MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges
Abstract
1. Introduction
2. Current Research on Antenna Design
3. Current Research on Engineering Design Optimization
4. Arrangement of the Rest of the Paper
5. Contributions of This Study
6. Red-Billed Blue Magpie Optimization Algorithm
6.1. Search for Food
6.2. Attacking Prey
6.3. Food Storage
6.4. Initialization
6.5. Workflow of RBMO and Its Analysis
7. MRBMO
7.1. Good Nodes Set Initialization
7.2. Enhanced Search-for-Food Strategy
7.3. Siege-Style Attacking-Prey Strategy
7.3.1. Inspiration of HHO
7.3.2. Levy Flight
7.3.3. Prey-Position-Based Enhanced Guidance
7.4. Lens-Imaging Opposition-Based Learning
7.5. Time Complexity Analysis
7.6. Worflow of MRBMO
8. Performance Test
- A qualitative analysis experiment was conducted to assess the performance, robustness, and exploration–exploitation balance of MRBMO across various benchmark functions. This evaluation focused on examining convergence behavior, population diversity, and the algorithm’s ability to balance exploration and exploitation in different problem types.
- MRBMO, traditional RBMO and other outstanding metaheuristic algorithms were examined on the classical benchmark functions with the dimension D = 30.
- MRBMO, traditional RBMO and other outstanding metaheuristic algorithms were examined on the classical benchmark functions with the higher dimensions D = 50 and D = 100.
8.1. Ablation Study
8.2. Qualitative Analysis Experiment
8.3. Superiority Comparative Test with Dimension D = 30
8.4. Superiority Comparative Test with High Dimensions of 50 and 100
9. Simulation Experiments
9.1. Engineering Design Optimization
9.1.1. Pressure Vessel Design
- Variable:
- Minimize:
- Subject to:
- Variable range:
9.1.2. Piston Lever Design
- Variable:
- Minimize:
- Subject to:
- Variable range:
9.1.3. Robot Gripper Design
- Variable:
- Minimize:
- Subject to:
- Variable range:
9.1.4. Industrial Refrigeration System Design
- Variable:
- Minimize:
- Subject to:
- Variable range:
9.2. Antenna S-Parameter Optimization
10. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ave | Average fitness |
Std | Standard deviation |
OE | overall effectiveness |
Appendix A. Table
Appendix A.1. Details of the Benchmark Functions
Appendix A.2. Details of the Antenna S-Parameter Optimization Test Suit
Function | Type | Dimension | Boundaries | |
---|---|---|---|---|
F1 | uni-modal | 8 | 0 | [−100, 100] |
F2 | uni-modal | 8 | 0 | [−50, 50] |
F3 | uni-modal | 8 | 0 | [−30, 30] |
F4 | uni-modal | 8 | 0 | [−10, 10] |
F5 | Multi-modal | 2 | 0 | [−5, 5] |
F6 | Multi-modal | 8 | 0 | [−5, 5] |
F7 | Compositional | 8 | 0 | [−20, 20] |
F8 | Compositional | 8 | 0 | [−50, 50] |
References
- Laarhoven, P.J.M.V.; Aarts, E.H.L.; Laarhoven, P.J.M.V. Simulated Annealing; Springer: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2010, 15, 4–31. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Jia, H.; Rao, H.; Wen, C.; Mirjalili, S. Crayfish optimization algorithm. Artif. Intell. Rev. 2023, 56 (Suppl. S2), 1919–1979. [Google Scholar] [CrossRef]
- Xiong, G.; Zhang, J.; Shi, D.; He, Y. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm. Energy Convers. Manag. 2018, 174, 388–405. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Wang, Y.; Wen, Q. Improved sand cat swarm optimization algorithm for enhancing coverage of wireless sensor networks. Measurement 2024, 233, 114649. [Google Scholar] [CrossRef]
- Wei, J.; Gu, Y.; Law, K.L.E.; Cheong, N. Adaptive Position Updating Particle Swarm Optimization for UAV Path Planning. In Proceedings of the 2024 22nd International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Seoul, Republic of Korea, , 21–24 October 2024; pp. 124–131. [Google Scholar]
