Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of 4-Formylbenzoic Acid
2.2.2. Synthesis of Schiff Base Acid
2.2.3. Synthesis of Schiff Base Ester
3. Results and Discussion
3.1. Mesomorphic Behaviour
Compounds | TCr-SmA | TCr-N | TSmA-N | TSmA-I | TN-I | ΔHCr-N | ΔSCr-N | ΔSCr-N/R | ΔHCr-SmA | ΔSCr-SmA | ΔSCr-SmA/R | ΔHN-I | ΔSN-I | ΔSN-I/R | ΔHSmA-I | ΔSSmA-I | ΔSSmA-I/R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I C8 | - | 116.42 | - | - | 130.59 | 50.48 | 129.58 | 15.58 | - | - | - | 2.03 | 5.03 | 0.60 | - | - | - |
I C16 | - | 115.65 | - | - | 130.61 | 69.48 | 178.70 | 21.49 | - | - | - | 4.51 | 11.17 | 1.34 | - | - | - |
II C6 [23] | 67.3 | - | - | 87.3 | - | - | - | - | 28.38 | 83.36 | 10.02 | - | - | - | 1.92 | 5.33 | 2.65 |
III C6 [24] | 113.9 | - | - | 158.1 | - | - | - | - | 36.39 | 94.01 | 11.30 | - | - | - | 0.95 | 2.20 | 0.26 |
IV C8 [25] | 105.1 | - | 112.2 | - | 150.4 | - | - | - | - | - | - | 0.3 | 0.7 | 0.08 | - | - | - |
V C6 [26] | - | 121.8 | - | - | 149.0 | - | - | - | - | - | - | 0.81 | 1.91 | 0.23 | - | - | - |
3.2. DFT Calculations
3.2.1. The Geometrical Structure
3.2.2. Molecular Electrostatic Potentials (MEP)
3.2.3. Frontier Molecular Orbitals (FMOs)
3.2.4. Dipole Moment and Polarizability
3.2.5. Aromaticity, LOL-π and π-π Stacking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability Statement
References
- Dierking, I.; Al-Zangana, S. Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials 2017, 7, 305. [Google Scholar] [CrossRef]
- Lagerwall, J.P.; Scalia, G. A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr. Appl. Phys. 2012, 12, 1387–1412. [Google Scholar] [CrossRef]
- An, J.-G.; Hina, S.; Yang, Y.; Xue, M.; Liu, Y. Characterization of liquid crystals: A literature review. Rev. Adv. Mater. Sci. 2016, 44, 398–406. [Google Scholar]
- Gray, G.W.; Vill, V.; Spiess, H.W.; Demus, D.; Goodby, J.W. Physical Properties of Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kumar, S. Experimental Study of Physical Properties and Phase Transitions; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Zhang, M.; Jang, C.-H. Liquid crystal based optical sensor for imaging trypsin activity at interfaces between aqueous phases and thermotropic liquid crystals. Bull. Korean Chem. Soc. 2013, 34, 2973–2977. [Google Scholar] [CrossRef] [Green Version]
- Sergeyev, S.; Pisula, W.; Geerts, Y.H. Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 2007, 36, 1902–1929. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.; Kelly, S.M. Ordered materials for organic electronics and photonics. Adv. Mater. 2011, 23, 566–584. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Nakano, M.; Ikeda, T. Directed bending of a polymer film by light. Nature 2003, 425, 145. [Google Scholar] [CrossRef]
- Thomsen, D.L.; Keller, P.; Naciri, J.; Pink, R.; Jeon, H.; Shenoy, D.; Ratna, B.R. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 2001, 34, 5868–5875. [Google Scholar] [CrossRef]
- Rananavare, S.B.; Pisipati, V. An Overview of Liquid Crystals Based on Schiff Base Compounds. In Liquid Crystalline Organic Compounds and Polymers as Materials of the XXI Century: From Synthesis to Applications; Iwan, A., Schab-Balcerzak, E., Eds.; Transworld Research Network: Trivandrum, India, 2011. [Google Scholar]
- Kelker, H.; Scheurle, B. A liquid-crystalline (nematic) phase with a particularly low solidification point. Angew. Chem. Int. Ed. Engl. 1969, 8, 884–885. [Google Scholar] [CrossRef]
- Hallsby, A.; Nilsson, M.; Otterholm, B. Synthesis of Schiff Bases Forming the First Room Temperature Ferroelectric Liquid Crystal—The Mora Series. Mol. Cryst. Liq. Cryst. 1982, 82, 61–68. [Google Scholar] [CrossRef]
