Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Dissolution of RE2O3
3.2. Regeneration of the Reacted Ionic Liquid
3.3. [BMIm]2[RE2(OAc)8] Complex Salts
3.4. IR and NMR Spectra
3.5. Stability of the Complex Salts
3.6. Photoluminescence of the Eu and Sm Salts
3.7. Magnetism of the Eu and Sm Salts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, B. Photofunctional Rare Earth Hybrid Materials, 1st ed.; Springer Series in Materials Science; Springer: Singapore, 2017; pp. 1–261. [Google Scholar] [CrossRef]
- Peng, J.B.; Kong, X.J.; Ren, Y.P.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S. Trigonal Bipyramidal Dy5 Cluster Exhibiting Slow Magnetic Relaxation. Inorg. Chem. 2012, 51, 2186–2190. [Google Scholar] [CrossRef] [PubMed]
- Nockemann, P.; Beurer, E.; Driesen, K.; Van Deun, R.; Van Hecke, K.; Van Meervelt, L.; Binnemans, K. Photostability of a Highly Luminescent Europium β-Diketonate Complex in Imidazolium Ionic Liquids. Chem. Commun. 2005, 34, 4354–4356. [Google Scholar] [CrossRef] [PubMed]
- Billard, I.; Gaillard, C.; Hennig, C. Dissolution of UO2, UO3 and of Some Lanthanide Oxides in BumimTf2N: Effect of Acid and Water and Formation of UO2(NO3)3−. Dalton Trans. 2007, 37, 4214–4221. [Google Scholar] [CrossRef]
- Tang, S.-F.; Smetana, V.; Mishra, M.K.; Kelley, S.P.; Renier, O.; Rogers, R.D.; Mudring, A.-V. Forcing Dicyanamide Coordination to f-Elements by Dissolution in Dicyanamide-Based Ionic Liquids. Inorg. Chem. 2020, 59, 7227–7237. [Google Scholar] [CrossRef]
- Tang, S.; Babai, A.; Mudring, A.-V. Europium-Based Ionic Liquids as Luminescent Soft Materials. Angew. Chem. Int. Ed. 2008, 47, 7631–7634. [Google Scholar] [CrossRef]
- Prodius, D.; Mudring, A.V. Rare Earth Metal-Containing Ionic Liquids. Coord. Chem. Rev. 2018, 363, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, D.; Duan, D.; Liu, J.; Cao, Y.; Peng, W. A Novel Dissolution and Synchronous Extraction of Rare Earth Elements from Bastnaesite by a Functionalized Ionic Liquid [Hbet][Tf2N]. Minerals 2022, 12, 1592. [Google Scholar] [CrossRef]
- Khodakarami, M.; Alagha, L. Separation and Recovery of Rare Earth Elements Using Novel Ammonium-Based Task-Specific Ionic Liquids with Bidentate and Tridentate O-Donor Functional Groups. Sep. Purif. Technol. 2020, 232, 115952. [Google Scholar] [CrossRef]
- Brown, L.C.; Hogg, J.M.; Swadźba-Kwaśny, M. Lewis Acidic Ionic Liquids. Top. Curr. Chem. 2017, 375, 78. [Google Scholar] [CrossRef] [Green Version]
- Yao, A.; Qu, F.; Liu, Y.; Qu, G.; Lin, H.; Hu, S.; Wang, X.; Chu, T. Ionic Liquids with Polychloride Anions as Effective Oxidants for the Dissolution of UO2. Dalton Trans. 2019, 48, 16249–16257. [Google Scholar] [CrossRef]
- Shahr El-Din, A.M.; Rizk, H.E.; Borai, E.H.; El Afifi, E.S.M. Selective Separation and Purification of Cerium(III) from Concentrate Liquor Associated with Monazite Processing by Cationic Exchange Resin as Adsorbent. Chem. Pap. 2023, 77, 2525–2538. [Google Scholar] [CrossRef]