- Wei, J.; Gu, Y.; Yan, Y.; Li, Z.; Lu, B.; Pan, S.; Cheong, N. LSEWOA: An Enhanced Whale Optimization Algorithm with Multi-Strategy for Numerical and Engineering Design Optimization Problems. Sensors 2025, 25, 2054. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Li, K.; Huang, H.; Ma, C.; Fan, Q.; Zhu, Y. Red-billed blue magpie optimizer: A novel metaheuristic algorithm for 2D/3D UAV path planning and engineering design problems. Artif. Intell. Rev. 2024, 57, 134. [Google Scholar] [CrossRef]
- Adegboye, O.R.; Feda, A.K.; Ishaya, M.M.; Agyekum, E.B.; Kim, K.C.; Mbasso, W.F.; Kamel, S. Antenna S-parameter optimization based on golden sine mechanism based honey badger algorithm with tent chaos. Heliyon 2023, 9, e21596. [Google Scholar] [CrossRef]
- Park, E.; Lee, S.R.; Lee, I. Antenna placement optimization for distributed antenna systems. IEEE Trans. Wirel. Commun. 2012, 11, 2468–2477. [Google Scholar] [CrossRef]
- Jiang, F.; Chiu, C.Y.; Shen, S.; Cheng, Q.S.; Murch, R. Pixel antenna optimization using NN-port characteristic mode analysis. IEEE Trans. Antennas Propag. 2020, 68, 3336–3347. [Google Scholar] [CrossRef]
- Karthika, K.; Anusha, K.; Kavitha, K.; Geetha, D.M. Optimization algorithms for reconfigurable antenna design: A review. In Advances in Microwave Engineering; CRC Press: Boca Raton, FL, USA, 2024; pp. 85–103. [Google Scholar]
- Cai, J.; Wan, H.; Sun, Y. Artificial bee colony algorithm-based self-optimization of base station antenna azimuth and down-tilt angle. Telecommun. Sci. 2021, 1, 69–75. [Google Scholar]
- Peng, F.; Chen, X. An antenna optimization framework based on deep reinforcement learning. IEEE Trans. Antennas Propag. 2024, 72, 7594–7605. [Google Scholar] [CrossRef]
- Martins, J.R.R.A.; Ning, A. Engineering Design Optimization; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Salih, S.Q.; Alsewari, A.R.A.; Yaseen, Z.M. Pressure vessel design simulation: Implementing of multi-swarm particle swarm optimization. In Proceedings of the 2019 8th International Conference on Software and Computer Applications, Penang, Malaysia, 19–21 February 2019; pp. 120–124. [Google Scholar]
- Dandagwhal, R.D.; Kalyankar, V.D. Design optimization of rolling element bearings using advanced optimization technique. Arab. J. Sci. Eng. 2019, 44, 7407–7422. [Google Scholar] [CrossRef]
- Wei, J.; Gu, Y.; Lu, B.; Cheong, N. RWOA: A novel enhanced whale optimization algorithm with multi-strategy for numerical optimization and engineering design problems. PLoS ONE 2025, 20, e0320913. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Saha, A.K.; Pald, J.; Abualigahe, L.; Mirjalilii, S. Greater cane rat algorithm (GCRA): A nature-inspired metaheuristic for optimization problems. Heliyon 2024, 10, e31629. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Cai, Z.; Wang, Y. A good nodes set evolution strategy for constrained optimization. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 943–950. [Google Scholar]
- Wei, J.; Gu, Y.; Xie, Z.; Yan, Y.; Lu, B.; Li, Z.; Cheong, N. TSWOA: An enhanced whale optimization algorithm with Levy flight and Spiral flight for numerical and engineering design optimization problems. PLoS ONE 2025, 20, e0322058. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Guan, J.; Wu, H.; Chen, Y.; Xia, X. Lens imaging opposition-based learning for differential evolution with cauchy perturbation. Appl. Soft Comput. 2024, 152, 111211. [Google Scholar] [CrossRef]
- Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.-P.; Auger, A.; Tiwari, S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005, 2005, 2005005. [Google Scholar]
