Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = heterostyly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1257 KiB  
Communication
Primula luquanensis sp. nov. (Primulaceae), a New Species from Southwestern China, Reveals a Novel Floral Form in the Heterostyly-Prevailing Genus
by Zhi-Kun Wu, Yong-Jie Guo, Ting Zhang, Kevin S. Burgess and Wei Zhou
Plants 2023, 12(3), 534; https://doi.org/10.3390/plants12030534 - 24 Jan 2023
Cited by 8 | Viewed by 2642
Abstract
A new species, Primula luquanensis Z.K.Wu and Wei Zhou sp. nov. (Primulaceae) is described and illustrated from Yunnan Province, China. It is morphologically assigned to P. sect Aleuritia based on its dwarf and hairless habit and coverage by farina on both sides of [...] Read more.
A new species, Primula luquanensis Z.K.Wu and Wei Zhou sp. nov. (Primulaceae) is described and illustrated from Yunnan Province, China. It is morphologically assigned to P. sect Aleuritia based on its dwarf and hairless habit and coverage by farina on both sides of the leaf blade and scape. This new species is similar to P. nutantiflora and P. yunnanensis, but it is easily distinguished by its stolons, solitary bract, bell-shaped corolla and monomorphic floral form. The new species also has a substantially reduced corolla tube, presenting a unique floral form in a genus where heterostyly typically prevails. Full article
(This article belongs to the Special Issue Integrative Taxonomy of Plants)
Show Figures

Figure 1

22 pages, 4355 KiB  
Article
Annotation of the Turnera subulata (Passifloraceae) Draft Genome Reveals the S-Locus Evolved after the Divergence of Turneroideae from Passifloroideae in a Stepwise Manner
by Paige M. Henning, Eric H. Roalson, Wali Mir, Andrew G. McCubbin and Joel S. Shore
Plants 2023, 12(2), 286; https://doi.org/10.3390/plants12020286 - 7 Jan 2023
Cited by 5 | Viewed by 2910
Abstract
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three [...] Read more.
A majority of Turnera species (Passifloraceae) exhibit distyly, a reproductive system involving both self-incompatibility and reciprocal herkogamy. This system differs from self-incompatibility in Passiflora species. The genetic basis of distyly in Turnera is a supergene, restricted to the S-morph, and containing three S-genes. How supergenes and distyly evolved in Turnera, and the other Angiosperm families exhibiting distyly remain largely unknown. Unraveling the evolutionary origins in Turnera requires the generation of genomic resources and extensive phylogenetic analyses. Here, we present the annotated draft genome of the S-morph of distylous Turnera subulata. Our annotation allowed for phylogenetic analyses of the three S-genes’ families across 56 plant species ranging from non-seed plants to eudicots. In addition to the phylogenetic analysis, we identified the three S-genes’ closest paralogs in two species of Passiflora. Our analyses suggest that the S-locus evolved after the divergence of Passiflora and Turnera. Finally, to provide insights into the neofunctionalization of the S-genes, we compared expression patterns of the S-genes with close paralogs in Arabidopsis and Populus trichocarpa. The annotation of the T. subulata genome will provide a useful resource for future comparative work. Additionally, this work has provided insights into the convergent nature of distyly and the origin of supergenes. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

