenges due to the vast combinatorial design space and uncertainties in thermodynamic data. This work presents a modular, uncertainty-aware computational framework with the primary objective of accelerating the discovery of solid-solution HEA candidates. [...] Read more.
The discovery and design of high-entropy alloys (HEAs) faces significant challenges due to the vast combinatorial design space and uncertainties in thermodynamic data. This work presents a modular, uncertainty-aware computational framework with the primary objective of accelerating the discovery of solid-solution HEA candidates. The proposed pipeline integrates ensemble thermodynamic modeling, Monte Carlo-based estimation, and a structured three-phase pruning algorithm for efficient search space reduction. Key quantitative results are achieved in two main areas. First, for binary alloy thermodynamics, a Bayesian Neural Network (BNN) ensemble trained on domain-informed features predicts mixing enthalpies with high accuracy, yielding a mean absolute error (MAE) of 0.48 kJ/mol—substantially outperforming the classical Miedema model (MAE = 4.27 kJ/mol). These probabilistic predictions are propagated through Monte Carlo sampling to estimate multi-component thermodynamic descriptors, including ΔHmix and the Ω parameter, while capturing predictive uncertainty. Second, in a case study on the Al-Cu-Fe-Ni-Ti system, the framework reduces a 2.4 million (2.4 M) candidate pool to just 91 high-confidence compositions. Final selection is guided by an uncertainty-aware viability metric, P(HEA), and supported by interpretable radar plot visualizations for multi-objective assessment. The results demonstrate the framework’s ability to combine physical priors, probabilistic modeling, and design heuristics into a data-efficient and interpretable pipeline for materials discovery. This establishes a foundation for future HEA optimization, dataset refinement, and adaptive experimental design under uncertainty. Full article
Show Figures

Figure 1

14 pages, 460 KiB  
Article
Modeling Local Search Metaheuristics Using Markov Decision Processes
by Rubén Ruiz-Torrubiano, Deepak Dhungana, Sarita Paudel and Himanshu Buckchash
Algorithms 2025, 18(8), 512; https://doi.org/10.3390/a18080512 - 14 Aug 2025
Viewed by 12
Abstract
Local search metaheuristics like tabu search or simulated annealing are popular heuristic optimization algorithms for finding near-optimal solutions for combinatorial optimization problems. However, it is still challenging for researchers and practitioners to analyze their behavior and systematically choose one over a vast set [...] Read more.
Local search metaheuristics like tabu search or simulated annealing are popular heuristic optimization algorithms for finding near-optimal solutions for combinatorial optimization problems. However, it is still challenging for researchers and practitioners to analyze their behavior and systematically choose one over a vast set of possible metaheuristics for the particular problem at hand. In this paper, we introduce a theoretical framework based on Markov Decision Processes (MDPs) for analyzing local search metaheuristics. This framework not only helps in providing convergence results for individual algorithms but also provides an explicit characterization of the exploration–exploitation tradeoff and a theory-grounded guidance for practitioners for choosing an appropriate metaheuristic for the problem at hand. We present this framework in detail and show how to apply it in the case of hill climbing and the simulated annealing algorithm, including computational experiments. Full article
Show Figures

Figure 1

18 pages, 4827 KiB  
Article
Path Planning for Mobile Robots Based on a Hybrid-Improved JPS and DWA Algorithm
by Rui Guo, Xuewei Ren and Changchun Bao
Electronics 2025, 14(16), 3221; https://doi.org/10.3390/electronics14163221 - 13 Aug 2025
Viewed by 116
Abstract
To improve path planning performance for mobile robots in complex environments, this study proposes a hybrid method combining an improved jump point search (JPS) algorithm with the dynamic window approach (DWA). In global planning, a quadrant pruning strategy guided by the target direction [...] Read more.
To improve path planning performance for mobile robots in complex environments, this study proposes a hybrid method combining an improved jump point search (JPS) algorithm with the dynamic window approach (DWA). In global planning, a quadrant pruning strategy guided by the target direction and a sine-enhanced heuristic function reduces the search space and accelerates planning. Natural jump points are retained for path continuity, and the path is smoothed using cubic B-spline curves. In local planning, DWA is enhanced by incorporating a target orientation factor, a safety distance penalty, and a normalization mechanism into the cost function. An adaptive weighting strategy dynamically balances goal-directed motion and obstacle avoidance. Simulation experiments in static and complex environments with unknown and dynamic obstacles demonstrate the method’s effectiveness. Compared to the standard approach, the improved JPS reduces search time by 36.7% and node expansions by 60.9%, with similar path lengths. When integrated with DWA, the robot adapts effectively to changing obstacles, ensuring safe and efficient navigation. The proposed method significantly enhances the real-time performance and safety of path planning in dynamic and uncertain environments. Full article
Show Figures