- Cymerys, K.; Oszust, M. Attraction-Repulsion Optimization Algorithm for Global Optimization Problems. Swarm Evol. Comput. 2024, 84, 101459. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Heidari, A.A.; Liu, L.; Zhang, X.; Mafarja, M.; Chen, H. RIME: A physics-based optimization. Neurocomputing 2023, 532, 183–214. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora optimization algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Wenbiao, Y.; Kewen, X.; Shurui, F.; Li, W.; Tiejun, L.; Jiangnan, Z.; Yu, F. A Multi-Strategy Whale Optimization Algorithm and Its Application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Anitha, J.; Pandian, S.I.A.; Agnes, S.A. An efficient multilevel color image thresholding based on modified whale optimization algorithm. Expert Syst. Appl. 2021, 178, 115003. [Google Scholar] [CrossRef]
- Nadimi-Shahraki Mohammad, H.; Shokooh, T.; Seyedali, M.; Hossam, F. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Jiang, F.; Yu, Y.; Cheng, Q.S. A benchmark test suite for antenna S-parameter optimization. IEEE Trans. Antennas Propag. 2021, 69, 6635–6650. [Google Scholar] [CrossRef]
Algorithm | Year | Author | Source of Inspiration |
---|---|---|---|
Simulated annealing (SA) [1] | 1987 | Laarhoven et al. | The annealing process. |
Genetic Algorithm (GA) [2] | 1992 | Holland et al. | Darwin’s theory of evolution and Mendel’s genetic. |
Ant Colony Optimization (ACO) [3] | 2006 | Dorigo et al. | Foraging behavior of ants. |
Particle Swarm Optimization (PSO) [4] | 1995 | Kennedy et al. | Foraging behavior of birds. |
Differential Evolution (DE) [5] | 2010 | Das et al. | Mutation, crossover and selection. |
Whale Optimization Algorithm (WOA) [6] | 2016 | Seyedali Mirjalili et al. | Hunting and search-for-food behaviors of humpback whales. |
Harris Hawks Optimization (HHO) [7] | 2019 | Heidari et al. | Hunting behavior of Harris hawks. |
Beluga Whale Optimization (BWO) [8] | 2022 | C. Zhong et al. | Swimming, foraging and whale fall phenomena of beluga white whales. |
Crayfish Optimization (COA) [9] | 2023 | H. Jia et al. | foraging, cooling and competitive behaviors of crayfish. |
Function | Function’s Name | Type | Dimension (D) | Boundaries | |
---|---|---|---|---|---|
F1 | Sphere | Uni-modal/Scalable | 30/50/100 | 0 | [−100, 100] |
F2 | Schwefel’s Problem 2.22 | Uni-modal/Scalable | 30/50/100 | 0 | [−10, 10] |
F3 | Schwefel’s Problem 1.2 | Uni-modal/Scalable | 30/50/100 | 0 | [−100, 100] |
F4 | Schwefel’s Problem 2.21 | Uni-modal/Scalable | 30/50/100 | 0 | [−100, 100] |
F5 | Generalized Rosenbrock’s Function | Uni-modal/Scalable | 30/50/100 | 0 | [−30, 30] |
F6 | Step Function | Uni-modal/Scalable | 30/50/100 | 0 | [−100, 100] |
F7 | Quartic Function | Uni-modal/Scalable | 30/50/100 | 0 | [−1.28, 1.28] |
F8 | Generalized Schwefel’s Function | Multi-modal/Scalable | 30/50/100 | −418.98·D | [−500, 500] |
F9 | Generalized Rastrigin’s Function | Multi-modal/Scalable | 30/50/100 | 0 | [−5.12, 5.12] |
F10 | Ackley’s Function | Multi-modal/Scalable | 30/50/100 | 0 | [−32, 32] |
F11 | Generalized Griewank’s Function | Multi-modal/Scalable | 30/50/100 | 0 | [−600, 600] |
F12 | Generalized Penalized Function 1 | Multi-modal/Scalable | 30/50/100 | 0 | [−50, 50] |
F13 | Generalized Penalized Function 2 | Multi-modal/Scalable | 30/50/100 | 0 | [−50, 50] |
F14 | Shekel’s Foxholes Function | Multi-modal/Unscalable | 2 | 0.998 | [−65.536, 65.536] |
F15 | Kowalik’s Function | Multi-modal/Unscalable | 4 | 0.0003075 | [−5, 5] |
F16 | Six-Hump Camel-Back Function | Compositional/Unscalable | 2 | −1.0316 | [−5, 5] |