- Gomha, S.M.; Ahmed, H.A.; Shaban, M.; Abolibda, T.Z.; Khushaim, M.S.; Alharbi, K.A. Synthesis, optical characterizations and solar energy applications of new Schiff base materials. Materials 2021, 14, 3718. [Google Scholar] [CrossRef]
- Wu, J.-N.; Chen, L.; Fu, T.; Zhao, H.-B.; Guo, D.-M.; Wang, X.-L.; Wang, Y.-Z. New application for aromatic Schiff base: High efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 2018, 336, 622–632. [Google Scholar] [CrossRef]
- Yeap, G.-Y.; Ha, S.-T.; Boey, P.-L.; Mahmood, W.A.K.; Ito, M.M.; Youhei, Y. Synthesis and characterization of some new mesogenic schief base esters N-[4-(4-n-hexadecanoyloxybenzoyloxy)-benzylidene]-4-substituted anilines. Mol. Cryst. Liq. Cryst. 2006, 452, 73–90. [Google Scholar] [CrossRef]
- Ahmed, H.; Hagar, M.; El-Sayed, T.; Alnoman, R.B. Schiff base/ester liquid crystals with different lateral substituents: Mesophase behaviour and DFT calculations. Liq. Cryst. 2019, 46, 1–11. [Google Scholar] [CrossRef]
- Ahmed, H.; Hagar, M.; Saad, G. Impact of the proportionation of dialkoxy chain length on the mesophase behaviour of Schiff base/ester liquid crystals; experimental and theoretical study. Liq. Cryst. 2019, 46, 1611–1620. [Google Scholar] [CrossRef]
- Alnoman, R.; Ahmed, H.A.; Hagar, M. Synthesis, optical, and geometrical approaches of new natural fatty acids’ esters/Schiff base liquid crystals. Molecules 2019, 24, 4293. [Google Scholar] [CrossRef] [Green Version]
- Nafee, S.S.; Hagar, M.; Ahmed, H.A.; Alhaddad, O.; El-Shishtawy, R.M.; Raffah, B.M. New two rings Schiff base liquid crystals; ball mill synthesis, mesomorphic, Hammett and DFT studies. J. Mol. Liq. 2020, 299, 112161. [Google Scholar] [CrossRef]
- Ahmed, N.H.; Saad, G.R.; Ahmed, H.A.; Hagar, M. New wide-stability four-ring azo/ester/Schiff base liquid crystals: Synthesis, mesomorphic, photophysical, and DFT approaches. RSC Adv. 2020, 10, 9643–9656. [Google Scholar] [CrossRef] [Green Version]
- Hagar, M.; Ahmed, H.; Saad, G. New calamitic thermotropic liquid crystals of 2-hydroxypyridine ester mesogenic core: Mesophase behaviour and DFT calculations. Liq. Cryst. 2020, 47, 114–124. [Google Scholar] [CrossRef]
- Nafee, S.S.; Hagar, M.; Ahmed, H.A.; El-Shishtawy, R.M.; Raffah, B.M. The synthesis of new thermal stable schiff base/ester liquid crystals: A computational, mesomorphic, and optical study. Molecules 2019, 24, 3032. [Google Scholar] [CrossRef] [Green Version]
- Hagar, M.; Ahmed, H.; Aouad, M. Mesomorphic and DFT diversity of Schiff base derivatives bearing protruded methoxy groups. Liq. Cryst. 2020, 47, 2222–2233. [Google Scholar] [CrossRef]
- Hagar, M.; Ahmed, H.; Saad, G. Mesophase stability of new Schiff base ester liquid crystals with different polar substituents. Liq. Cryst. 2018, 45, 1324–1332. [Google Scholar] [CrossRef]
- Hagar, M.; Ahmed, H.; Saad, G. Synthesis and mesophase behaviour of Schiff base/ester 4-(arylideneamino) phenyl-4″-alkoxy benzoates and their binary mixtures. J. Mol. Liq. 2019, 273, 266–273. [Google Scholar] [CrossRef]
- Yamamura, Y.; Adachi, T.; Miyazawa, T.; Horiuchi, K.; Sumita, M.; Massalska-Arodź, M.; Urban, S.; Saito, K. Calorimetric and spectroscopic evidence of chain-melting in smectic e and smectic a phases of 4-alkyl-4′-isothiocyanatobiphenyl (n TCB). J. Phys. Chem. B 2012, 116, 9255–9260. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, B. A classification of molecules, phases, and transitions as recognized by thermal analysis. Thermochim. Acta 1999, 340, 37–52. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. Gaussian 09, Revision D. 01; Gaussian. Inc.: Wallingford, CT, USA, 2009; Volume 201. [Google Scholar]