Figure 1

24 pages, 467 KiB  
Article
Node Embedding and Cosine Similarity for Efficient Maximum Common Subgraph Discovery
by Stefano Quer, Thomas Madeo, Andrea Calabrese, Giovanni Squillero and Enrico Carraro
Appl. Sci. 2025, 15(16), 8920; https://doi.org/10.3390/app15168920 - 13 Aug 2025
Viewed by 115
Abstract
Finding the maximum common induced subgraph is a fundamental problem in computer science. Proven to be NP-hard in the 1970s, it has, nowadays, countless applications that still motivate the search for efficient algorithms and practical heuristics. In this work, we extend a state-of-the-art [...] Read more.
Finding the maximum common induced subgraph is a fundamental problem in computer science. Proven to be NP-hard in the 1970s, it has, nowadays, countless applications that still motivate the search for efficient algorithms and practical heuristics. In this work, we extend a state-of-the-art branch-and-bound exact algorithm with new techniques developed in the deep-learning domain, namely graph neural networks and node embeddings, effectively transforming an efficient yet uninformed depth-first search into an effective best-first search. The change enables the algorithm to find suitable solutions within a limited budget, pushing forward the method’s time efficiency and applicability on larger graphs. We evaluate the usage of the L2 norm of the node embeddings and the Cumulative Cosine Similarity to classify the nodes of the graphs. Our experimental analysis on standard graphs compares our heuristic against the original algorithm and a recently tweaked version that exploits reinforcement learning. The results demonstrate the effectiveness and scalability of the proposed approach, compared with the state-of-the-art algorithms. In particular, this approach results in improved results on over 90% of the larger graphs; this would be more challenging in a constrained industrial scenario. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 5522 KiB  
Article
An Improved NSGA-II for Three-Stage Distributed Heterogeneous Hybrid Flowshop Scheduling with Flexible Assembly and Discrete Transportation
by Zhiyuan Shi, Haojie Chen, Fuqian Yan, Xutao Deng, Haiqiang Hao, Jialei Zhang and Qingwen Yin
Symmetry 2025, 17(8), 1306; https://doi.org/10.3390/sym17081306 - 12 Aug 2025
Viewed by 215
Abstract
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm [...] Read more.
This study tackles scheduling challenges in multi-product assembly within distributed manufacturing, where components are produced simultaneously at dedicated factories (single capacity per site) and assembled centrally upon completion. To minimize makespan and maximum tardiness, we design a symmetry-exploiting enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II) integrated with Q-learning. Our approach systematically explores the solution space using dual symmetric variable neighborhood search (VNS) strategies and two novel crossover operators that enhance solution-space symmetry and genetic diversity. An ε-greedy policy leveraging maximum Q-values guides the symmetry-aware search toward optimality while enabling strategic exploration. We validate an MILP model (Gurobi-implemented) and present our symmetry-refined algorithm against six heuristics. Multi-scale experiments confirm superiority, with Friedman tests demonstrating statistically significant gains over benchmarks, providing actionable insights for efficient distributed manufacturing scheduling. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