F17 | Branin Function | Compositional/Unscalable | 2 | 0.398 | [−5, 10] & [0, 15] |
F18 | Goldstein-Price Function | Compositional/Unscalable | 2 | 3 | [−2, 2] |
F19 | Hartman’s Function 1 | Compositional/Unscalable | 3 | −3.8628 | [0, 1] |
F20 | Hartman’s Function 2 | Compositional/Unscalable | 6 | −3.32 | [0, 1] |
F21 | Shekel’s Function 1 | Compositional/Unscalable | 4 | −10.1532 | [0, 10] |
F22 | Shekel’s Function 2 | Compositional/Unscalable | 4 | −10.4029 | [0, 10] |
F23 | Shekel’s Function 3 | Compositional/Unscalable | 4 | −10.5364 | [0, 10] |
Algorithm | Parameters | Value |
---|---|---|
AROA [32] | Attraction factor c | 0.95 |
Local search scaling factor 1 | 0.15 | |
Local search scaling factor 2 | 0.6 | |
Attraction probability 1 | 0.2 | |
Local search probability | 0.8 | |
Expansion factor | 0.4 | |
Local search threshold 1 | 0.9 | |
Local search threshold 2 | 0.85 | |
Local search threshold 3 | 0.9 | |
GWO [33] | Convergence factor a | 2 decreasing to 0 |
RIME [34] | 5 | |
WOA [6] | Spiral factor b | 1 |
Convergence factor a | 2 decreasing to 0 | |
ROA [35] | c | 0.1 |
HHO [7] | Threshold | 0.5 |
MSWOA [36] | b | 1 |
a | 2 decreasing to 0 | |
MWOA [37] | b | 1 |
a | 2 decreasing to 0 | |
RBMO [15] | Balance coefficient | 0.5 |
MRBMO | Balance coefficient | 0.5 |
Nonlinear factor k | 1 decreasing to 0 |
Function | Metrics | AROA | GWO | RBMO | WOA | ROA | HHO | MSWOA | MWOA | RBMO | MRBMO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Ave | 3.9647 × 100 | 2.2650 × | 2.1397 × 100 | 6.0157 × | 1.1650 × | 7.1665 × | 2.7361 × | 0.0000 × | 1.9502 × | 0.0000 × |
Std | 2.5119 × | 3.2697 × | 7.0650 × | 2.2859 × | 4.5799 × | 3.9185 × | 5.7668 × | 0.0000 × | 2.6488 × | 0.0000 × | |
F2 | Ave | 6.8940 × | 1.1359 × | 1.5336 × | 5.8384 × | 1.1029 × | 1.1909 × | 2.6047 × | 5.8676 × | 1.8157 × | 0.0000 × |
Std | 3.2481 × | 1.0110 × | 1.0147 × | 1.3577 × | 3.7150 × | 6.1876 × | 4.6120 × | 5.9750 × | 2.4320 × | 0.0000 × | |
F3 | Ave | 1.7767 × | 9.4016 × | 1.5305 × | 3.9649 × | 8.0265 × | 5.1400 × | 1.3776 × | 0.0000 × | 1.8304 × | 0.0000 × |
Std | 3.1751 × | 3.1649 × | 4.6600 × | 1.5223 × | 3.7115 × | 2.7983 × | 5.4327 × | 0.0000 × | 1.0061 × | 0.0000 × | |
F4 | Ave | 1.7527 × | 5.5395 × | 6.3762 × | 5.2312 × | 3.0431 × | 1.7491 × | 1.3822 × | 1.2545 × | 2.5805 × | 0.0000 × |
Std | 1.0490 × | 4.7259 × | 2.3386 × | 2.4835 × | 9.6925 × | 9.5620 × | 1.2047 × | 1.4312 × | 1.1422 × | 0.0000 × | |
F5 | Ave | 9.5376 × | 2.6761 × | 6.6249 × | 2.7893 × | 1.4279 × | 1.4728 × | 4.8616 × | 2.8652 × | 9.5634 × | 6.1565 × |
Std | 7.4615 × | 7.3068 × | 7.8023 × | 4.5739 × | 2.8546 × | 1.4294 × | 1.0780 × | 1.4513 × | 8.1235 × | 8.8135 × | |
F6 | Ave | 1.0190 × | 8.3156 × | 2.0273 × | 4.6561 × | 5.5960 × | 9.5914 × | 1.6378 × | 1.3576 × | 1.9037 × | 2.5333 × |
Std | 2.9668 × | 4.2338 × | 7.2057 × | 2.3248 × | 9.9996 × | 2.0569 × | 1.7461 × | 3.7342 × | 3.8004 × | 3.9361 × | |
F7 | Ave | 3.0705 × | 1.9773 × | 3.8782 × | 3.6904 × | 1.6753 × | 1.4159 × | 1.6721 × | 1.6721 × | 2.1883 × | 6.9412 × |
Std | 2.8548 × | 1.0758 × | 1.2389 × | 3.9641 × | 1.8595 × | 1.2573 × | 1.3641 × | 1.6895 × | 9.7618 × | 5.3951 × | |
F8 | Ave | −4.5163 × | −6.1067 × | −9.9296 × | −1.0361 × | −1.2569 × | −1.2565 × | −9.8995 × | −4.5228 × | −8.7197 × | −1.2569 × |
Std | 7.6476 × | 7.7155 × | 5.1712 × | 1.8684 × | 6.6652 × | 2.2197 × | 1.7758 × | 2.0106 × | 8.7678 × | 1.5549 × | |
F9 | Ave | 5.7303 × | 2.0752 | 7.1275 × | 2.7154 | 1.9137 × | 0.0000 × | 0.0000 × | 0.0000 × | 4.7238 × | 0.0000 × |
Std | 6.8504 × | 3.5045 × | 1.5290 × | 1.4873 × | 9.4465 × | 0.0000 × | 0.0000 × | 0.0000 × | 1.6920 × | 0.0000 × | |