- Liu, T.; Ivanov, A.S. N-Oxide Ligands for Selective Separations of Lanthanides: Insights from Computation. RSC Adv. 2023, 13, 764–769. [Google Scholar] [CrossRef]
- Fan, F.-L.; Qin, Z.; Cao, S.-W.; Tan, C.-M.; Huang, Q.-G.; Chen, D.-S.; Wang, J.-R.; Yin, X.-J.; Xu, C.; Feng, X.-G. Highly Efficient and Selective Dissolution Separation of Fission Products by an Ionic Liquid [Hbet][Tf2N]: A New Approach to Spent Nuclear Fuel Recycling. J. Inorg. Chem. 2019, 58, 603–609. [Google Scholar] [CrossRef]
- Mohapatra, P.K.; Mahanty, B. Direct Dissolution of Metal Oxides in Ionic Liquids as a Smart Strategy for Separation: Current Status and Prospective. Sep. Sci. Technol. 2022, 57, 2792–2823. [Google Scholar] [CrossRef]
- Entezari-Zarandi, A.; Larachi, F. Selective Dissolution of Rare-Earth Element Carbonates in Deep Eutectic Solvents. J. Rare Earths 2019, 37, 528–533. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Orefice, M.; Binnemans, K. Metal Recovery from Spent Samarium-Cobalt Magnets Using a Trichloride Ionic Liquid. ACS Sustain. Chem. Eng. 2019, 7, 2578–2584. [Google Scholar] [CrossRef] [Green Version]
- Nockemann, P.; Thijs, B.; Parac-Vogt, T.N.; Van Hecke, K.; Van Meervelt, L.; Tinant, B.; Hartenbach, I.; Schleid, T.; Vu, T.N.; Minh, T.N.; et al. Carboxyl-Functionalized Task-Specific Ionic Liquids for Solubilizing Metal Oxides. Inorg. Chem. 2008, 47, 9987–9999. [Google Scholar] [CrossRef]
- Quintana, A.A.; Sztapka, A.M.; Ebinuma, V.D.C.S.; Agatemor, C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew. Chem. Int. Ed. 2022, 61, e202205609. [Google Scholar] [CrossRef]
- Kelley, S.P.; Smetana, V.; Emerson, S.D.; Mudring, A.V.; Rogers, R.D. Benchtop Access to Anhydrous Actinide N-Donor Coordination Complexes Using Ionic Liquids. Chem. Commun. 2020, 56, 4232–4235. [Google Scholar] [CrossRef]
- Shah, S.; Pietsch, T.; Ruck, M. N-Heterocyclic Carbene-Mediated Oxidation of Copper (I) in an Imidazolium Ionic Liquid. Z. Naturforsch. B 2023, 78, 105–112. [Google Scholar] [CrossRef]
- Flanigan, D.M.; Romanov-Michailidis, F.; White, N.A.; Rovis, T. Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. Chem. Rev. 2015, 115, 9307–9387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Li, Y.; Hou, Y. Basicity Characterization of Imidazolyl Ionic Liquids and Their Application for Biomass Dissolution. Int. J. Chem. Eng. 2018, 2018, 7501659. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Guo, X.; Xu, R. Understanding the Dissolution of Cellulose in 1-Butyl-3-Methylimidazolium Acetate+DMAc Solvent. Int. J. Biol. Macromol. 2015, 81, 1000–1004. [Google Scholar] [CrossRef]
- Liebner, F.; Patel, I.; Ebner, G.; Becker, E.; Horix, M.; Potthast, A.; Rosenau, T. Thermal Aging of 1-Alkyl-3-Methylimidazolium Ionic Liquids and Its Effect on Dissolved Cellulose. Holzforschung 2010, 64, 161–166. [Google Scholar] [CrossRef]
- Besnard, M.; Cabaço, M.I.; Vaca Chávez, F.; Pinaud, N.; Sebastião, P.J.; Coutinho, J.A.P.; Mascetti, J.; Danten, Y. CO2 in 1-Butyl-3-Methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions. J. Phys. Chem. A 2012, 116, 4890–4901. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Ruck, M. Dissolution of Metal Oxides in Task-Specific Ionic Liquid. RSC Adv. 2019, 9, 29699–29710. [Google Scholar] [CrossRef] [Green Version]
