Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = heterocyclic liquid crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1591 KiB  
Article
Synergistic Control of Liquid Crystallinity and Phosphorescence in Gold(I) Complexes via Strategic Alkyl Chain Design
by Arushi Rawat, Kohsuke Matsumoto, Ganesan Prabusankar and Osamu Tsutsumi
Crystals 2025, 15(6), 554; https://doi.org/10.3390/cryst15060554 - 10 Jun 2025
Viewed by 1227
Abstract
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. [...] Read more.
Liquid crystals exhibit unique properties that can be tailored in response to external stimuli. Significant research is directed toward the development of luminescent materials exhibiting liquid crystallinity for various applications. The present work reports Au(I) complexes featuring N-heterocyclic carbene and phenyl acetylide ligands. Metal complexes enable the utilization of the triplet excitons through their inherent spin–orbit coupling, promoting intersystem crossing from singlet (Sn) to triplet (Tn) states to observe room-temperature phosphorescence (RTP). The strong bonds between carbene and Au enhance the thermal stability, and the substituted benzimidazole ring alters the thermodynamic and photophysical properties of the complexes. Incorporating the acetylide ligands with long alkoxy chains led to the formation of liquid crystalline (LC) phases, which exhibited stability over a wide temperature range. Additionally, the luminescence behavior was affected by the ethynyl ligands, and high quantum yields of RTP were observed. This study establishes the development of LC Au(I) complexes with a thermodynamically stable LC mesophase over a wide temperature range for applications in the field of light-emitting functional materials. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

15 pages, 4171 KiB  
Article
Self-Assembly Behavior, Aggregation Structure, and the Charge Carrier Transport Properties of S-Heterocyclic Annulated Perylene Diimide Derivatives
by Haijie Ben, Gaojie Yan, Yulin Wang, Huiming Zeng, Yuechao Wu, Feng Lin, Junhua Zhao, Wanglong Du, Shaojie Zhang, Shijia Zhou, Jingyu Pu, Milan Ye, Haifeng Ji and Liang Lv
Molecules 2024, 29(9), 1964; https://doi.org/10.3390/molecules29091964 - 25 Apr 2024
Viewed by 1383
Abstract
The construction of high-performance n-type semiconductors is crucial for the advancement of organic electronics. As an attractive n-type semiconductor, molecular systems based on perylene diimide derivatives (PDIs) have been extensively investigated over recent years. Owing to the fascinating aggregated structure and high performance, [...] Read more.
The construction of high-performance n-type semiconductors is crucial for the advancement of organic electronics. As an attractive n-type semiconductor, molecular systems based on perylene diimide derivatives (PDIs) have been extensively investigated over recent years. Owing to the fascinating aggregated structure and high performance, S-heterocyclic annulated PDIs (SPDIs) are receiving increasing attention. However, the relationship between the structure and the electrical properties of SPDIs has not been deeply revealed, restricting the progress of PDI-based organic electronics. Here, we developed two novel SPDIs with linear and dendronized substituents in the imide position, named linear SPDI and dendronized SPDI, respectively. A series of structural and property characterizations indicated that linear SPDI formed a long-range-ordered crystalline structure based on helical supramolecular columns, while dendronized SPDI, with longer alkyl side chains, formed a 3D-ordered crystalline structure at a low temperature, which transformed into a hexagonal columnar liquid crystal structure at a high temperature. Moreover, no significant charge carrier transport signal was examined for linear SPDI, while dendronized SPDI had a charge carrier mobility of 3.5 × 10−3 cm2 V−1 s−1 and 2.1 × 10−3 cm2 V−1 s−1 in the crystalline and liquid crystalline state, respectively. These findings highlight the importance of the structure–function relationship in PDIs, and also offer useful roadmaps for the design of high-performance organic electronics for down-to-earth applications. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Graphical abstract

