Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = heterogeneous vehicular communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 3342 KiB  
Article
Enhancing Infotainment Services in Integrated Aerial–Ground Mobility Networks
by Chenn-Jung Huang, Liang-Chun Chen, Yu-Sen Cheng, Ken-Wen Hu and Mei-En Jian
Sensors 2025, 25(13), 3891; https://doi.org/10.3390/s25133891 - 22 Jun 2025
Viewed by 366
Abstract
The growing demand for bandwidth-intensive vehicular applications—particularly ultra-high-definition streaming and immersive panoramic video—is pushing current network infrastructures beyond their limits, especially in urban areas with severe congestion and degraded user experience. To address these challenges, we propose an aerial-assisted vehicular network architecture that [...] Read more.
The growing demand for bandwidth-intensive vehicular applications—particularly ultra-high-definition streaming and immersive panoramic video—is pushing current network infrastructures beyond their limits, especially in urban areas with severe congestion and degraded user experience. To address these challenges, we propose an aerial-assisted vehicular network architecture that integrates 6G base stations, distributed massive MIMO networks, visible light communication (VLC), and a heterogeneous aerial network of high-altitude platforms (HAPs) and drones. At its core is a context-aware dynamic bandwidth allocation algorithm that intelligently routes infotainment data through optimal aerial relays, bridging connectivity gaps in coverage-challenged areas. Simulation results show a 47% increase in average available bandwidth over conventional first-come-first-served schemes. Our system also satisfies the stringent latency and reliability requirements of emergency and live infotainment services, creating a sustainable ecosystem that enhances user experience, service delivery, and network efficiency. This work marks a key step toward enabling high-bandwidth, low-latency smart mobility in next-generation urban networks. Full article
(This article belongs to the Special Issue Sensing and Machine Learning Control: Progress and Applications)
Show Figures

Figure 1

27 pages, 1065 KiB  
Article
Priority-Aware Spectrum Management for QoS Optimization in Vehicular IoT
by Adeel Iqbal, Tahir Khurshaid, Yazdan Ahmad Qadri, Ali Nauman and Sung Won Kim
Sensors 2025, 25(11), 3342; https://doi.org/10.3390/s25113342 - 26 May 2025
Cited by 1 | Viewed by 493
Abstract
Vehicular Internet of Things (V-IoT) networks, sustained by a high-density deployment of roadside units and sensor-equipped vehicles, are currently at the edge of next-generation intelligent transportation system evolution. However, offering stable, low-latency, and energy-efficient communication in such heterogeneous and delay-prone environments is challenging [...] Read more.
Vehicular Internet of Things (V-IoT) networks, sustained by a high-density deployment of roadside units and sensor-equipped vehicles, are currently at the edge of next-generation intelligent transportation system evolution. However, offering stable, low-latency, and energy-efficient communication in such heterogeneous and delay-prone environments is challenging due to limited spectral resources and diverse quality of service (QoS) requirements. This paper presents a Priority-Aware Spectrum Management (PASM) scheme for IoT-based vehicular networks. This dynamic spectrum access scheme integrates interweave, underlay, and coexistence modes to optimize spectrum utilization, energy efficiency, and throughput while minimizing blocking and interruption probabilities. The algorithm manages resources efficiently and gives proper attention to each device based on its priority, so all IoT devices, from high to low priority, receive continuous and reliable service. A Continuous-Time Markov Chain (CTMC) model is derived to analyze the proposed algorithm for various network loads. Simulation results indicate improved spectral efficiency, throughput, delay, and overall QoS compliance over conventional access methods. These findings establish that the proposed algorithm is a scalable solution for dynamic V-IoT environments. Full article
(This article belongs to the Special Issue Energy Efficient Design in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