F10 | Ave | 8.0335 × | 9.6131 × | 2.3205 × | 4.2337 × | 6.8461 × | 4.4409 × | 4.4409 × | 4.4409 × | 7.9180 × | 4.4409 × |
Std | 3.6028 × | 1.7750 × | 3.9117 × | 2.9405 × | 2.1223 × | 0.0000 × | 0.0000 × | 0.0000 × | 7.7005 × | 0.0000 × | |
F11 | Ave | 1.0033 × | 3.5149 × | 9.7117 × | 8.0699 × | 1.2452 × | 0.0000 × | 0.0000 × | 0.0000 × | 1.7652 × | 0.0000 × |
Std | 8.2278 × | 7.6237 × | 7.8814 × | 3.4426 × | 6.4144 × | 0.0000 × | 0.0000 × | 0.0000 × | 1.8647 × | 0.0000 × | |
F12 | Ave | 1.2171 × | 4.7080 × | 2.9708 × | 2.5362 × | 6.7374 × | 1.4334 × | 1.7333 × | 9.1259 × | 7.1672 × | 1.3557 × |
Std | 2.2700 × | 2.5012 × | 1.8256 × | 2.9413 × | 1.4443 × | 4.0055 × | 2.5033 × | 6.4656 × | 1.0528 × | 3.3947 × | |
F13 | Ave | 3.9506 × | 6.2653 × | 2.6948 × | 5.5005 × | 4.5995 × | 5.1951 × | 1.1315 × | 7.3393 × | 1.4255 × | 1.8805 × |
Std | 4.4205 × | 2.9013 × | 1.4472 × | 2.4206 × | 6.5868 × | 9.1574 × | 2.1366 × | 1.7378 × | 3.6407 × | 5.9007 × | |
F14 | Ave | 6.2903 × | 3.9354 × | 9.9800 × | 5.0190 × | 9.9800 × | 1.2958 × | 1.6492 × | 6.0085 × | 9.9800 × | 9.9800 × |
Std | 3.9721 × | 4.2304 × | 1.7707 × | 4.0147 × | 4.2712 × | 6.6981 × | 1.1147 × | 4.1744 × | 1.2820 × | 0.0000 × | |
F15 | Ave | 4.6840 × | 4.4128 × | 3.4476 × | 6.1407 × | 6.2009 × | 3.9665 × | 1.1637 × | 5.1890 × | 3.1647 × | 3.0848 × |
Std | 6.9509 × | 8.1133 × | 6.7549 × | 3.3452 × | 4.6076 × | 1.1960 × | 7.7257 × | 1.4584 × | 6.8709 × | 4.8372 × | |
F16 | Ave | −1.0315 × | −1.0316 × | −1.0316 × | −1.0316 × | −1.0316 × | −1.0316 × | −1.0316 × | −1.0018 × | −1.0316 × | −1.0316 × |
Std | 2.8439 × | 2.0391 × | 1.8958 × | 2.4381 × | 6.4995 × | 1.7798 × | 3.7658 × | 2.3834 × | 5.7578 × | 5.7578 × | |
F17 | Ave | 3.9808 × | 3.9789 × | 3.9789 × | 3.9789 × | 3.9789 × | 3.9804 × | 3.9807 × | 4.1593 × | 3.9789 × | 3.9789 × |
Std | 5.4892 × | 2.7341 × | 9.6785 × | 1.0341 × | 8.5110 × | 3.5704 × | 2.1308 × | 2.1183 × | 3.2434 × | 0.0000 × | |
F18 | Ave | 3.0003 × | 5.7000 × | 8.4000 × | 3.0002 × | 3.0019 × | 3.0003 × | 3.1446 × | 1.1428 × | 3.0000 × | 3.0000 × |
Std | 6.3725 × | 1.4789 × | 2.0550 × | 5.9163 × | 4.1560 × | 8.2802 × | 7.0853 × | 1.0741 × | 1.3272 × | 5.9467 × | |
F19 | Ave | −3.8603 × | −3.8613 × | −3.8628 × | −3.8525 × | −3.8307 × | −3.7743 × | −3.8607 × | −3.7579 × | −3.8628 × | −3.8628 × |
Std | 3.9101 × | 2.5477 × | 4.1968 × | 3.4631 × | 6.5684 × | 1.4535 × | 1.7167 × | 7.5301 × | 2.7101 × | 2.7101 × | |
F20 | Ave | −3.1878 × | −3.2758 × | −3.2625 × | −3.2236 × | −2.9703 × | −2.5715 × | −3.1315 × | −2.8719 × | −3.2705 × | −3.3141 × |
Std | 9.2909 × | 7.6746 × | 6.0462 × | 1.2117 × | 2.3240 × | 4.9586 × | 4.2713 × | 2.6838 × | 5.9923 × | 3.0164 × | |
F21 | Ave | −5.5628 × | −9.4764 × | −7.6305 × | −8.7810 × | −1.0148 × | −3.6511 × | −8.5297 × | −4.4882 × | −8.9856 × | −1.0153 × |
Std | 3.1905 × | 1.7508 × | 3.0294 × | 2.5378 × | 8.1531 × | 1.2066 × | 2.3167 × | 6.6797 × | 2.6823 × | 7.0670 × | |
F22 | Ave | −5.7081 × | −1.0224 × | −8.5674 × | −7.3291 × | −1.0397 × | −3.2970 × | −7.2977 × | −4.7820 × | −9.7495 × | −1.0403 × |
Std | 3.2512 × | 9.7011 × | 2.9025 × | 2.9211 × | 1.2500 × | 1.3156 × | 3.6395 × | 3.6395 × | 2.0184 × | 1.2775 × | |
F23 | Ave | −6.0706 × | −1.0176 × | −8.9421 × | −6.6613 × | −1.0528 × | −3.0284 × | −7.7995 × | −4.7853 × | −1.0313 × | −1.0536 × |
Std | 3.4178 × | 1.3657 × | 2.9793 × | 3.0672 × | 1.7572 × | 1.1707 × | 3.6450 × | 1.4233 × | 1.2234 × | 1.9515 × |
Algorithm | Average Friedman Value | Rank | +/=/− |
---|---|---|---|
AROA | 8.2333 | 10 | 23/0/0 |
GWO | 5.6884 | 6 | 23/0/0 |
RIME | 6.9145 | 9 | 23/0/0 |
WOA | 5.8659 | 7 | 23/0/0 |