16 pages, 2770 KiB  
Article
N-N(+) Bond-Forming Intramolecular Cyclization of O-Tosyloxy β-Aminopropioamidoximes and Ion Exchange Reaction for the Synthesis of 2-Aminospiropyrazolilammonium Chlorides and Hexafluorophosphates
by Lyudmila Kayukova, Anna Vologzhanina, Pavel Dorovatovskii, Elmira Yergaliyeva, Asem Uzakova and Aidana Duisenali
Int. J. Mol. Sci. 2023, 24(14), 11315; https://doi.org/10.3390/ijms241411315 - 11 Jul 2023
Cited by 2 | Viewed by 4141
Abstract
Our research area is related to the spiropyrazolinium-containingcompounds, which are insufficiently studied compared with pyrazoline-containing compounds. Nitrogen-containing azoniaspiromolecules have also been well studied. In drug design and other areas, they are a priori important structures, since rigid spirocyclic scaffolds with the reduced conformational [...] Read more.
Our research area is related to the spiropyrazolinium-containingcompounds, which are insufficiently studied compared with pyrazoline-containing compounds. Nitrogen-containing azoniaspiromolecules have also been well studied. In drug design and other areas, they are a priori important structures, since rigid spirocyclic scaffolds with the reduced conformational entropy are able to organize a closely spaced area. Azoniaspirostructures are currently of wide practical interest as ionic liquids, current sources (membranes), structure-directing agents in organocatalysis, and in the synthesis of ordered ceramics. Our goal was the synthesis of 2-aminospiropyrazolilammonium chlorides and hexafluorophosphates. Our methodology is based on the tosylation of β-aminopropioamidoximes with six-membered N-heterocycles (piperidine, morpholine, thiomorpholine, and phenylpiperazine) at the β-position. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates were obtained by the reaction of double ion substitution in the reaction of toluenesulfonates of 2-aminospiropyrazolinium compounds with an ethereal solution of HCl in ethanol and with ammonium hexafluorophosphate in ethanol in quantitative yields of 5597%. The physicochemical characteristics of the synthesized compounds and their IR and NMR spectra are presented. The obtained salts were additionally characterized by the single-crystal XRD analysis. The presence of both axial and equatorial conformations of spirocations in solids was confirmed. 2-Aminospiropyrazolilammonium chlorides and hexafluorophosphates have weak in vitro antimicrobial activity on Gram-positive and Gram-negative bacterial lines. Full article
Show Figures

Figure 1

17 pages, 6769 KiB  
Article
Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids
by Sameera Shah, Tobias Pietsch, Maria Annette Herz, Franziska Jach and Michael Ruck
Chemistry 2023, 5(2), 1378-1394; https://doi.org/10.3390/chemistry5020094 - 2 Jun 2023
Cited by 3 | Viewed by 2629
Abstract
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic [...] Read more.
Rare-earth metal sesquioxides (RE2O3) are stable compounds that require high activation energies in solid-state reactions or strong acids for dissolution in aqueous media. Alternatively, dissolution and downstream chemistry of RE2O3 have been achieved with ionic liquids (ILs), but typically with additional water. In contrast, the anhydrous IL 1-butyl-3-methylimidazolium acetate [BMIm][OAc] dissolves RE2O3 for RE = La–Ho and forms homoleptic dinuclear metal complexes that crystallize as [BMIm]2[RE2(OAc)8] salts. Chloride ions promote the dissolution without being included in the compounds. Since the lattice energy of RE2O3 increases with decreasing size of the RE3+ cation, Ho2O3 dissolves very slowly, while the sesquioxides with even smaller cations appear to be inert under the applied conditions. The Sm and Eu complex salts show blue and red photoluminescence and Van Vleck paramagnetism. The proton source for the dissolution is the imidazolium cation. Abstraction of the acidic proton at the C2-atom yields an N-heterocyclic carbene (imidazole-2-ylidene). The IL can be regenerated by subsequent reaction with acetic acid. In the overall process, RE2O3 is dissolved by anhydrous acetic acid, a reaction that does not proceed directly. Full article
(This article belongs to the Special Issue Commemorating 150 Years of Justus von Liebig’s Legacy)
Show Figures