15 pages, 745 KiB  
Article
Enhancing Heterogeneous Communication for Foggy Highways Using Vehicular Platoons and SDN
by Hafiza Zunera Abdul Sattar, Huma Ghafoor and Insoo Koo
Sensors 2025, 25(3), 696; https://doi.org/10.3390/s25030696 - 24 Jan 2025
Viewed by 1388
Abstract
Establishing a safe and stable routing path for a source–destination pair is necessary regardless of the weather conditions. The reason for this is that vehicles can improve safety on the road by exchanging messages and updating each other on the current conditions of [...] Read more.
Establishing a safe and stable routing path for a source–destination pair is necessary regardless of the weather conditions. The reason for this is that vehicles can improve safety on the road by exchanging messages and updating each other on the current conditions of both roads and vehicles. This paper intends to solve the problem of when foggy roads make it difficult for drivers to travel, especially when people encounter emergency situations and have no other option but to drive in foggy weather. Although the literature offers few solutions to the problem, no one has considered integrating software-defined networking into vehicular networks for foggy roads to create an optimal routing path. Moreover, it is of significance to mention that vehicles in adverse weather conditions travel following each other and maintaining a constant safety distance, which leads to the formation of a platoon. Considering this, we propose a heterogeneous communication protocol in a software-defined vehicular network to establish an optimal routing path using platoons on foggy highways. Different cases were tested to show how platoons behave in high connectivity and sparsity, achieving a maximum delivery ratio of 99%, a delay of 2 ms, an overhead of 55%, and an acceptable number of hops compared to reference schemes. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

31 pages, 1953 KiB  
Article
UAV Trajectory Control and Power Optimization for Low-Latency C-V2X Communications in a Federated Learning Environment
by Xavier Fernando and Abhishek Gupta
Sensors 2024, 24(24), 8186; https://doi.org/10.3390/s24248186 - 22 Dec 2024
Cited by 2 | Viewed by 3310
Abstract
Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and [...] Read more.
Unmanned aerial vehicle (UAV)-enabled vehicular communications in the sixth generation (6G) are characterized by line-of-sight (LoS) and dynamically varying channel conditions. However, the presence of obstacles in the LoS path leads to shadowed fading environments. In UAV-assisted cellular vehicle-to-everything (C-V2X) communication, vehicle and UAV mobility and shadowing adversely impact latency and throughput. Moreover, 6G vehicular communications comprise data-intensive applications such as augmented reality, mixed reality, virtual reality, intelligent transportation, and autonomous vehicles. Since vehicles’ sensors generate immense amount of data, the latency in processing these applications also increases, particularly when the data are not independently identically distributed (non-i.i.d.). Furthermore, when the sensors’ data are heterogeneous in size and distribution, the incoming packets demand substantial computing resources, energy efficiency at the UAV servers and intelligent mechanisms to queue the incoming packets. Due to the limited battery power and coverage range of UAV, the quality of service (QoS) requirements such as coverage rate, UAV flying time, and fairness of vehicle selection are adversely impacted. Controlling the UAV trajectory so that it serves a maximum number of vehicles while maximizing battery power usage is a potential solution to enhance QoS. This paper investigates the system performance and communication disruption between vehicles and UAV due to Doppler effect in the orthogonal time–frequency space (OTFS) modulated channel. Moreover, a low-complexity UAV trajectory prediction and vehicle selection method is proposed using federated learning, which exploits related information from past trajectories. The weighted total energy consumption of a UAV is minimized by jointly optimizing the transmission window (Lw), transmit power and UAV trajectory considering Doppler spread. The simulation results reveal that the weighted total energy consumption of the OTFS-based system decreases up to 10% when combined with federated learning to locally process the sensor data at the vehicles and communicate the processed local models to the UAV. The weighted total energy consumption of the proposed federated learning algorithm decreases by 10–15% compared with convex optimization, heuristic, and meta-heuristic algorithms. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