14 pages, 5617 KiB  
Article
Floral Characterization of Pomegranate Genotypes to Improve Hybridization Efficiency
by Sufian Ikram, Waqar Shafqat, Sami Ur Rehman, Muhammad Ahsan Qureshi, Safeer ud Din, Salman Ikram, Muhammad Nafees and Muhammad Jafar Jaskani
Plants 2023, 12(1), 165; https://doi.org/10.3390/plants12010165 - 30 Dec 2022
Cited by 4 | Viewed by 3775
Abstract
Pomegranate (Punica granatum) has staminate (male), androgynous (hermaphrodite), and intermediate flower types. Floral characterization is difficult for breeding efficiency across many pomegranate genotypes in Pakistan, which is essential for pomegranate cultivar enhancements. The present research focused on the floral characterization and [...] Read more.
Pomegranate (Punica granatum) has staminate (male), androgynous (hermaphrodite), and intermediate flower types. Floral characterization is difficult for breeding efficiency across many pomegranate genotypes in Pakistan, which is essential for pomegranate cultivar enhancements. The present research focused on the floral characterization and breeding efficiency of fifteen pomegranate genotypes. Flower sex ratio, floral morphological parameters, i.e., flower length, ovary width, flower notch, flower tip and stigma with style length, and fruit set percentage were examined during the experiment. In terms of sex ratio, male flowers were found to be higher among all genotypes. Due to clear differences in flower length, width, and heterostyly facilitating visual identification of the hermaphrodite flowers, genotype Ternab-2, Kandhari White, and Kandhari Red had higher fruit set (≥70%) among all cross combinations attempted. Genotype Sava had higher flower length and heterostyly of hermaphrodite flower type, but ovary width was not very distinct, leading to average crossing success (85–34%). In conclusion, single or combination of morphological characters can be used for accurate identification of hermaphrodite flowers, which can improve hybrid efficiency and fruit set after artificial cross-pollination. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

18 pages, 3122 KiB  
Article
The S-Gene YUC6 Pleiotropically Determines Male Mating Type and Pollen Size in Heterostylous Turnera (Passifloraceae): A Novel Neofunctionalization of the YUCCA Gene Family
by Paige M. Henning, Joel S. Shore and Andrew G. McCubbin
Plants 2022, 11(19), 2640; https://doi.org/10.3390/plants11192640 - 8 Oct 2022
Cited by 12 | Viewed by 2428
Abstract
In heterostylous, self-incompatible Turnera species, a member of the YUCCA gene family, YUC6, resides at the S-locus and has been hypothesized to determine the male mating type. YUCCA gene family members synthesize the auxin, indole-3-acetic acid, via a two-step process involving [...] Read more.
In heterostylous, self-incompatible Turnera species, a member of the YUCCA gene family, YUC6, resides at the S-locus and has been hypothesized to determine the male mating type. YUCCA gene family members synthesize the auxin, indole-3-acetic acid, via a two-step process involving the TAA gene family. Consequently, it has been speculated that differences in auxin concentration in developing anthers are the biochemical basis underlying the male mating type. Here, we provide empirical evidence that supports this hypothesis. Using a transgenic knockdown approach, we show that YUC6 acts pleiotropically to control both the male physiological mating type and pollen size, but not the filament length dimorphism associated with heterostyly in Turnera. Using qPCR to assess YUC6 expression in different transgenic lines, we demonstrate that the level of YUC6 knockdown correlates with the degree of change observed in the male mating type. Further assessment of YUC6 expression through anther development, in the knockdown lines, suggests that the male mating type is irreversibly determined during a specific developmental window prior to microsporogenesis, which is consistent with the genetically sporophytic nature of this self-incompatibility system. These results represent the first gene controlling male mating type to be characterized in any species with heterostyly. Full article
Show Figures

Figure 1

16 pages, 2472 KiB  
Article
Pistil Mating Type and Morphology Are Mediated by the Brassinosteroid Inactivating Activity of the S-Locus Gene BAHD in Heterostylous Turnera Species
by Courtney M. Matzke, Hasan J. Hamam, Paige M. Henning, Kyra Dougherty, Joel S. Shore, Michael M. Neff and Andrew G. McCubbin
Int. J. Mol. Sci. 2021, 22(19), 10603; https://doi.org/10.3390/ijms221910603 - 30 Sep 2021
Cited by 23 | Viewed by 2897
Abstract
Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is [...] Read more.
Heterostyly is a breeding system that promotes outbreeding through a combination of morphological and physiological floral traits. In Turnera these traits are governed by a single, hemizygous S-locus containing just three genes. We report that the S-locus gene, BAHD, is mutated and encodes a severely truncated protein in a self-compatible long homostyle species. Further, a self-compatible long homostyle mutant possesses a T. krapovickasii BAHD allele with a point mutation in a highly conserved domain of BAHD acyl transferases. Wild type and mutant TkBAHD alleles were expressed in Arabidopsis to assay for brassinosteroid (BR) inactivating activity. The wild type but not mutant allele caused dwarfism, consistent with the wild type possessing, but the mutant allele having lost, BR inactivating activity. To investigate whether BRs act directly in self-incompatibility, BRs were added to in vitro pollen cultures of the two mating types. A small morph specific stimulatory effect on pollen tube growth was found with 5 µM brassinolide, but no genotype specific inhibition was observed. These results suggest that BAHD acts pleiotropically to mediate pistil length and physiological mating type through BR inactivation, and that in regard to self-incompatibility, BR acts by differentially regulating gene expression in pistils, rather than directly on pollen. Full article
(This article belongs to the Special Issue Pollen-Pistil Interaction)
Show Figures