Figure 1

12 pages, 3456 KiB  
Article
Fluorination Improves the Electro-Optical Properties of Benzoxazole-Terminated Liquid Crystals in High Birefringence Liquid Crystal Mixtures: Experimental and Theoretical Investigations
by Ran Chen, Zihao Mao, Zhongwei An, Xinbing Chen and Pei Chen
Molecules 2023, 28(7), 3019; https://doi.org/10.3390/molecules28073019 - 28 Mar 2023
Cited by 1 | Viewed by 2751
Abstract
Aromatic heterocyclic liquid crystal (LC) materials have received much attention from LC chemists for their high birefringence and large dielectric anisotropy, yet few have reported their properties in LC mixtures. In this work, a series of fluorinated benzoxazole liquid crystal compounds were synthesized [...] Read more.
Aromatic heterocyclic liquid crystal (LC) materials have received much attention from LC chemists for their high birefringence and large dielectric anisotropy, yet few have reported their properties in LC mixtures. In this work, a series of fluorinated benzoxazole liquid crystal compounds were synthesized to evaluate their electro-optical properties in high birefringence LC mixtures, with the expectation of further establishing the theoretical basis and experimental evidence for their applications in LC photonics. Firstly, the effects of the lateral fluorine substituent positions on the molecular synthetic yield, mesomorphic and solubility properties were comparatively investigated. Afterwards, we focused on the fluorination effects on the core electro-optical properties, including birefringence, dielectric anisotropy and further investigation of the viscoelastic coefficient of high birefringence LC mixtures. Research results showed that the benzoxazole liquid crystal compounds possess low melting points, wide nematic phase intervals and good solubility by appropriate lateral fluorine substitution, which is beneficial to further improve the electro-optical properties of high birefringence LC mixtures. Meanwhile, the theoretical and experimental results corroborate each other to well reveal the structure–property relationship. This study demonstrates that fluorination would promote promising applications of benzoxazole-terminated liquid crystals in emerging LC optical devices. Full article
Show Figures

Figure 1

12 pages, 3107 KiB  
Article
Shaping 1,2,4-Triazolium Fluorinated Ionic Liquid Crystals
by Carla Rizzo, Ignazio Fiduccia, Silvestre Buscemi, Antonio Palumbo Piccionello, Andrea Pace and Ivana Pibiri
Appl. Sci. 2023, 13(5), 2947; https://doi.org/10.3390/app13052947 - 24 Feb 2023
Cited by 1 | Viewed by 1611
Abstract
The synthesis and thermotropic behaviour of some di-alkyloxy-phenyl-1,2,4-triazolium trifluoromethane-sulfonate salts bearing a seven-carbon atom perfluoroalkyl chain on the cation is herein described. The fluorinated salts presenting a 1,2,4-triazole as a core and differing in the length of two alkyloxy chains on the phenyl [...] Read more.
The synthesis and thermotropic behaviour of some di-alkyloxy-phenyl-1,2,4-triazolium trifluoromethane-sulfonate salts bearing a seven-carbon atom perfluoroalkyl chain on the cation is herein described. The fluorinated salts presenting a 1,2,4-triazole as a core and differing in the length of two alkyloxy chains on the phenyl ring demonstrated a typical liquid crystalline behaviour. The mesomorphic properties of this set of salts were studied by differential scanning calorimetry and polarized optical microscopy. The thermotropic properties are discussed on the grounds of the tuneable structures of the salts. The results showed the existence of a monotropic, columnar, liquid crystalline phase for the salts tested. An increase in the temperature mesophase range and the presence of two enantiotropic mesophases for the sixteen-atom alkyloxy chain salt can be observed by increasing the length of the alkyloxy chain on the phenyl ring. Full article
(This article belongs to the Special Issue Novel Liquid Crystal Materials and Applications)
Show Figures