25 pages, 9887 KiB  
Article
Comprehensive Assessment of Context-Adaptive Street Lighting: Technical Aspects, Economic Insights, and Measurements from Large-Scale, Long-Term Implementations
by Gianni Pasolini, Paolo Toppan, Andrea Toppan, Rudy Bandiera, Mirko Mirabella, Flavio Zabini, Diego Bonata and Oreste Andrisano
Sensors 2024, 24(18), 5942; https://doi.org/10.3390/s24185942 - 13 Sep 2024
Cited by 2 | Viewed by 2549
Abstract
This paper addresses the growing importance of efficient street lighting management, driven by rising electricity costs and the need for municipalities to implement cost-effective solutions. Central to this study is the UNI 11248 Italian regulation, which extends the European EN 13201-1 standard introduced [...] Read more.
This paper addresses the growing importance of efficient street lighting management, driven by rising electricity costs and the need for municipalities to implement cost-effective solutions. Central to this study is the UNI 11248 Italian regulation, which extends the European EN 13201-1 standard introduced in 2016. These standards provide guidelines for designing, installing, operating, and maintaining lighting systems in pedestrian and vehicular traffic areas. Specifically, the UNI 11248 standard introduces the possibility to dynamically adjust light intensity through two alternative operating modes: (a) Traffic Adaptive Installation (TAI), which dims the light based solely on real-time traffic flow measurements; and (b) Full Adaptive Installation (FAI), which, in addition to traffic measurements, also requires evaluating road surface luminance and meteorological conditions. In this paper, we first present the general architecture and operation of an FAI-enabled lighting infrastructure, which relies on environmental sensors and a heterogeneous wireless communication network to connect intelligent, remotely controlled streetlights. Subsequently, we examine large-scale, in-field FAI infrastructures deployed in Vietnam and Italy as case studies, providing substantial measurement data. The paper offers insights into the measured energy consumption of these infrastructures, comparing them to that of conventional light-control strategies used in traditional installations. The measurements demonstrate the superiority of FAI as the most efficient solution. Full article
(This article belongs to the Special Issue Wireless Sensor Networks and IoT for Smart City)
Show Figures

Figure 1

24 pages, 1393 KiB  
Article
Network Sliced Distributed Learning-as-a-Service for Internet of Vehicles Applications in 6G Non-Terrestrial Network Scenarios
by David Naseh, Swapnil Sadashiv Shinde and Daniele Tarchi
J. Sens. Actuator Netw. 2024, 13(1), 14; https://doi.org/10.3390/jsan13010014 - 7 Feb 2024
Cited by 8 | Viewed by 3234
Abstract
In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, [...] Read more.
In the rapidly evolving landscape of next-generation 6G systems, the integration of AI functions to orchestrate network resources and meet stringent user requirements is a key focus. Distributed Learning (DL), a promising set of techniques that shape the future of 6G communication systems, plays a pivotal role. Vehicular applications, representing various services, are likely to benefit significantly from the advances of 6G technologies, enabling dynamic management infused with inherent intelligence. However, the deployment of various DL methods in traditional vehicular settings with specific demands and resource constraints poses challenges. The emergence of distributed computing and communication resources, such as the edge-cloud continuum and integrated terrestrial and non-terrestrial networks (T/NTN), provides a solution. Efficiently harnessing these resources and simultaneously implementing diverse DL methods becomes crucial, and Network Slicing (NS) emerges as a valuable tool. This study delves into the analysis of DL methods suitable for vehicular environments alongside NS. Subsequently, we present a framework to facilitate DL-as-a-Service (DLaaS) on a distributed networking platform, empowering the proactive deployment of DL algorithms. This approach allows for the effective management of heterogeneous services with varying requirements. The proposed framework is exemplified through a detailed case study in a vehicular integrated T/NTN with diverse service demands from specific regions. Performance analysis highlights the advantages of the DLaaS approach, focusing on flexibility, performance enhancement, added intelligence, and increased user satisfaction in the considered T/NTN vehicular scenario. Full article
(This article belongs to the Special Issue Advancing towards 6G Networks)
Show Figures