48 pages, 15203 KiB  
Article
MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges
by Baili Lu, Zhanxi Xie, Junhao Wei, Yanzhao Gu, Yuzheng Yan, Zikun Li, Shirou Pan, Ngai Cheong, Ying Chen and Ruishen Zhou
Symmetry 2025, 17(8), 1295; https://doi.org/10.3390/sym17081295 - 11 Aug 2025
Viewed by 240
Abstract
To address the limitations of the Red-billed Blue Magpie Optimization algorithm (RBMO), such as its tendency to get trapped in local optima and its slow convergence rate, an enhanced version called MRBMO was proposed. MRBMO was improved by integrating Good Nodes Set Initialization, [...] Read more.
To address the limitations of the Red-billed Blue Magpie Optimization algorithm (RBMO), such as its tendency to get trapped in local optima and its slow convergence rate, an enhanced version called MRBMO was proposed. MRBMO was improved by integrating Good Nodes Set Initialization, an Enhanced Search-for-food Strategy, a newly designed Siege-style Attacking-prey Strategy, and Lens-Imaging Opposition-Based Learning (LIOBL). The experimental results showed that MRBMO demonstrated strong competitiveness on the CEC2005 benchmark. Among a series of advanced metaheuristic algorithms, MRBMO exhibited significant advantages in terms of convergence speed and solution accuracy. On benchmark functions with 30, 50, and 100 dimensions, the average Friedman values of MRBMO were 1.6029, 1.6601, and 1.8775, respectively, significantly outperforming other algorithms. The overall effectiveness of MRBMO on benchmark functions with 30, 50, and 100 dimensions was 95.65%, which confirmed the effectiveness of MRBMO in handling problems of different dimensions. This paper designed two types of simulation experiments to test the practicability of MRBMO. First, MRBMO was used along with other heuristic algorithms to solve four engineering design optimization problems, aiming to verify the applicability of MRBMO in engineering design optimization. Then, to overcome the shortcomings of metaheuristic algorithms in antenna S-parameter optimization problems—such as time-consuming verification processes, cumbersome operations, and complex modes—this paper adopted a test suite specifically designed for antenna S-parameter optimization, with the goal of efficiently validating the effectiveness of metaheuristic algorithms in this domain. The results demonstrated that MRBMO had significant advantages in both engineering design optimization and antenna S-parameter optimization. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Graphical abstract

24 pages, 5372 KiB  
Article
An Integrated Path Planning and Tracking Framework Based on Adaptive Heuristic JPS and B-Spline Optimization
by Zhaoran Sun, Qiang Luo, Zhengwei Zhang, Yao Peng, Quan Liu, Shijie Zheng and Jiukun Liu
Machines 2025, 13(8), 710; https://doi.org/10.3390/machines13080710 - 11 Aug 2025
Viewed by 165
Abstract
In this paper, we propose a navigation synthesis method for indoor mobile robots based on the Improved Jumping Point Search (JPS) framework. Although traditional JPS has high search efficiency, it often leads to excessive node expansion and sharp turns in complex environments, which [...] Read more.
In this paper, we propose a navigation synthesis method for indoor mobile robots based on the Improved Jumping Point Search (JPS) framework. Although traditional JPS has high search efficiency, it often leads to excessive node expansion and sharp turns in complex environments, which limits its practical application. In order to overcome these problems, we introduced three key strategies. First, we used a density-sensing heuristic function calculated by integrating the image to improve the adaptability of complex areas. Secondly, we extracted structural key points from the path and used third-order B-splines to fit them to enhance smoothness and continuity. Third, a curvature-driven Regulated Pure Pursuit (RPP) controller adjusts the look-ahead distance and speed based on path curvature, improving tracking stability. Simulation results show that the proposed method reduces planning time and node redundancy while generating smoother and more executable paths than the conventional JPS framework. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 21076 KiB  
Article
Domain-Aware Reinforcement Learning for Prompt Optimization
by Mengqi Gao, Bowen Sun, Tong Wang, Ziyu Fan, Tongpo Zhang and Zijun Zheng
Mathematics 2025, 13(16), 2552; https://doi.org/10.3390/math13162552 - 9 Aug 2025
Viewed by 346
Abstract
Prompt engineering provides an efficient way to adapt large language models (LLMs) to downstream tasks without retraining model parameters. However, designing effective prompts can be challenging, especially when model gradients are unavailable and human expertise is required. Existing automated methods based on gradient [...] Read more.
Prompt engineering provides an efficient way to adapt large language models (LLMs) to downstream tasks without retraining model parameters. However, designing effective prompts can be challenging, especially when model gradients are unavailable and human expertise is required. Existing automated methods based on gradient optimization or heuristic search exhibit inherent limitations under black box or limited-query conditions. We propose Domain-Aware Reinforcement Learning for Prompt Optimization (DA-RLPO), which treats prompt editing as a sequential decision process and leverages structured domain knowledge to constrain candidate edits. Our experimental results show that DA-RLPO achieves higher accuracy than baselines on text classification tasks and maintains robust performance with limited API calls, while also demonstrating effectiveness on text-to-image and reasoning tasks. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Making Under Uncertainty)
Show Figures