Figure 1

20 pages, 12676 KiB  
Article
Homoleptic Complexes of Heterocyclic Curcuminoids with Mg(II) and Cu(II): First Conformationally Heteroleptic Case, Crystal Structures, and Biological Properties
by William Meza-Morales, Yuritzi Alejo-Osorio, Yair Alvarez-Ricardo, Marco A. Obregón-Mendoza, Juan C. Machado-Rodriguez, Antonino Arenaza-Corona, Rubén A. Toscano, María Teresa Ramírez-Apan and Raúl G. Enríquez
Molecules 2023, 28(3), 1434; https://doi.org/10.3390/molecules28031434 - 2 Feb 2023
Cited by 6 | Viewed by 2410
Abstract
We report herein the synthesis and characterization of three heterocyclic curcuminoid ligands and their homoleptic metal complexes with magnesium and copper. Thus, N-methyl-2-pyrrolecarboxaldehyde, Furan-2-carboxaldehyde, and 2-Thiophenecarboxaldehyde were condensed with 2,4-pentanedione-boron trioxide complex. The first N-methyl-2-pyrrole curcuminoid and its Mg(II) complex are reported. All [...] Read more.
We report herein the synthesis and characterization of three heterocyclic curcuminoid ligands and their homoleptic metal complexes with magnesium and copper. Thus, N-methyl-2-pyrrolecarboxaldehyde, Furan-2-carboxaldehyde, and 2-Thiophenecarboxaldehyde were condensed with 2,4-pentanedione-boron trioxide complex. The first N-methyl-2-pyrrole curcuminoid and its Mg(II) complex are reported. All curcuminoid ligands and their corresponding metal complexes were characterized by infrared spectroscopy (IR), liquid state nuclear magnetic resonance (LSNMR), electron paramagnetic resonance (EPR), mass spectrometry (MS) and single crystal X-ray diffraction (SCXRD). The ThiopheneCurc-Cu (9) constitutes the first case of a “conformationally-heteroleptic” complex. The unique six-peaks star arrangement for the ThiopheneCurc ligand derived from the supramolecular description is reported. The metal complexes of FuranCurc-Mg (5) and ThiopheneCurc-Cu (9) have a good antioxidant effect (IC50 = 11.26 ± 1.73 and 10.30 ± 0.59 μM), three and two times higher than their free ligands respectively. Additionally, (5) shows remarkable cytotoxicity against colon cancer adenocarcinoma cell line HCT-15, comparable to that of cisplatin, with a negligible toxic effect in vitro towards a healthy monkey kidney cell line (COS-7). Full article
Show Figures

Graphical abstract

19 pages, 7146 KiB  
Article
Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact
by Shady Nada, Mohamed Hagar, Omaima Farahat, Ahmed A. Hasanein, Abdul-Hamid Emwas, Abeer Ali Sharfalddin, Mariusz Jaremko and Mohamed A. Zakaria
Molecules 2022, 27(7), 2304; https://doi.org/10.3390/molecules27072304 - 1 Apr 2022
Cited by 17 | Viewed by 4475
Abstract
Three rings 2-hydroxypyridine liquid crystalline compounds have been prepared and fully characterized. The mesomorphic behavior of the prepared compounds has been investigated in terms of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Moreover, a comparative study between the prepared compounds and [...] Read more.
Three rings 2-hydroxypyridine liquid crystalline compounds have been prepared and fully characterized. The mesomorphic behavior of the prepared compounds has been investigated in terms of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). Moreover, a comparative study between the prepared compounds and previously reported analogs has been discussed in terms of the orientation and position of the mesogenic core, in addition to the direction of the terminal alkyl chains. Furthermore, a detailed computational approach has been studied to illustrate the effect of geometrical and dimensional parameters on the type of the enhanced texture and the mesomorphic range and stability. The results of the DFT study revealed that the orientation of the mesogen could affect the mesomorphic behavior and this has been attributed in terms of the degree of the polarizability of the linking groups. This result has been confirmed by calculation of the net dipole moment and the molecular electrostatic potential that show how the mesogen orientation and position could impact the molecular charge separation. Finally, the effect of the pyridyl group has been also investigated in terms of the calculated aromaticity index and the π-π stacking. Full article
(This article belongs to the Special Issue Polymeric Liquid Crystals and Applications)
Show Figures