Figure 1

23 pages, 9829 KiB  
Article
RC-LAHR: Road-Side-Unit-Assisted Cloud-Based Location-Aware Hybrid Routing for Software-Defined Vehicular Ad Hoc Networks
by Manish Kumar and Ram Shringar Raw
Sensors 2024, 24(4), 1045; https://doi.org/10.3390/s24041045 - 6 Feb 2024
Cited by 11 | Viewed by 1576
Abstract
The reliability of the communication link is quite common and challenging to handle as the topology changes frequently in vehicular ad hoc networks (VANETs). Another problem with VANETs is that the vehicles are from different manufacturers. Hence, the heterogeneity of hardware is obvious. [...] Read more.
The reliability of the communication link is quite common and challenging to handle as the topology changes frequently in vehicular ad hoc networks (VANETs). Another problem with VANETs is that the vehicles are from different manufacturers. Hence, the heterogeneity of hardware is obvious. These heterogeneity and reliability problems affect the message dissemination in VANETs. This paper aims to address these challenges by proposing a robust routing protocol capable of ensuring reliable, scalable, and heterogeneity-tolerant message dissemination in VANETs. We first introduced a hybrid hierarchical architecture based on software-defined networking (SDN) principles for VANETs, leveraging SDN’s inherent scalability and adaptability to heterogeneity. Further, a road-side unit (RSU)-assisted cloud-based location-aware hybrid routing for software-defined VANETs (SD-VANETs) that we call RC-LAHR was proposed. RC-LAHR was rigorously tested and analyzed for its performance in terms of packet delivery ratio (PDR) and end-to-end delay (EED), along with a comprehensive assessment of network traffic and load impacts on cloud infrastructure and RSUs. The routing protocol is compared with state-of-the-art protocols, Greedy Perimeter Stateless Routing (GPSR) and Opportunistic and Position-Based Routing (OPBR). The proposed routing protocol performs well as compared to GPSR and OPBR. The result shows that the EED is reduced to 20% and the PDR is increased to 30%. The network reliability is also increased up to 5% as compared to the OPBR and GPSR. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

66 pages, 3393 KiB  
Article
A Machine Learning-Aided Network Contention-Aware Link Lifetime- and Delay-Based Hybrid Routing Framework for Software-Defined Vehicular Networks
by Patikiri Arachchige Don Shehan Nilmantha Wijesekara and Subodha Gunawardena
Telecom 2023, 4(3), 393-458; https://doi.org/10.3390/telecom4030023 - 18 Jul 2023
Cited by 17 | Viewed by 3231
Abstract
The functionality of Vehicular Ad Hoc Networks (VANETs) is improved by the Software-Defined Vehicular Network (SDVN) paradigm. Routing is challenging in vehicular networks due to the dynamic network topology resulting from the high mobility of nodes. Existing approaches for routing in SDVN do [...] Read more.
The functionality of Vehicular Ad Hoc Networks (VANETs) is improved by the Software-Defined Vehicular Network (SDVN) paradigm. Routing is challenging in vehicular networks due to the dynamic network topology resulting from the high mobility of nodes. Existing approaches for routing in SDVN do not exploit both link lifetimes and link delays in finding routes, nor do they exploit the heterogeneity that exists in links in the vehicular network. Furthermore, most of the existing approaches compute parameters at the controller entirely using heuristic approaches, which are computationally inefficient and can increase the latency of SDVN as the network size grows. In this paper, we propose a novel hybrid algorithm for routing in SDVNs with two modes: the highest stable least delay mode and the highest stable shortest path mode, in which the mode is selected by estimating the network contention. We distinctly identify two communication channels in the vehicular network as wired and wireless, where network link entropy is formulated accordingly and is used in combination with pending transmissions to estimate collision probability and average network contention. We use the prospect of machine learning to predict the wireless link lifetimes and one-hop channel delays, which yield very low Root Mean Square Errors (RMSEs), depicting their very high accuracy, and the wireless link lifetime prediction using deep learning yields a much lower average computational time compared to an optimization-based approach. The proposed novel algorithm selects only stable links by comparing them with a link lifetime threshold whose optimum value is decided experimentally. We propose this routing framework to be compatible with the OpenFlow protocol, where we modify the flow table architecture to incorporate a route valid time and send a packet_in message to the controller when the route’s lifetime expires, requesting new flow rules. We further propose a flow table update algorithm to map computed routes to flow table entries, where we propose to incorporate an adaptive approach for route finding and flow rule updating upon reception of a packet_in message in order to minimize the computational burden at the controller and minimize communication overhead associated with control plane communication. This research contributes a novel hybrid routing framework for the existing SDVN paradigm, scrutinizing machine learning to predict the lifetime and delay of heterogeneity links, which can be readily integrated with the OpenFlow protocol for better routing applications, improving the performance of the SDVN. We performed realistic vehicular network simulations using the network simulator 3 by obtaining vehicular mobility traces using the Simulation of Urban Mobility (SUMO) tool, where we collected data sets for training the machine learning models using the simulated environment in order to test models in terms of RMSE and computational complexity. The proposed routing framework was comparatively assessed against existing routing techniques by evaluating the communication cost, latency, channel utilization, and packet delivery ratio. According to the results, the proposed routing framework results in the lowest communication cost, the highest packet delivery ratio, the least latency, and moderate channel utilization, on average, compared to routing in VANET using Ad Hoc On-demand Distance Vector (AODV) and routing in SDVN using Dijkstra; thus, the proposed routing framework improves routing in SDVN. Furthermore, results show that the proposed routing framework is enhanced with increasing routing frequency and network size, as well as at low vehicular speeds. Full article
Show Figures