ROA | 4.9370 | 3 | 23/0/0 |
HHO | 5.3283 | 4 | 20/3/0 |
MSWOA | 4.7377 | 2 | 20/3/0 |
MWOA | 6.3674 | 8 | 18/5/0 |
RBMO | 5.3246 | 5 | 21/2/0 |
MRBMO | 1.6029 | 1 | - |
Dimension (D) | Algorithm | Rank | Average Friedman Value | +/=/− |
---|---|---|---|---|
D = 50 | AROA | 10 | 8.0159 | 23/0/0 |
GWO | 4 | 5.5442 | 23/0/0 | |
RIME | 9 | 6.9246 | 23/0/0 | |
WOA | 5 | 5.5072 | 21/0/2 | |
ROA | 3 | 5.0094 | 23/0/0 | |
HHO | 7 | 5.9044 | 20/0/3 | |
MSWOA | 2 | 4.7413 | 20/0/3 | |
MWOA | 8 | 6.0087 | 18/0/5 | |
RBMO | 6 | 5.6841 | 19/1/3 | |
MRBMO | 1 | 1.6601 | - | |
D = 100 | AROA | 10 | 7.7188 | 23/0/0 |
GWO | 7 | 6.0044 | 23/0/0 | |
RIME | 9 | 7.1058 | 23/0/0 | |
WOA | 5 | 5.6304 | 22/0/1 | |
ROA | 3 | 4.7275 | 22/1/0 | |
HHO | 4 | 5.1783 | 20/0/3 | |
MSWOA | 2 | 4.4790 | 20/1/2 | |
MWOA | 6 | 5.9073 | 18/0/5 | |
RBMO | 7 | 6.3710 | 19/1/3 | |
MRBMO | 1 | 1.8775 | - |
Metrics | AROA | GWO | RIME | WOA | ROA | HHO | MSWOA | MWOA | RBMO | MRBMO |
---|---|---|---|---|---|---|---|---|---|---|
(//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | |
D = 30 | 0/0/23 | 0/0/23 | 0/0/23 | 0/0/23 | 0/0/23 | 0/3/20 | 0/3/20 | 0/5/18 | 0/2/21 | 16/7/0 |
D = 50 | 0/0/23 | 0/0/23 | 0/0/23 | 0/2/21 | 0/0/23 | 0/3/20 | 0/3/20 | 0/5/18 | 1/3/19 | 14/8/1 |
D = 100 | 0/0/23 | 0/0/23 | 0/0/23 | 0/1/22 | 0/0/23 | 0/3/20 | 1/2/20 | 0/5/18 | 1/3/19 | 13/8/2 |
Total | 0/0/69 | 0/0/69 | 0/0/69 | 0/3/66 | 0/0/69 | 0/9/60 | 1/8/60 | 0/15/54 | 2/8/59 | 43/23/3 |
0.00% | 0.00% | 0.00% | 4.35% | 0.00% | 13.04% | 13.04% | 21.74% | 14.49% | 95.65% |
Problems | Algorithm | Ave | Std | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pressure Vessel | AROA | 1370.488626 | 295.184121 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - |
GWO | 1141.810949 | 141.718414 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
RIME | 1282.653763 | 182.825482 | 1.000000 | 1.000000 | 41.000000 | 197.000000 | - | - | - | - | - | - | - | - | - | - | |
WOA | 1219.422206 | 268.374199 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
ROA | 1763.647185 | 293.406418 | 1.000000 | 1.000000 | 41.000000 | 195.000000 | - | - | - | - | - | - | - | - | - | - | |
HHO | 1495.258505 | 320.496832 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
MSWOA | 1147.519333 | 169.277168 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
MWOA | 5942.266245 | 3824.548390 | 1.000000 | 1.000000 | 44.000000 | 190.000000 | - | - | - | - | - | - | - | - | - | - | |
RBMO | 1141.781875 | 141.708667 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
MRBMO | 1115.909530 | 0.000000 | 1.000000 | 1.000000 | 40.000000 | 200.000000 | - | - | - | - | - | - | - | - | - | - | |
Piston Lever | AROA | 319.936826 | 227.253318 | 0.050000 | 1.476442 | 2.931026 | 378.235743 | - | - | - | - | - | - | - | - | - | - |
GWO | 34.410787 | 67.839726 | 0.050007 | 1.007949 | 2.016278 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
RIME | 77.701420 | 213.644069 | 0.050000 | 1.009899 | 2.017956 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
WOA | 57.774868 | 110.242426 | 0.085720 | 1.006835 | 2.016056 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
ROA | 1153.422877 | 1682.357061 | 4.893613 | 11.772662 | 1.972531 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
HHO | 249.909678 | 218.834125 | 0.050000 | 1.062206 | 2.097799 | 461.730830 | - | - | - | - | - | - | - | - | - | - | |
MSWOA | 1.107727 | 0.068946 | 0.050000 | 1.015786 | 2.017575 | 499.632547 | - | - | - | - | - | - | - | - | - | - | |
MWOA | 220.524760 | 163.056197 | 7.055169 | 6.643577 | 2.169984 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