Figure 1

17 pages, 1656 KiB  
Article
In Silico Drug Design of Benzothiadiazine Derivatives Interacting with Phospholipid Cell Membranes
by Zheyao Hu and Jordi Marti
Membranes 2022, 12(3), 331; https://doi.org/10.3390/membranes12030331 - 17 Mar 2022
Cited by 8 | Viewed by 3098
Abstract
The use of drugs derived from benzothiadiazine, a bicyclic heterocyclic benzene derivative, has become a widespread treatment for diseases such as hypertension, low blood sugar or the human immunodeficiency virus, among others. In this work we have investigated the interactions of benzothiadiazine and [...] Read more.
The use of drugs derived from benzothiadiazine, a bicyclic heterocyclic benzene derivative, has become a widespread treatment for diseases such as hypertension, low blood sugar or the human immunodeficiency virus, among others. In this work we have investigated the interactions of benzothiadiazine and four of its derivatives designed in silico with model zwitterionic cell membranes formed by dioleoylphosphatidylcholine, 1,2-dioleoyl-sn-glycero-3-phosphoserine and cholesterol at the liquid–crystal phase inside aqueous potassium chloride solution. We have elucidated the local structure of benzothiadiazine by means of microsecond molecular dynamics simulations of systems including a benzothiadiazine molecule or one of its derivatives. Such derivatives were obtained by the substitution of a single hydrogen site of benzothiadiazine by two different classes of chemical groups, one of them electron-donating groups (methyl and ethyl) and another one by electron-accepting groups (fluorine and trifluoromethyl). Our data have revealed that benzothiadiazine derivatives have a strong affinity to stay at the cell membrane interface although their solvation characteristics can vary significantly—they can be fully solvated by water in short periods of time or continuously attached to specific lipid sites during intervals of 10–70 ns. Furthermore, benzothiadiazines are able to bind lipids and cholesterol chains by means of single and double hydrogen-bonds of characteristic lengths between 1.6 and 2.1 Å. Full article
(This article belongs to the Special Issue Modeling and Simulation of Lipid Membranes)
Show Figures

Figure 1

12 pages, 2281 KiB  
Article
Oxadiazolyl-Pyridinium as Cationic Scaffold for Fluorinated Ionic Liquid Crystals
by Melina S. Weber, Margit Schulze, Giuseppe Lazzara, Antonio Palumbo Piccionello, Andrea Pace and Ivana Pibiri
Appl. Sci. 2021, 11(21), 10347; https://doi.org/10.3390/app112110347 - 3 Nov 2021
Cited by 3 | Viewed by 2405
Abstract
The synthesis and characterization of a new class of 1,2,4-oxadiazolylpyridinium as a cationic scaffold for fluorinated ionic liquid crystals is herein described. A series of 12 fluorinated heterocyclic salts based on a 1,2,4-oxadiazole moiety, connected through its C(5) or C(3) to an N [...] Read more.
The synthesis and characterization of a new class of 1,2,4-oxadiazolylpyridinium as a cationic scaffold for fluorinated ionic liquid crystals is herein described. A series of 12 fluorinated heterocyclic salts based on a 1,2,4-oxadiazole moiety, connected through its C(5) or C(3) to an N-alkylpyridinium unit and a perfluoroheptyl chain, differing in the length of the alkyl chain and counterions, has been synthesized. As counterions iodide, bromide and bis(trifluoromethane)sulfonimide have been considered. The synthesis, structure, and liquid crystalline properties of these compounds are discussed on the basis of the tuned structural variables. The thermotropic properties of this series of salts have been investigated by differential scanning calorimetry and polarized optical microscopy. The results showed the existence of an enantiotropic mesomorphic smectic liquid crystalline phase for six bis(trifluoromethane)sulfonimide salts. Full article
Show Figures