Figure 1

28 pages, 4408 KiB  
Article
Intelligent Embedded Systems Platform for Vehicular Cyber-Physical Systems
by Christopher Conrad, Saba Al-Rubaye and Antonios Tsourdos
Electronics 2023, 12(13), 2908; https://doi.org/10.3390/electronics12132908 - 2 Jul 2023
Cited by 12 | Viewed by 4317
Abstract
Intelligent vehicular cyber-physical systems (ICPSs) increase the reliability, efficiency and adaptability of urban mobility systems. Notably, ICPSs enable autonomous transportation in smart cities, exemplified by the emerging fields of self-driving cars and advanced air mobility. Nonetheless, the deployment of ICPSs raises legitimate concerns [...] Read more.
Intelligent vehicular cyber-physical systems (ICPSs) increase the reliability, efficiency and adaptability of urban mobility systems. Notably, ICPSs enable autonomous transportation in smart cities, exemplified by the emerging fields of self-driving cars and advanced air mobility. Nonetheless, the deployment of ICPSs raises legitimate concerns surrounding safety assurance, cybersecurity threats, communication reliability, and data management. Addressing these issues often necessitates specialised platforms to cater to the heterogeneity and complexity of ICPSs. To address this challenge, this paper presents a comprehensive CPS to explore, develop and test ICPSs and intelligent vehicular algorithms. A customisable embedded system is realised using a field programmable gate array, which is connected to a supervisory computer to enable networked operations and support advanced multi-agent algorithms. The platform remains compatible with multiple vehicular sensors, communication protocols and human–machine interfaces, essential for a vehicle to perceive its surroundings, communicate with collaborative systems, and interact with its occupants. The proposed CPS thereby offers a practical resource to advance ICPS development, comprehension, and experimentation in both educational and research settings. By bridging the gap between theory and practice, this tool empowers users to overcome the complexities of ICPSs and contribute to the emerging fields of autonomous transportation and intelligent vehicular systems. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks)
Show Figures