Figure 1

15 pages, 4721 KiB  
Article
Reproductive Output and Insect Behavior in Hybrids and Apomicts from Limonium ovalifolium and L. binervosum Complexes (Plumbaginaceae) in an Open Cross-Pollination Experiment
by Sofia I. R. Conceição, Joana Fernandes, Elsa Borges da Silva and Ana D. Caperta
Plants 2021, 10(1), 169; https://doi.org/10.3390/plants10010169 - 17 Jan 2021
Cited by 4 | Viewed by 3788
Abstract
Ex situ plant collections established from seeds of natural populations are key tools for understanding mating systems of intricate taxonomic complexes, as in the Limonium Mill. genus (sea lavenders, Plumbaginaceae). Plants show a polymorphic sexual system associated to flower polymorphisms such as ancillary [...] Read more.
Ex situ plant collections established from seeds of natural populations are key tools for understanding mating systems of intricate taxonomic complexes, as in the Limonium Mill. genus (sea lavenders, Plumbaginaceae). Plants show a polymorphic sexual system associated to flower polymorphisms such as ancillary pollen and stigma and/or heterostyly that prevents self and intramorph mating. The main objectives of this study were to investigate the significance of pollen-stigma dimorphisms and the role of flower visitors in the reproductive output of hybrids arising from sexual diploids of Limonium ovalifolium complex and apomicts tetraploids of L. binervosum complex in an open cross-pollination experiment. Results showed that, similarly to parental plants, hybrids present inflorescence types, self-incompatible flowers, and produced regular pollen grains with the typical exine patterns, with medium to high viability. By contrast, apomicts show floral polymorphisms, inflorescences, and pollen grains of maternal phenotype but with low stainability. Several insects’ species visited the inflorescences of parental plants and both hybrids and apomicts and some of these insects carried A and/or B pollen grains on their bodies, especially Clepsis coriacana (Rebel) and Tapinoma sp. Insects’ floral visits to hybrids and apomicts seem to be independent of pollen fertility and plants’ reproductive modes. Both hybrids and apomicts were able to produce fertile seeds, although the latter showed more seedlings with developmental anomalies than the first plants. The findings demonstrate that there is a weak reproductive barrier between the diploid species of L. ovalifolium complex as they can hybridize and produce fertile hybrids, provided there is pollen transport by pollinator insects. This study supports that apomixis is a strong reproductive barrier between both L. ovalifolium and L. binervosum complexes but did not allow us to exclude reproductive interferences of apomict pollen into sexuals. Full article
(This article belongs to the Special Issue Plant Diversification)
Show Figures