Figure 1

11 pages, 20653 KiB  
Article
Using Dihydrazides as Thermal Latent Curing Agents in Epoxy-Based Sealing Materials for Liquid Crystal Displays
by Jun Hyup Lee
Polymers 2021, 13(1), 109; https://doi.org/10.3390/polym13010109 - 29 Dec 2020
Cited by 10 | Viewed by 4853
Abstract
In this study, highly adhesive epoxy-based sealing materials for liquid crystal (LC) displays were fabricated using different types of dihydrazides as thermal latent curing agents. Their curing characteristics, mechanical properties, LC contamination levels, and electro-optical characteristics were investigated depending on the chemical structure [...] Read more.
In this study, highly adhesive epoxy-based sealing materials for liquid crystal (LC) displays were fabricated using different types of dihydrazides as thermal latent curing agents. Their curing characteristics, mechanical properties, LC contamination levels, and electro-optical characteristics were investigated depending on the chemical structure of dihydrazides. The epoxy-based sealing material containing a dihydrazide derivative with a bulky heterocyclic ring afforded a high heat curing conversion of 90.4%, high adhesion strength of 54.3 kgf cm−2, and a high elongation of 57.3% due to the relatively low melting characteristic under heat treatment compared to those involving dihydrazides with short aliphatic or aromatic spacers. In addition, the proposed sealing material exhibited an extremely low LC contamination level of 9 µm, which is essential to the successful operation of LC displays. With respect to electro-optical properties of the LC device, it was found that a dihydrazide derivative with a bulky heterocyclic ring afforded a normal voltage-dependent transmittance curve and fast response time due to the prevention of abnormal homogeneous LC alignment. This study developed highly adhesive and robust epoxy-based sealing materials based on the use of dihydrazides as thermal latent curing agents for advanced LC displays. Full article
(This article belongs to the Special Issue Advanced Epoxy-Based Materials)
Show Figures

Figure 1

19 pages, 5285 KiB  
Article
Impact of Substitution Pattern and Chain Length on the Thermotropic Properties of Alkoxy-Substituted Triphenyl-Tristriazolotriazines
by Thorsten Rieth, Natalie Tober, Daniel Limbach, Tobias Haspel, Marcel Sperner, Niklas Schupp, Philipp Wicker, Stefan Glang, Matthias Lehmann and Heiner Detert
Molecules 2020, 25(23), 5761; https://doi.org/10.3390/molecules25235761 - 7 Dec 2020
Cited by 8 | Viewed by 4304
Abstract
Tristriazolotriazines (TTTs) with a threefold alkoxyphenyl substitution were prepared and studied by DSC, polarized optical microscopy (POM) and X-ray scattering. Six pentyloxy chains are sufficient to induce liquid-crystalline behavior in these star-shaped compounds. Thermotropic properties of TTTs with varying substitution patterns and a [...] Read more.
Tristriazolotriazines (TTTs) with a threefold alkoxyphenyl substitution were prepared and studied by DSC, polarized optical microscopy (POM) and X-ray scattering. Six pentyloxy chains are sufficient to induce liquid-crystalline behavior in these star-shaped compounds. Thermotropic properties of TTTs with varying substitution patterns and a periphery of linear chains of different lengths, branching in the chain and swallow-tails, are compared. Generally, these disks display broad and stable thermotropic mesophases, with the tangential TTT being superior to the radial isomer. The structure–property relationships of the number of alkyl chains, their position, length and structure were studied. Full article
(This article belongs to the Special Issue Liquid Crystals 2020)
Show Figures