Figure 1

13 pages, 1829 KiB  
Article
Intruder Detection in VANET Data Streams Using Federated Learning for Smart City Environments
by Monika Arya, Hanumat Sastry, Bhupesh Kumar Dewangan, Mohammad Khalid Imam Rahmani, Surbhi Bhatia, Abdul Wahab Muzaffar and Mariyam Aysha Bivi
Electronics 2023, 12(4), 894; https://doi.org/10.3390/electronics12040894 - 9 Feb 2023
Cited by 37 | Viewed by 3789
Abstract
Vehicular networks improve quality of life, security, and safety, making them crucial to smart city development. With the rapid advancement of intelligent vehicles, the confidentiality and security concerns surrounding vehicular ad hoc networks (VANETs) have garnered considerable attention. VANETs are intrinsically more vulnerable [...] Read more.
Vehicular networks improve quality of life, security, and safety, making them crucial to smart city development. With the rapid advancement of intelligent vehicles, the confidentiality and security concerns surrounding vehicular ad hoc networks (VANETs) have garnered considerable attention. VANETs are intrinsically more vulnerable to attacks than wired networks due to high mobility, common network medium, and lack of centrally managed security services. Intrusion detection (ID) servers are the first protection layer against cyberattacks in this digital age. The most frequently used mechanism in a VANET is intrusion detection systems (IDSs), which rely on vehicle collaboration to identify attackers. Regrettably, existing cooperative IDSs get corrupted and cause the IDSs to operate abnormally. This article presents an approach to intrusion detection based on the distributed federated learning (FL) of heterogeneous neural networks for smart cities. It saves time and resources by using the most efficient intruder detection approach. First, vehicles use a federated learning technique to develop local, deep learning-based IDS classifiers for VANET data streams. They then share their locally learned classifiers upon request, significantly reducing communication overhead with neighboring vehicles. Then, an ensemble of federated heterogeneous neural networks is constructed for each vehicle, including locally and remotely trained classifiers. Finally, the global ensemble model is again shared with local devices for their updating. The effectiveness of the suggested method for intrusion detection in VANETs is evaluated using performance indicators such as attack detection rates, classification accuracy, precision, recall, and F1 scores over a ToN-IoT data stream. The ID model shows 0.994 training and 0.981 testing accuracy. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Graphical abstract

39 pages, 2283 KiB  
Article
An Optimization Framework for Data Collection in Software Defined Vehicular Networks
by Patikiri Arachchige Don Shehan Nilmantha Wijesekara, Kalupahana Liyanage Kushan Sudheera, Gammana Guruge Nadeesha Sandamali and Peter Han Joo Chong
Sensors 2023, 23(3), 1600; https://doi.org/10.3390/s23031600 - 1 Feb 2023
Cited by 13 | Viewed by 2752
Abstract
A Software Defined Vehicular Network (SDVN) is a new paradigm that enhances programmability and flexibility in Vehicular Adhoc Networks (VANETs). There exist different architectures for SDVNs based on the degree of control of the control plane. However, in vehicular communication literature, we find [...] Read more.
A Software Defined Vehicular Network (SDVN) is a new paradigm that enhances programmability and flexibility in Vehicular Adhoc Networks (VANETs). There exist different architectures for SDVNs based on the degree of control of the control plane. However, in vehicular communication literature, we find that there is no proper mechanism to collect data. Therefore, we propose a novel data collection methodology for the hybrid SDVN architecture by modeling it as an Integer Quadratic Programming (IQP) problem. The IQP model optimally selects broadcasting nodes and agent (unicasting) nodes from a given vehicular network instance with the objective of minimizing the number of agents, communication delay, communication cost, total payload, and total overhead. Due to the dynamic network topology, finding a new solution to the optimization is frequently required in order to avoid node isolation and redundant data transmission. Therefore, we propose a systematic way to collect data and make optimization decisions by inspecting the heterogeneous normalized network link entropy. The proposed optimization model for data collection for the hybrid SDVN architecture yields a 75.5% lower communication cost and 32.7% lower end-to-end latency in large vehicular networks compared to the data collection in the centralized SDVN architecture while collecting 99.9% of the data available in the vehicular network under optimized settings. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 14000 KiB  
Article
A Contention-Free Cooperative MAC Protocol for Eliminating Heterogenous Collisions in Vehicular Ad Hoc Networks
by Nyi Nyi Linn, Kai Liu and Qiang Gao
Sensors 2023, 23(2), 1033; https://doi.org/10.3390/s23021033 - 16 Jan 2023
Cited by 13 | Viewed by 3042
Abstract
In vehicular ad hoc networks (VANETs), efficient data dissemination to a specified number of vehicles with minimum collisions and limited access delay is critical for accident prevention in road safety. However, packet collisions have a significant impact on access delay, and they may [...] Read more.
In vehicular ad hoc networks (VANETs), efficient data dissemination to a specified number of vehicles with minimum collisions and limited access delay is critical for accident prevention in road safety. However, packet collisions have a significant impact on access delay, and they may lead to unanticipated link failure when a range of diversified collisions are combined due to complex traffic conditions and rapid changes in network topology. In this paper, we propose a distributed contention-free cooperative medium access control (CFC-MAC) protocol to reduce heterogenous collisions and unintended access delay in stochastic traffic scenarios. Firstly, we develop a cooperative communication system model and cooperative forwarding mechanism to explore the optimum road path between the source and destination by identifying the potential cooperative vehicles. Secondly, we propose a vectorized trajectory estimation mechanism to suppress merging collisions by identifying the relative velocity of vehicles with different speeds in a specific time interval. Based on the case study, typical heterogeneous collisions and aggregated heterogeneous collisions at dissociated positions and associated positions are investigated. In both cases, we propose the corresponding collision-resolving mechanisms by methodically recapturing the colliding time slot or acquiring the available free time slots after identifying the access vehicles and comparing the received signal strengths. Performance analysis for collision probability and access delay is conducted. Finally, the simulation results show that the proposed protocol can achieve deterministic access delay and a minimal collision rate, substantially outperforming the existing solutions. Full article
(This article belongs to the Special Issue Sensor Networks for Vehicular Communications)
Show Figures