Graphical abstract

13 pages, 3249 KiB  
Article
The Turnera Style S-Locus Gene TsBAHD Possesses Brassinosteroid-Inactivating Activity When Expressed in Arabidopsis thaliana
by Courtney M. Matzke, Joel S. Shore, Michael M. Neff and Andrew G. McCubbin
Plants 2020, 9(11), 1566; https://doi.org/10.3390/plants9111566 - 13 Nov 2020
Cited by 22 | Viewed by 3106
Abstract
Heterostyly distinct hermaphroditic floral morphs enforce outbreeding. Morphs differ structurally, promote cross-pollination, and physiologically block self-fertilization. In Turnera the self-incompatibility (S)-locus controlling heterostyly possesses three genes specific to short-styled morph genomes. Only one gene, TsBAHD, is expressed in pistils and this has [...] Read more.
Heterostyly distinct hermaphroditic floral morphs enforce outbreeding. Morphs differ structurally, promote cross-pollination, and physiologically block self-fertilization. In Turnera the self-incompatibility (S)-locus controlling heterostyly possesses three genes specific to short-styled morph genomes. Only one gene, TsBAHD, is expressed in pistils and this has been hypothesized to possess brassinosteroid (BR)-inactivating activity. We tested this hypothesis using heterologous expression in Arabidopsis thaliana as a bioassay, thereby assessing growth phenotype, and the impacts on the expression of endogenous genes involved in BR homeostasis and seedling photomorphogenesis. Transgenic A. thaliana expressing TsBAHD displayed phenotypes typical of BR-deficient mutants, with phenotype severity dependent on TsBAHD expression level. BAS1, which encodes an enzyme involved in BR inactivation, was downregulated in TsBAHD-expressing lines. CPD and DWF, which encode enzymes involved in BR biosynthesis, were upregulated. Hypocotyl growth of TsBAHD dwarfs responded to application of brassinolide in light and dark in a manner typical of plants over-expressing genes encoding BR-inactivating activity. These results provide empirical support for the hypothesis that TsBAHD possesses BR-inactivating activity. Further this suggests that style length in Turnera is controlled by the same mechanism (BR inactivation) as that reported for Primula, but using a different class of enzyme. This reveals interesting convergent evolution in a biochemical mechanism to regulate floral form in heterostyly. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Graphical abstract

20 pages, 3609 KiB  
Article
Transcriptome and Network Analyses of Heterostyly in Turnera subulata Provide Mechanistic Insights: Are S-Loci a Red-Light for Pistil Elongation?
by Paige M. Henning, Joel S. Shore and Andrew G. McCubbin
Plants 2020, 9(6), 713; https://doi.org/10.3390/plants9060713 - 3 Jun 2020
Cited by 14 | Viewed by 5112
Abstract
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera [...] Read more.
Heterostyly employs distinct hermaphroditic floral morphs to enforce outbreeding. Morphs differ structurally in stigma/anther positioning, promoting cross-pollination, and physiologically blocking self-fertilization. Heterostyly is controlled by a self-incompatibility (S)-locus of a small number of linked S-genes specific to short-styled morph genomes. Turnera possesses three S-genes, namely TsBAHD (controlling pistil characters), TsYUC6, and TsSPH1 (controlling stamen characters). Here, we compare pistil and stamen transcriptomes of floral morphs of T. subulata to investigate hypothesized S-gene function(s) and whether hormonal differences might contribute to physiological incompatibility. We then use network analyses to identify genetic networks underpinning heterostyly. We found a depletion of brassinosteroid-regulated genes in short styled (S)-morph pistils, consistent with hypothesized brassinosteroid-inactivating activity of TsBAHD. In S-morph anthers, auxin-regulated genes were enriched, consistent with hypothesized auxin biosynthesis activity of TsYUC6. Evidence was found for auxin elevation and brassinosteroid reduction in both pistils and stamens of S- relative to long styled (L)-morph flowers, consistent with reciprocal hormonal differences contributing to physiological incompatibility. Additional hormone pathways were also affected, however, suggesting S-gene activities intersect with a signaling hub. Interestingly, distinct S-genes controlling pistil length, from three species with independently evolved heterostyly, potentially intersect with phytochrome interacting factor (PIF) network hubs which mediate red/far-red light signaling. We propose that modification of the activities of PIF hubs by the S-locus could be a common theme in the evolution of heterostyly. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Plants’ Editorial Board Members)
Show Figures