Figure 1

30 pages, 4687 KiB  
Article
A Multi-Agent Optimization Approach for Multimodal Collaboration in Marine Terminals
by Ilias Alexandros Parmaksizoglou, Alessandro Bombelli and Alexei Sharpanskykh
Logistics 2025, 9(3), 110; https://doi.org/10.3390/logistics9030110 - 8 Aug 2025
Viewed by 234
Abstract
Background: The rapid growth of international maritime trade has intensified operational challenges at marine terminals due to increased interaction between vessels, trucks, and trains. Key issues include berth congestion, inefficient truck arrivals, and underutilization of terminal resources. Ensuring coordinated planning among transport modes [...] Read more.
Background: The rapid growth of international maritime trade has intensified operational challenges at marine terminals due to increased interaction between vessels, trucks, and trains. Key issues include berth congestion, inefficient truck arrivals, and underutilization of terminal resources. Ensuring coordinated planning among transport modes and fostering collaboration between stakeholders such as vessel operators, logistics providers, and terminal managers is critical to mitigating these inefficiencies. Methods: This study proposes a multi-agent, multi-objective coordination model that synchronizes vessel berth allocation with truck appointment scheduling. A solution method combining prioritized planning with a neighborhood search heuristic is introduced to explore Pareto-optimal trade-offs. The performance of this approach is benchmarked against well-established multi-objective evolutionary algorithms (MOEAs), including NSGA-II and SPEA2. Results: Numerical experiments demonstrate that the proposed method generates a greater number of Pareto-optimal solutions and achieves higher hypervolume indicators compared to MOEAs. These results show improved balance among objectives such as minimizing vessel waiting times, reducing truck congestion, and optimizing terminal resource usage. Conclusions: By integrating berth allocation and truck scheduling through a transparent, multi-agent approach, this work provides decision-makers with better tools to evaluate trade-offs in port terminal operations. The proposed strategy supports more efficient, fair, and informed coordination in complex multimodal environments. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

31 pages, 2889 KiB  
Article
Multi-Team Agile Software Project Scheduling Using Dual-Indicator Group Learning Particle Swarm Optimization
by Jiangyi Shi, Hui Lou, Xiaoning Shen and Jiyong Xu
Symmetry 2025, 17(8), 1267; https://doi.org/10.3390/sym17081267 - 8 Aug 2025
Viewed by 294
Abstract
Core problems in agile software project scheduling, such as resource-constrained balancing and iteration cycle optimization, embody the pursuit of symmetry. Simultaneously, optimization algorithms find extensive applications in symmetry problems, for example, in graphs and pattern recognition. Considering the cooperation among multiple teams and [...] Read more.
Core problems in agile software project scheduling, such as resource-constrained balancing and iteration cycle optimization, embody the pursuit of symmetry. Simultaneously, optimization algorithms find extensive applications in symmetry problems, for example, in graphs and pattern recognition. Considering the cooperation among multiple teams and environmental changes in complex agile software development, a dynamic periodic scheduling model for multi-team agile software project is constructed, which includes three tightly coupled sub-problems, namely user story selection, user story-development team allocation, and task-employee allocation. To solve the model, a group learning particle swarm optimization algorithm is proposed, which includes three novel strategies. First, the population is divided into four groups based on dual indicators of objective values and potential values. Second, different learning objects are selected according to the characteristic of each group so that the search diversity can be improved. Third, to react to the environmental changes and enhance the mining ability, heuristic population initialization and local search strategies are designed by utilizing the problem-specific information. Systematic experimental results on 13 instances indicate that compared with the state-of-the-art algorithms, the proposed algorithm is able to provide a schedule with better precision for the project manager in each sprint of the agile development. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

24 pages, 533 KiB  
Article
A Gray Predictive Evolutionary Algorithm with Adaptive Threshold Adjustment Strategy for Photovoltaic Model Parameter Estimation
by Wencong Wang, Baoduo Su, Quan Zhou and Qinghua Su
Mathematics 2025, 13(15), 2503; https://doi.org/10.3390/math13152503 - 4 Aug 2025
Viewed by 194
Abstract
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible [...] Read more.
Meta-heuristic algorithms are the dominant techniques for parameter estimating for solar photovoltaic (PV) models. Current algorithms are primarily designed with a focus on search performance and convergence speed, but they fail to account for the significant difference in the lengths of the feasible regions for each decision variable in the solar parameter estimation problem. The consideration of variable length difference in algorithm design may be beneficial to the efficiency for solving this problem. A gray predictive evolutionary algorithm with adaptive threshold adjustment strategy (GPEat) is proposed in this paper to estimate the parameters of several solar photovoltaic models. Unlike original GPEs and their existing variants with fixed thresholds, GPEat designs an adaptive threshold adjustment strategy (ATS), which adaptively adjusts the threshold parameter of GPE to be proportional to the length of each dimensional variable of the PV problem. The adaptive change of the threshold helps GPEat to select suitable operators for different dimensions of the PV problem. Several sets of experiments are conducted based on single-, double-, and triple-diode models and PV panel models. The experimental results indicate the highly competitive in parameter estimation for solar PV models of the proposed algorithm. Full article
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 362
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