Figure 1

14 pages, 2481 KiB  
Article
TEZE: A System to Enhance Safety in Highway Tunnels as a New Smartphone-Based Emergency Call Paradigm
by Romeo Giuliano, Franco Mazzenga, Emilio Tenaglia, Francesco Vatalaro, Alessandro Vizzarri and Gherardo Zei
Electronics 2023, 12(2), 333; https://doi.org/10.3390/electronics12020333 - 9 Jan 2023
Cited by 2 | Viewed by 2428
Abstract
In the European Union, the eCall system has been mandatory since 31 March 2018. The system enabled a significant increase in safety on roads and highways, making help faster in the event of an accident. However, based on circuit-switched 2G/3G communications and an [...] Read more.
In the European Union, the eCall system has been mandatory since 31 March 2018. The system enabled a significant increase in safety on roads and highways, making help faster in the event of an accident. However, based on circuit-switched 2G/3G communications and an onboard device called IVS, it is generally unavailable on legacy vehicles. Some of its limitations tend to be remedied by the future NG eCall based on 4G/5G packet-switched communications. This paper discusses why the IVS may be an Achilles’ heel of any future IVS-based eCall and analyzes the advantages of a smartphone-based system. The TEZE system, starting to be implemented and installed in Italian highway tunnels, is one first general-purpose safety system, allowing highly reliable smartphone-based emergency calls. It is based on a dedicated low-cost ground infrastructure that allows monitoring of the availability of emergency call service through the mobile radio networks of the operators present inside a tunnel. The system complies with the ISO/IEC 30141:2018 reference standard. Identifying functional/non-functional requirements and their verification criteria provides an overall validation of the analyzed system. The TEZE system has been implemented and tested on the field. We report and comment on some experimental results. The paper also examines some key functionalities for vehicular services that can be implemented in an integrated system based on smartphones and heterogeneous networks. Full article
(This article belongs to the Topic Advanced Systems Engineering: Theory and Applications)
Show Figures