- Orefice, M.; Binnemans, K.; Vander Hoogerstraete, T. Metal Coordination in the High-Temperature Leaching of Roasted NdFeB Magnets with the Ionic Liquid Betainium Bis(Trifluoromethylsulfonyl)Imide. RSC Adv. 2018, 8, 9299–9310. [Google Scholar] [CrossRef] [Green Version]
- Lê Anh, M.; Wolff, A.; Kaiser, M.; Yogendra, S.; Weigand, J.J.; Pallmann, J.; Brunner, E.; Ruck, M.; Doert, T. Mechanistic Exploration of the Copper(I) Phosphide Synthesis in Phosphonium-Based and Phosphorus-Free Ionic Liquids. Dalton Trans. 2017, 46, 15004–15011. [Google Scholar] [CrossRef]
- Wolff, A.; Pallmann, J.; Boucher, R.; Weiz, A.; Brunner, E.; Doert, T.; Ruck, M. Resource-Efficient High-Yield Ionothermal Synthesis of Microcrystalline Cu3-XP. Inorg. Chem. 2016, 55, 8844–8851. [Google Scholar] [CrossRef]
- Wolff, A.; Pallmann, J.; Brunner, E.; Doert, T.; Ruck, M. On the Anion Exchange of PX3 (X = Cl, Br, I) in Ionic Liquids Comprising Halide Anions. Z. Anorg. Allg. Chem. 2017, 643, 20–24. [Google Scholar] [CrossRef]
- Getsis, A.; Balke, B.; Felser, C.; Mudring, A.V. Dysprosium-Based Ionic Liquid Crystals: Thermal, Structural, Photo- and Magnetophysical Properties. Cryst. Growth Des. 2009, 9, 4429–4437. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; Elsuccary, S.A.A.; Al-Attar, T.H.; Khanji, A.A.; Butt, H.P.; Mohamed, N.M. Production of 1-Butyl-3-Methylimidazolium Acetate [Bmim][Ac] Using 1-Butyl-3-Methylimidazolium Chloride [Bmim]Cl and Silver Acetate: A Kinetic Study. In Ionic Liquids—Thermophysical Properties and Applications, 2nd ed.; Murshed, S.M.S., Ed.; IntechOpen Limited: London, UK, 2021; pp. 1–21. [Google Scholar] [CrossRef]
- Hamm, C.M.; Alff, L.; Albert, B. Synthesis of Microcrystalline Ce2O3 and Formation of Solid Solutions between Cerium and Lanthanum Oxides. Z. Anorg. Allg. Chem. 2014, 640, 1050–1053. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS, Area-Detector Absorption Correction; Bruker AXS Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Evans, P.R. An Introduction to Data Reduction: Space-Group Determination, Scaling and Intensity Statistics. Acta Crystallogr. Sect. D 2011, 67, 282–292. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- OlexSys. OLEX2, version 1.2; OlexSys Ltd.: Durham, UK, 2014.
- Sheldrick, G.M.; Schneider, T.R. SHELXL: High-Resolution Refinement. Methods Enzymol. 1997, 277, 319–343. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Brandenburg, K. DIAMOND 4, Crystal and Molecular Structure Visualization, Version 4.6.8; Crystal Impact GbR: Bonn, Germany, 2022.
- Advanced Chemistry Development, Inc. ACchD/C+H NM Predictor and DB 2017.1.3; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2017; Available online: www.acdlabs.com (accessed on 10 July 2020).
- OPUS, Version 6.5; Bruker Optik GmbH: Ettlingen, Germany, 2004.