Figure 1

18 pages, 2635 KiB  
Article
N-Heterocyclic Carbene-Platinum Complexes Featuring an Anthracenyl Moiety: Anti-Cancer Activity and DNA Interaction
by Sébastien Harlepp, Edith Chardon, Mathilde Bouché, Georges Dahm, Mounir Maaloum and Stéphane Bellemin-Laponnaz
Int. J. Mol. Sci. 2019, 20(17), 4198; https://doi.org/10.3390/ijms20174198 - 27 Aug 2019
Cited by 21 | Viewed by 5354
Abstract
A platinum (II) complex stabilized by a pyridine and an N-heterocyclic carbene ligand featuring an anthracenyl moiety was prepared. The compound was fully characterized and its molecular structure was determined by single-crystal X-ray diffraction. The compound demonstrated high in vitro antiproliferative activities against [...] Read more.
A platinum (II) complex stabilized by a pyridine and an N-heterocyclic carbene ligand featuring an anthracenyl moiety was prepared. The compound was fully characterized and its molecular structure was determined by single-crystal X-ray diffraction. The compound demonstrated high in vitro antiproliferative activities against cancer cell lines with IC50 ranging from 10 to 80 nM. The presence of the anthracenyl moiety on the N-heterocyclic carbene (NHC) Pt complex was used as a luminescent tag to probe the metal interaction with the nucleobases of the DNA through a pyridine-nucleobase ligand exchange. Such interaction of the platinum complex with DNA was corroborated by optical tweezers techniques and liquid phase atomic force microscopy (AFM). The results revealed a two-state interaction between the platinum complex and the DNA strands. This two-state behavior was quantified from the different experiments due to contour length variations. At 24 h incubation, the stretching curves revealed multiple structural breakages, and AFM imaging revealed a highly compact and dense structure of platinum complexes bridging the DNA strands. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Graphical abstract

13 pages, 2429 KiB  
Article
Thermochemically Stable Liquid-Crystalline Gold(I) Complexes Showing Enhanced Room Temperature Phosphorescence
by Yuki Kuroda, Shin-ya Nakamura, Katam Srinivas, Arruri Sathyanarayana, Ganesan Prabusankar, Kyohei Hisano and Osamu Tsutsumi
Crystals 2019, 9(5), 227; https://doi.org/10.3390/cryst9050227 - 27 Apr 2019
Cited by 17 | Viewed by 4952
Abstract
Gold(I) complexes are some of the most attractive materials for generating aggregation-induced emission (AIE), enabling the realization of novel light-emitting applications such as chemo-sensors, bio-sensors, cell imaging, and organic light-emitting diodes (OLEDs). In this study, we propose a rational design of luminescent gold [...] Read more.
Gold(I) complexes are some of the most attractive materials for generating aggregation-induced emission (AIE), enabling the realization of novel light-emitting applications such as chemo-sensors, bio-sensors, cell imaging, and organic light-emitting diodes (OLEDs). In this study, we propose a rational design of luminescent gold complexes to achieve both high thermochemical stability and intense room temperature phosphorescence, which are desirable features in practical luminescent applications. Here, a series of gold(I) complexes with ligands of N-heterocyclic carbene (NHC) derivatives and/or acetylide were synthesized. Detailed characterization revealed that the incorporation of NHC ligands could increase the molecular thermochemical stability, as the decomposition temperature was increased to ~300 °C. We demonstrate that incorporation of both NHC and acetylide ligands enables us to generate gold(I) complexes exhibiting both high thermochemical stability and high room-temperature phosphorescence quantum yield (>40%) under ambient conditions. Furthermore, we modified the length of alkoxy chains at ligands, and succeeded in synthesizing a liquid crystalline gold(I) complex while maintaining the relatively high thermochemical stability and quantum yield. Full article
(This article belongs to the Special Issue Synthesis and Properties of Light-emitting Liquid Crystals)
Show Figures

Figure 1

3 pages, 29 KiB  
Short Note
Synthesis of a New Heterocycle with Liquid Crystal Properties: 2-(3-Methoxy-4-hexadecanoyloxyphenyl)benzothiazole
by Sie-Tiong Ha, Teck-Ming Koh, Siew-Teng Ong and Lay-Khoon Ong
Molbank 2009, 2009(3), M606; https://doi.org/10.3390/M606 - 21 Jul 2009
Cited by 3 | Viewed by 6380
Abstract
A new heterocycle 2-(3-methoxy-4-hexadecanoyloxyphenyl)benzothiazole was synthesized and its IR, 1H NMR, 13C NMR and MS spectroscopic data are presented. Full article
Back to TopTop