Figure 1

26 pages, 2813 KiB  
Article
Adaptive QoS-Aware Multi-Metrics Gateway Selection Scheme for Heterogenous Vehicular Network
by Mahmoud Alawi, Raed Alsaqour, Maha Abdelhaq, Reem Alkanhel, Baraa Sharef, Elankovan Sundararajan and Mahamod Ismail
Systems 2022, 10(5), 142; https://doi.org/10.3390/systems10050142 - 7 Sep 2022
Cited by 3 | Viewed by 2392
Abstract
A heterogeneous vehicular network (HetVNET) is a promising network architecture that combines multiple network technologies such as IEEE 802.11p, dedicated short-range communication (DSRC), and third/fourth generation cellular networks (3G/4G). In this network area, vehicle users can use wireless fidelity access points (Wi-Fi APs) [...] Read more.
A heterogeneous vehicular network (HetVNET) is a promising network architecture that combines multiple network technologies such as IEEE 802.11p, dedicated short-range communication (DSRC), and third/fourth generation cellular networks (3G/4G). In this network area, vehicle users can use wireless fidelity access points (Wi-Fi APs) to offload 4G long-term evolution (4G-LTE) networks. However, when using Wi-Fi APs, the vehicles must organize themselves and select an appropriate mobile gateway (MGW) to communicate to the cellular infrastructure. Researchers are facing the problem of selecting the best MGW vehicle to aggregate vehicle traffic and reduce LTE load in HetVNETs when the Wi-Fi APs are unavailable for offloading. The selection process utilizes extra network overhead and complexity due to the frequent formation of clusters in this highly dynamic environment. In this study, we proposed a non-cluster adaptive QoS-aware gateway selection (AQAGS) scheme that autonomously picks a limited number of vehicles to act as LTE gateways based on the LTE network’s load status and vehicular ad hoc network (VANET) application’s QoS requirements. The present AQAGS scheme focuses on highway scenarios. The proposed scheme was evaluated using simulation of Urban mobility (SUMO) and network simulator version 2 (NS2) simulators and benchmarked with the clustered and non-clustered schemes. A comparison was made based on the end-to-end delay, throughput, control packet overhead (CPO), and packet delivery ratio (PDR) performance metrics over Voice over Internet Protocol (VoIP) and File Transfer Protocol (FTP) applications. Using VoIP, the AQAGS scheme achieved a 26.7% higher PDR compared with the other schemes. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

19 pages, 5842 KiB  
Article
Service-Centric Heterogeneous Vehicular Network Modeling for Connected Traffic Environments
by Ahmad M. Khasawneh, Mamoun Abu Helou, Aanchal Khatri, Geetika Aggarwal, Omprakash Kaiwartya, Maryam Altalhi, Waheeb Abu-ulbeh and Rabah AlShboul
Sensors 2022, 22(3), 1247; https://doi.org/10.3390/s22031247 - 7 Feb 2022
Cited by 19 | Viewed by 3611
Abstract
Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) environment is an emerging research theme toward achieving smart transportation. It is an evolution of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous nature of the various existing networks [...] Read more.
Heterogeneous vehicular communication on the Internet of connected vehicle (IoV) environment is an emerging research theme toward achieving smart transportation. It is an evolution of the existing vehicular ad hoc network architecture due to the increasingly heterogeneous nature of the various existing networks in road traffic environments that need to be integrated. The existing literature on vehicular communication is lacking in the area of network optimization for heterogeneous network environments. In this context, this paper proposes a heterogeneous network model for IoV and service-oriented network optimization. The network model focuses on three key networking entities: vehicular cloud, heterogeneous communication, and smart use cases as clients. Most traffic-related data–oriented computations are performed at cloud servers for making intelligent decisions. The connection component enables handoff-centric network communication in heterogeneous vehicular environments. The use-case-oriented smart traffic services are implemented as clients for the network model. The model is tested for various service-oriented metrics in heterogeneous vehicular communication environments with the aim of affirming several service benefits. Future challenges and issues in heterogeneous IoV environments are also highlighted. Full article
(This article belongs to the Special Issue Advances in Intelligent Vehicle Control)
Show Figures

Figure 1

Back to TopTop