RBMO | 23.245916 | 57.537496 | 0.050000 | 1.007646 | 2.016228 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
MRBMO | 1.057175 | 0.000000 | 0.050000 | 1.007646 | 2.016228 | 500.000000 | - | - | - | - | - | - | - | - | - | - | |
Robot Gripper | AROA | 13.628447 | 17.218374 | 149.702921 | 111.143182 | 182.682530 | 34.658555 | 127.482976 | 160.471686 | 2.836951 | - | - | - | - | - | - | - |
GWO | 3.794596 | 0.454172 | 145.658521 | 137.187924 | 198.832449 | 6.603866 | 144.600354 | 142.877062 | 2.508651 | - | - | - | - | - | - | - | |
RIME | 4.047437 | 0.576625 | 149.213537 | 129.144305 | 200.000000 | 18.106185 | 131.840515 | 142.998890 | 2.528185 | - | - | - | - | - | - | - | |
WOA | 4.699388 | 0.573319 | 149.897652 | 118.974762 | 199.984989 | 26.757698 | 145.241962 | 157.265331 | 2.737721 | - | - | - | - | - | - | - | |
ROA | 38.659586 | 30.576667 | 150.000000 | 93.873820 | 132.722183 | 9.652063 | 125.389579 | 209.273391 | 3.140000 | - | - | - | - | - | - | - | |
HHO | 257,131.862654 | 812,946.547661 | 148.434356 | 139.577035 | 191.759965 | 5.075438 | 149.604104 | 159.989691 | 2.656773 | - | - | - | - | - | - | - | |
MSWOA | 6.583220 | 4.819690 | 146.889687 | 114.032475 | 177.149289 | 31.674680 | 144.382918 | 129.390440 | 2.876919 | - | - | - | - | - | - | - | |
MWOA | 5538.722800 | 17,421.607725 | 98.653397 | 78.718941 | 100.000000 | 19.403605 | 77.005510 | 105.472771 | 2.515893 | - | - | - | - | - | - | - | |
RBMO | 2.964749 | 0.155839 | 149.906017 | 140.719282 | 200.000000 | 9.016330 | 145.854080 | 104.431364 | 2.430569 | - | - | - | - | - | - | - | |
MRBMO | 2.654624 | 0.101681 | 149.767107 | 147.509018 | 198.295126 | 2.147295 | 30.987108 | 100.000000 | 1.701362 | - | - | - | - | - | - | - | |
Industrial Refrigeration System | AROA | 43,678.954424 | 73,616.035416 | 0.010810 | 0.001000 | 0.071996 | 0.293851 | 0.233023 | 0.141870 | 0.844054 | 0.994075 | 3.239612 | 4.613064 | 0.259322 | 0.065598 | 0.074348 | 1.325086 |
GWO | 646.534618 | 3498.318489 | 0.001005 | 0.001023 | 0.002903 | 0.143612 | 0.003102 | 0.009900 | 1.508170 | 1.551905 | 4.876430 | 2.135014 | 0.001000 | 0.001000 | 0.006351 | 0.070231 | |
RIME | 1523.269013 | 5797.933818 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 1.505492 | 1.524666 | 4.953713 | 2.838080 | 0.001000 | 0.001000 | 0.008567 | 0.101852 | |
WOA | 83.810189 | 118.262454 | 0.001000 | 0.001000 | 0.001000 | 0.273965 | 0.025921 | 0.001000 | 1.507384 | 1.556651 | 2.020285 | 2.748780 | 0.001000 | 0.001000 | 0.007275 | 0.033436 | |
ROA | 754,251.693909 | 718,095.663540 | 0.030879 | 0.004809 | 0.255784 | 0.815489 | 5.000000 | 0.440794 | 0.402478 | 0.581364 | 1.127319 | 5.000000 | 0.831293 | 1.540464 | 0.440769 | 5.000000 | |
HHO | 807.042524 | 1495.072385 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 2.965426 | 0.014879 | 1.507898 | 1.520858 | 3.786395 | 2.576616 | 0.001000 | 0.001000 | 0.001943 | 0.020105 | |
MSWOA | 24.929148 | 37.884349 | 0.001788 | 0.001982 | 0.001984 | 0.969676 | 0.005247 | 0.001524 | 1.498062 | 1.522995 | 3.200966 | 3.755312 | 0.001000 | 0.001000 | 0.007092 | 0.067323 | |
MWOA | 61,268.829516 | 81,677.639862 | 0.001000 | 0.014332 | 0.265039 | 3.206260 | 1.585439 | 0.001000 | 1.189382 | 1.594608 | 5.000000 | 1.573479 | 0.835854 | 0.001000 | 0.001000 | 0.001000 | |
RBMO | 3180.341855 | 7215.498669 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 1.507658 | 1.523969 | 5.000000 | 1.999989 | 0.001000 | 0.001000 | 0.007293 | 0.087557 | |
MRBMO | 7.813901 | 0.256360 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 0.001000 | 1.507658 | 1.523969 | 5.000000 | 1.999989 | 0.001000 | 0.001000 | 0.007293 | 0.087557 |