Figure 1

16 pages, 4555 KiB  
Article
Biostimulant Application Enhances Fruit Setting in Eggplant—An Insight into the Biology of Flowering
by Alicja Pohl, Aneta Grabowska, Andrzej Kalisz and Agnieszka Sękara
Agronomy 2019, 9(9), 482; https://doi.org/10.3390/agronomy9090482 - 26 Aug 2019
Cited by 23 | Viewed by 8762
Abstract
Eggplant (Solanum melongena L.) is a warm climate crop. Its cultivation extends to temperate regions where low temperatures can affect the course of the generative phase, which is primarily sensitive to abiotic stress. The novelty of the present investigation consisted of characterising [...] Read more.
Eggplant (Solanum melongena L.) is a warm climate crop. Its cultivation extends to temperate regions where low temperatures can affect the course of the generative phase, which is primarily sensitive to abiotic stress. The novelty of the present investigation consisted of characterising the heterostyly, pollination, and fertilisation biology of eggplants in field cultivations, which provided a basis for explaining the effect of a protective biostimulant on these processes. We aimed to investigate the flowering biology of three eggplant hybrids treated with Göemar BM-86®, containing Ascophylum nodosum extract, to determine the crucial mechanisms behind the increased flowering and fruit set efficiency and the final effect of increased yield. The flower phenotype (long, medium or short styled), fruit setting, and the number of seeds per fruit were recorded during the two vegetation periods. The numbers of pollen tubes and fertilised ovules in ovaries were evaluated during the generative stage of development to characterise the course of pollination and fertilisation for all types of flowers depending on the cultivar and biostimulant treatment. The expression of heterostyly depended on the eggplant genotype, age of the plant, fruit load, and biostimulant treatment. Domination by long-styled flowers was observed, amounting to 41%, 42%, and 55% of all flowers of “Epic” F1, “Flavine” F1, and “Gascona” F1, respectively. This flower phenotype contained the highest number of pollen tubes in the style and the highest number of fertilised ovules. The biostimulant had a positive effect on the flower and fruit set numbers, as well as on the pollination efficiency in all genotypes. Ascophylum nodosum extract could be used as an efficient stimulator of flowering and fruit setting for eggplant hybrids in field conditions in a temperate climatic zone. Full article
Show Figures

Figure 1

16 pages, 1406 KiB  
Article
Floral Scent Variation in the Heterostylous Species Gelsemium sempervirens
by Bettie Obi Johnson, Annette M. Golonka, Austin Blackwell, Iver Vazquez and Nigel Wolfram
Molecules 2019, 24(15), 2818; https://doi.org/10.3390/molecules24152818 - 2 Aug 2019
Cited by 18 | Viewed by 4500
Abstract
Gelsemium sempervirens (L.) W.T. Aiton, a distylous woody vine of the family Gelsemiaceae, produces sweetly fragrant flowers that are known for the toxic alkaloids they contain. The composition of this plant’s floral scent has not previously been determined. In this study, the scent [...] Read more.
Gelsemium sempervirens (L.) W.T. Aiton, a distylous woody vine of the family Gelsemiaceae, produces sweetly fragrant flowers that are known for the toxic alkaloids they contain. The composition of this plant’s floral scent has not previously been determined. In this study, the scent profiles of 74 flowers obtained from six different wild and cultivated populations of G. sempervirens were measured by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). There were 81 volatile organic compounds identified and characterized as benzenoids, terpenoids, fatty acid derivatives, and yeast associated compounds. The most abundant compound was benzaldehyde (23–80%) followed by ethanol (0.9–17%), benzyl benzoate (2–15%), 4-anisaldehyde (2–11%), (Z)-α-ocimene (0–34%), and α-farnesene (0.1–16%). The impacts of geographic location, population type (wild or cultivated), and style morph (L = long, S = short) on scent profile were investigated. The results showed no relationship between geographic location or population type and volatile organic compounds (VOC) profile, but did show a significant scent profile difference between L and S morphs based on non-metric multidimensional scaling (NMDS) using Bray-Curtis similarity indices. The L morphs contained higher amounts of benzenoids and the S morphs contained higher amounts of terpenoids in their scent profiles. The L morphs also produced a higher total abundance of scent compounds than the S morphs. This study represents the first floral scent determination of G. sempervirens finding significant variation in scent abundance and composition between style morphs. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

Back to TopTop