- Chiarotto, I.; Feroci, M.; Inesi, A. First Direct Evidence of N-Heterocyclic Carbene in BMIm Acetate Ionic Liquids. An Electrochemical and Chemical Study on the Role of Temperature. New J. Chem. 2017, 41, 7840–7843. [Google Scholar] [CrossRef]
- Rodríguez, H.; Gurau, G.; Holbrey, J.D.; Rogers, R.D. Reaction of Elemental Chalcogens with Imidazolium Acetates to Yield Imidazole-2-Chalcogenones: Direct Evidence for Ionic Liquids as Proto-Carbenes. Chem. Commun. 2011, 47, 3222–3224. [Google Scholar] [CrossRef]
- Shannon, R.D.; Prewitt, C.T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr. Sect. B 1969, 25, 925–946. [Google Scholar] [CrossRef]
- Wendler, F.; Todi, L.N.; Meister, F. Thermostability of Imidazolium Ionic Liquids as Direct Solvents for Cellulose. Thermochim. Acta 2012, 528, 76–84. [Google Scholar] [CrossRef]
- Kroon, M.C.; Buijs, W.; Peters, C.J.; Witkamp, G.J. Quantum Chemical Aided Prediction of the Thermal Decomposition Mechanisms and Temperatures of Ionic Liquids. Thermochim. Acta 2007, 465, 40–47. [Google Scholar] [CrossRef]
- De Vos, N.; Maton, C.; Stevens, C.V. Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms. ChemElectroChem 2014, 1, 1258–1270. [Google Scholar] [CrossRef]
- Kirchner, B.; Blasius, J.; Alizadeh, V.; Gansäuer, A.; Hollóczki, O. Chemistry Dissolved in Ionic Liquids. A Theoretical Perspective. J. Phys. Chem. B 2022, 126, 766–777. [Google Scholar] [CrossRef] [PubMed]
- Clough, M.T.; Geyer, K.; Hunt, P.A.; Mertes, J.; Welton, T. Thermal Decomposition of Carboxylate Ionic Liquids: Trends and Mechanisms. Phys. Chem. Chem. Phys. 2013, 15, 20480–20495. [Google Scholar] [CrossRef] [Green Version]
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Socha, O.; Dračínský, M. Dimerization of Acetic Acid in the Gas Phase—NMR Experiments and Quantum-Chemical Calculations. Molecules 2020, 25, 2150. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wang, N.N.; Yu, Z.W. The Hydrogen Bonding Interactions between the Ionic Liquid 1-Ethyl-3-Methylimidazolium Ethyl Sulfate and Water. J. Phys. Chem. B 2010, 114, 4747–4754. [Google Scholar] [CrossRef]
- Troshenkova, S.V.; Sashina, E.S.; Novoselov, N.P.; Arndt, K.F.; Jankowsky, S. Structure of Ionic Liquids on the Basis of Imidazole and Their Mixtures with Water. Russ. J. Gen. Chem. 2010, 80, 106–111. [Google Scholar] [CrossRef]
- Moriguchi, T.; Kawata, H.; Jalli, V. Design, Synthesis, Crystal Structure and Photoluminescence Properties of Four New Europium(III) Complexes with Fluorinated β-Diketone Ligand. Cryst. Struct. Theory Appl. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, M.; Li, Q. Synthesis and Luminescent Properties of Europium Complexes Covalently Bonded to Hybrid Materials Based on MCM-41 and Poly(Ionic Liquids). Materials 2018, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- Andruh, M.; Bakalbassis, E.; Kahn, O.; Trombe, J.C.; Porcher, P. Structure and Spectroscopic and Magnetic Properties of Rare Earth Metal(III) Derivatives with the 2-Formy 1-4-Methyl-6-(A-(2-Pyridylethyl)Formimidoyl) Phenol Ligand. Inorg. Chem. 1993, 32, 1616–1622. [Google Scholar] [CrossRef]