23 pages, 783 KiB  
Article
An Effective QoS-Aware Hybrid Optimization Approach for Workflow Scheduling in Cloud Computing
by Min Cui and Yipeng Wang
Sensors 2025, 25(15), 4705; https://doi.org/10.3390/s25154705 - 30 Jul 2025
Viewed by 260
Abstract
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling [...] Read more.
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling algorithms to find optimal or near-optimal task-to-VM allocation solutions that meet users’ specific QoS requirements still remains an open area of research. In this paper, we propose a hybrid QoS-aware workflow scheduling algorithm named HLWOA to address the problem of simultaneously minimizing the completion time and execution cost of workflow scheduling in cloud computing. First, the workflow scheduling problem in cloud computing is modeled as a multi-objective optimization problem. Then, based on the heterogeneous earliest finish time (HEFT) heuristic optimization algorithm, tasks are reverse topologically sorted and assigned to virtual machines with the earliest finish time to construct an initial workflow task scheduling sequence. Furthermore, an improved Whale Optimization Algorithm (WOA) based on Lévy flight is proposed. The output solution of HEFT is used as one of the initial population solutions in WOA to accelerate the convergence speed of the algorithm. Subsequently, a Lévy flight search strategy is introduced in the iterative optimization phase to avoid the algorithm falling into local optimal solutions. The proposed HLWOA is evaluated on the WorkflowSim platform using real-world scientific workflows (Cybershake and Montage) with different task scales (100 and 1000). Experimental results demonstrate that HLWOA outperforms HEFT, HEPGA, and standard WOA in both makespan and cost, with normalized fitness values consistently ranking first. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

39 pages, 10816 KiB  
Article
A Novel Adaptive Superb Fairy-Wren (Malurus cyaneus) Optimization Algorithm for Solving Numerical Optimization Problems
by Tianzuo Yuan, Huanzun Zhang, Jie Jin, Zhebo Chen and Shanshan Cai
Biomimetics 2025, 10(8), 496; https://doi.org/10.3390/biomimetics10080496 - 27 Jul 2025
Viewed by 555
Abstract
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and [...] Read more.
Superb Fairy-wren Optimization Algorithm (SFOA) is an animal-based meta-heuristic algorithm derived from Fairy-wren’s behavior of growing, feeding, and avoiding natural enemies. The SFOA has some shortcomings when facing complex environments. Its switching mechanism is not enough to adapt to complex optimization problems, and it faces a weakening of population diversity in the late stage of optimization, leading to a higher possibility of falling into local optima. In addition, its global search ability needs to be improved. To address the above deficiencies, this paper proposes an Adaptive Superb Fairy-wren Optimization Algorithm (ASFOA). To assess the ability of the proposed ASFOA, three groups of experiments are conducted in this paper. Firstly, the effectiveness of the proposed improved strategies is checked on the CEC2018 test set. Second, the ASFOA is compared with eight classical/highly cited/newly proposed metaheuristics on the CEC2018 test set, in which the ASFOA performed the best overall, with average rankings of 1.621, 1.138, 1.483, and 1.966 in the four-dimensional cases, respectively. Then the convergence and robustness of ASFOA is verified on the CEC2022 test set. The experimental results indicate that the proposed ASFOA is a competitive metaheuristic algorithm variant with excellent performance in terms of convergence and distribution of solutions. In addition, we further validate the ability of ASFOA to solve real optimization problems. The average ranking of the proposed ASFOA on 10 engineering constrained optimization problems is 1.500. In summary, ASFOA is a promising variant of metaheuristic algorithms. Full article
Show Figures

Figure 1

Back to TopTop