Function | Metrics | AROA | GWO | RBMO | WOA | ROA | HHO | MSWOA | MWOA | RBMO | MRBMO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Ave | 1.5868 × | 8.3149 × | 9.4475 × | 4.9843 × | 2.1584 × | 3.0128 × | 7.5848 × | 4.2347 × | 5.0025 × | 0.0000 × |
Std | 1.3555 × | 9.6380 × | 5.8396 × | 1.4451 × | 4.5519 × | 1.1466 × | 2.2885 × | 1.2317 × | 5.2254 × | 0.0000 × | |
F2 | Ave | 3.4783 × | 0.0000 × | 5.4425 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × |
Std | 7.5769 × | 0.0000 × | 1.4625 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | |
F3 | Ave | 1.7331 × | 0.0000 × | 1.4123 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × |
Std | 3.6256 × | 0.0000 × | 1.6904 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | |
F4 | Ave | 1.8067 × | 1.4665 × | 1.0956 × | 1.4556 × | 8.7451 × | 6.0083 × | 1.5250 × | 1.7621 × | 2.2786 × | 1.0729 × |
Std | 2.4265 × | 9.4171 × | 5.0148 × | 2.3540 × | 3.2941 × | 8.5264 × | 4.2306 × | 3.1070 × | 4.8407 × | 5.8579 × | |
F5 | Ave | 1.9159 × | 1.4283 × | 1.7725 × | 3.3105 × | 2.1978 × | 2.6291 × | 2.9688 × | 3.8916 × | 2.4216 × | 0.0000 × |
Std | 1.4883 × | 1.1732 × | 9.8241 × | 1.7225 × | 4.1198 × | 5.6502 × | 1.6194 × | 7.6360 × | 1.7012 × | 0.0000 × | |
F6 | Ave | 6.9601 × | 0.0000 × | 8.6394 × | 0.0000 × | 2.5715 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × |
Std | 9.1197 × | 0.0000 × | 7.9839 × | 0.0000 × | 1.1019 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | 0.0000 × | |
F7 | Ave | 3.9895 × | 2.6438 × | 1.1680 × | 2.1158 × | 3.8193 × | 1.2388 × | 2.2010 × | 3.8804 × | 1.4856 × | 2.5500 × |
Std | 3.3136 × | 7.3601 × | 8.8572 × | 1.1953 × | 5.7164 × | 1.7567 × | 1.2744 × | 1.8945 × | 1.6176 × | 8.0639 × | |
F8 | Ave | 3.9628 × | 12.9622 | 1.9946 × | 54.0196 | 4.0846 × | 8.5873 × | 7.6902 × | 8.8006 × | 2.9829 × | 0.0000 × |
Std | 1.2821 × | 1.5151 × | 1.0542 × | 1.8167 × | 6.0217 × | 2.6630 × | 2.2268 × | 4.8107 × | 1.3939 × | 0.0000 × |
Algorithm | Average Friedman Value | Rank | +/=/− |
---|---|---|---|
AROA | 9.4167 | 10 | 8/0/0 |
GWO | 6.1084 | 8 | 5/3/0 |
RIME | 7.3958 | 9 | 8/0/0 |
WOA | 5.7437 | 7 | 5/3/0 |
ROA | 4.2812 | 3 | 6/2/0 |
HHO | 4.1146 | 2 | 5/3/0 |
MSWOA | 5.2896 | 6 | 5/3/0 |
MWOA | 5.1396 | 5 | 5/3/0 |
RBMO | 5.2021 | 5 | 5/3/0 |
MRBMO | 2.3083 | 1 | - |
Metrics | AROA | GWO | RIME | WOA | ROA | HHO | MSWOA | MWOA | RBMO | MRBMO |
---|---|---|---|---|---|---|---|---|---|---|
(//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | (//) | |
Total | 0/0/8 | 0/3/5 | 0/0/8 | 0/3/5 | 0/2/6 | 0/3/5 | 0/3/5 | 0/3/5 | 0/3/5 | 5/3/0 |
0.00% | 37.50% | 0.00% | 25.00% | 37.50% | 37.50% | 37.50% | 37.50% | 37.50% | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, B.; Xie, Z.; Wei, J.; Gu, Y.; Yan, Y.; Li, Z.; Pan, S.; Cheong, N.; Chen, Y.; Zhou, R. MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges. Symmetry 2025, 17, 1295. https://doi.org/10.3390/sym17081295
Lu B, Xie Z, Wei J, Gu Y, Yan Y, Li Z, Pan S, Cheong N, Chen Y, Zhou R. MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges. Symmetry. 2025; 17(8):1295. https://doi.org/10.3390/sym17081295
Chicago/Turabian StyleLu, Baili, Zhanxi Xie, Junhao Wei, Yanzhao Gu, Yuzheng Yan, Zikun Li, Shirou Pan, Ngai Cheong, Ying Chen, and Ruishen Zhou. 2025. "MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges" Symmetry 17, no. 8: 1295. https://doi.org/10.3390/sym17081295
APA StyleLu, B., Xie, Z., Wei, J., Gu, Y., Yan, Y., Li, Z., Pan, S., Cheong, N., Chen, Y., & Zhou, R. (2025). MRBMO: An Enhanced Red-Billed Blue Magpie Optimization Algorithm for Solving Numerical Optimization Challenges. Symmetry, 17(8), 1295. https://doi.org/10.3390/sym17081295