- Nockemann, P.; Thijs, B.; Lunstroot, K.; Parac-Vogt, T.N.; Görller-Walrand, C.; Binnemans, K.; Van Hecke, K.; Van Meervelt, L.; Nikitenko, S.; Daniels, J.; et al. Speciation of Rare-Earth Metal Complexes in Ionic Liquids: A Multiple-Technique Approach. Chem. Eur. J. 2009, 15, 1449–1461. [Google Scholar] [CrossRef]
- Marekha, B.A.; Bria, M.; Moreau, M.; De Waele, I.; Miannay, F.-A.; Smortsova, Y.; Takamuku, T.; Kalugin, O.N.; Kiselev, M.; Idrissi, A. Intermolecular Interactions in Mixtures of 1-n-Butyl-3-Methylimidazolium Acetate and Water: Insights from IR, Raman, NMR Spectroscopy and Quantum Chemistry Calculations. J. Mol. Liq. 2015, 210, 227–237. [Google Scholar] [CrossRef]
- Nakamoto, K.; Fujita, J.; Tanaka, S.; Kobayashi, M. Infrared Spectra of Metallic Complexes. IV. Comparison of the Infrared Spectra of Unidentate and Bidentate Metallic Complexes. J. Am. Chem. Soc. 1957, 79, 4904–4908. [Google Scholar] [CrossRef]
- Patil, K.C.; Chandrashekhar, G.V.; George, M.V.; Rao, C.N.R. Infrared Spectra and Thermal Decompositions of Metal Acetates and Dicarboxylates. Can. J. Chem. 1968, 46, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Trujillo-Rodríguez, M.J.; Anderson, J.L. In Situ Generation of Hydrophobic Magnetic Ionic Liquids in Stir Bar Dispersive Liquid-Liquid Microextraction Coupled with Headspace Gas Chromatography. Talanta 2019, 196, 420–428. [Google Scholar] [CrossRef]
- Radzymińska-Lenarcik, E. Search for the Possibility of Utilizing the Differences in Complex-Forming Capacities of Alkylimidazoles for Selective Extraction of Some Metal Ions from Aqueous Solutions. Pol. J. Chem. Technol. 2008, 10, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Kirmse, W. The beginning of N-heterocyclic carbenes. Angew. Chem. Int. Ed. 2010, 49, 8798–8801. [Google Scholar] [CrossRef]
- Böhm, V.P.W.; Herrmann, W.A. The Wanzlick Equilibrium. Angew. Chem. 2000, 39, 4036–4038. [Google Scholar] [CrossRef]
- Efimova, A.; Hubrig, G.; Schmidt, P. Thermal Stability and Crystallization Behavior of Imidazolium Halide Ionic Liquids. Thermochim. Acta 2013, 573, 162–169. [Google Scholar] [CrossRef]
- Paul, A.; Samanta, A. Optical Absorption and Fluorescence Studies on Imidazolium Ionic Liquids Comprising the Bis(Trifluoromethanesulphonyl)Imide Anion. J. Chem. Sci. 2006, 118, 335–340. [Google Scholar] [CrossRef]
- Tilley, R.J.D. Lanthanoid Ion Color. In Encyclopedia of Color Science and Technology; Shamey, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–10. [Google Scholar] [CrossRef]
- Pereira, C.C.L.; Carretas, J.M.; Monteiro, B.; Leal, J.P. Luminescent Ln-Ionic Liquids beyond Europium. Molecules 2021, 26, 4834. [Google Scholar] [CrossRef] [PubMed]
- Mudring, A.V.; Babai, A.; Arenz, S.; Giernoth, R.; Binnemans, K.; Driesen, K.; Nockemann, P. Strong Luminescence of Rare Earth Compounds in Ionic Liquids: Luminescent Properties of Lanthanide(III) Iodides in the Ionic Liquid 1-Dodecyl-3-Methylimidazolium Bis(Trifluoromethanesulfonyl)Imide. J. Alloys Compd. 2006, 418, 204–208. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of Europium(III) Spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Wada, S.; Kitagawa, Y.; Nakanishi, T.; Gon, M.; Tanaka, K.; Fushimi, K.; Chujo, Y.; Hasegawa, Y. Electronic Chirality Inversion of Lanthanide Complex Induced by Achiral Molecules. Sci. Rep. 2018, 8, 16395. [Google Scholar] [CrossRef] [Green Version]
- Durham, D.A.; Frost, G.H.; Hart, F.A. Lanthanide Complexes-VIII Tris(2,2′6′,2″-Terpyridine)Lanthanide(III)Perchlorates: Fluorescence and Structure. J. Inorg. Nucl. Chem. 1969, 31, 833–838. [Google Scholar] [CrossRef]
- Takikawa, Y.; Ebisu, S.; Nagata, S. Van Vleck Paramagnetism of the Trivalent Eu Ions. J. Phys. Chem. Solids 2010, 71, 1592–1598. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, Y.; Izawa, K.; Vekhter, I. Nodal Structure of Unconventional Superconductors Probed by Angle Resolved Thermal Transport Measurements. J. Phys. Condens. Matter 2006, 18, R705–R752. [Google Scholar] [CrossRef] [Green Version]
- Ferenc, W.; Cristóvão, B.; Sarzynski, J. Magnetic, Thermal and Spectroscopic Properties of Lanthanide(III) 2-(4-Chlorophenoxy)Acetates, Ln(C8H6ClO3)3.nH2O. J. Serbian Chem. Soc. 2013, 78, 1335–1349. [Google Scholar] [CrossRef]
- Mugiraneza, S.; Hallas, A.M. Tutorial: A Beginner’s Guide to Interpreting Magnetic Susceptibility Data with the Curie-Weiss Law. Commun. Phys. 2022, 5, 95. [Google Scholar] [CrossRef]
- Farger, P.; Leuvrey, C.; Gallart, M.; Gilliot, P.; Rogez, G.; Rocha, J.; Ananias, D.; Rabu, P.; Delahaye, E. Magnetic and Luminescent Coordination Networks Based on Imidazolium Salts and Lanthanides for Sensitive Ratiometric Thermometry. Beilstein J. Nanotechnol. 2018, 9, 2775–2787. [Google Scholar] [CrossRef] [Green Version]
- Fomina, I.G.; Dobrokhotova, Z.V.; Ilyukhin, A.B.; Aleksandrov, G.G.; Kazak, V.O.; Gehman, A.E.; Efimov, N.N.; Bogomyakov, A.S.; Zavorotny, Y.S.; Gerasimova, V.I.; et al. Binuclear Samarium(III) Pivalates with Chelating N-Donors: Synthesis, Structure, Thermal Behavior, Magnetic and Luminescent Properties. Polyhedron 2013, 65, 152–160. [Google Scholar] [CrossRef]
- Wang, X.J.; Cen, Z.M.; Ni, Q.L.; Jiang, X.F.; Lian, H.C.; Gui, L.C.; Zuo, H.H.; Wang, Z.Y. Synthesis, Structures and Properties of Functional 2-D Lanthanide Coordination Polymers [Ln2(Dpa)2(C2O4)2(H2O)2]n (Dpa = 2,2′-(2-Methylbenzimidazolium-1,3-Diyl)Diacetate, C2O42− = Oxalate, Ln = Nd, Eu, Gd, Tb). Cryst. Growth Des. 2010, 10, 2960–2968. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.; Pietsch, T.; Herz, M.A.; Jach, F.; Ruck, M. Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids. Chemistry 2023, 5, 1378-1394. https://doi.org/10.3390/chemistry5020094
Shah S, Pietsch T, Herz MA, Jach F, Ruck M. Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids. Chemistry. 2023; 5(2):1378-1394. https://doi.org/10.3390/chemistry5020094
Chicago/Turabian StyleShah, Sameera, Tobias Pietsch, Maria Annette Herz, Franziska Jach, and Michael Ruck. 2023. "Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids" Chemistry 5, no. 2: 1378-1394. https://doi.org/10.3390/chemistry5020094
APA StyleShah, S., Pietsch, T., Herz, M. A., Jach, F., & Ruck, M. (2023). Reactivity of Rare-Earth Oxides in Anhydrous Imidazolium Acetate Ionic Liquids. Chemistry, 5(2), 1378-1394. https://doi.org/10.3390/chemistry5020094