- Romeo, M. Density–orientation coupling for a microcontinuum approach to nematic liquid crystals subject to electric field. Contin. Mech. Thermodyn. 2021, 33, 835–849. [Google Scholar] [CrossRef]
- Chen, R.; Wang, L.; An, Z.; Chen, X.; Chen, P. Effect of π-conjugation units on the liquid crystal and photovoltaic performance of heterocyclic pyridine-based compounds. Liq. Cryst. 2021, 48, 2178–2187. [Google Scholar] [CrossRef]
- Li, J.; Xia, R.; Xu, H.; Yang, J.; Zhang, X.; Kougo, J.; Lei, H.; Dai, S.; Huang, H.; Zhang, G. How Far Can We Push the Rigid Oligomers/Polymers toward Ferroelectric Nematic Liquid Crystals? J. Am. Chem. Soc. 2021, 143, 17857–17861. [Google Scholar] [CrossRef]
- Jain, V.; Kaur, S.; Mohiuddin, G.; Pal, S.K. Design, Synthesis and Characterization of Achiral Unsymmetrical Four-Ring Based Hockey-Stick Shaped Liquid Crystals: Structure-Property Relationship. Liq. Cryst. 2021, 1–10. [Google Scholar] [CrossRef]
- Goodby, J.W. Free volume, molecular grains, self-organisation, and anisotropic entropy: Machining materials. Liq. Cryst. 2017, 44, 1755–1763. [Google Scholar] [CrossRef] [Green Version]
- Singh, S. Liquid Crystals: Fundamentals; World Scientific: Singapore, 2002. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Giambiagi, M.; de Giambiagi, M.S.; Mundim, K.C. Definition of a multicenter bond index. Struct. Chem. 1990, 1, 423–427. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 2020, 139, 25. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
Compounds | θA-B | θA-C | θB-C |
---|---|---|---|
I C8 | 30.57 | 6.63 | 26.41 |
I C16 | 29.32 | 9.04 | 22.96 |
II C6 | 31.42 | 79.97 | 48.91 |
III C6 | 34.13 | 75.00 | 40.88 |
IV C8 | 43.78 | 12.21 | 31.59 |
V C6 | 41.00 | 89.63 | 48.63 |
Compounds | Length | Width | Height | Area | Aspect Ratio |
---|---|---|---|---|---|
I C8 | 31.35 | 7.48 | 4.63 | 234.50 | 4.19 |
I C16 | 41.60 | 7.74 | 4.83 | 321.98 | 5.38 |
II C6 | 28.78 | 7.27 | 6.11 | 209.23 | 3.96 |
III C6 | 28.66 | 7.47 | 5.97 | 214.09 | 3.84 |
IV C8 | 31.52 | 7.50 | 4.72 | 236.40 | 4.20 |
V C6 | 28.89 | 6.92 | 6.02 | 199.92 | 4.18 |
Compounds | Energy | ELUMO | EHOMO | ΔE(LUMO-HOMO) |
---|---|---|---|---|
I C8 | −37619.24 | −2.30 | −5.80 | 3.50 |
I C16 | −46179.77 | −2.30 | −5.80 | 3.50 |
II C6 | −35042.51 | −2.28 | −5.81 | 3.53 |
III C6 | −35042.52 | −1.88 | −5.61 | 3.73 |
IV C8 | −37182.74 | −1.83 | −6.03 | 4.20 |
V C6 | −35042.58 | −1.81 | −5.98 | 4.17 |
Compounds | I C8 | I C16 | II C6 | III C6 | IV C8 | V C6 | |
---|---|---|---|---|---|---|---|
Polarizability | 391.56 | 491.04 | 368.62 | 361.41 | 380.85 | 352.60 | |
Dipole moment | (x) | −1.89 | 1.98 | −2.87 | 0.07 | 4.52 | −2.36 |
(y) | −0.14 | −0.12 | −1.86 | 1.14 | 0.29 | −1.40 | |
(z) | −1.31 | 1.23 | 0.51 | 0.61 | −0.60 | 0.59 | |
(Total) | 2.30 | 2.33 | 3.45 | 1.30 | 4.57 | 2.81 |
Compounds | MCBO Index | LOLIPOP Index | ||||
---|---|---|---|---|---|---|
A | B | C | A | B | C | |
I C8 | 0.624 | 0.629 | 0.643 | 6.751 | 6.691 | 5.041 |
I C16 | 0.624 | 0.629 | 0.643 | 6.740 | 6.703 | 5.055 |
II C6 | 0.624 | 0.630 | 0.647 | 6.741 | 6.685 | 7.253 |
III C6 | 0.626 | 0.632 | 0.643 | 6.814 | 6.777 | 7.135 |
IV C8 | 0.640 | 0.632 | 0.626 | 7.275 | 6.954 | 7.033 |
V C6 | 0.640 | 0.634 | 0.626 | 7.171 | 7.021 | 7.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nada, S.; Hagar, M.; Farahat, O.; Hasanein, A.A.; Emwas, A.-H.; Sharfalddin, A.A.; Jaremko, M.; Zakaria, M.A. Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact. Molecules 2022, 27, 2304. https://doi.org/10.3390/molecules27072304
Nada S, Hagar M, Farahat O, Hasanein AA, Emwas A-H, Sharfalddin AA, Jaremko M, Zakaria MA. Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact. Molecules. 2022; 27(7):2304. https://doi.org/10.3390/molecules27072304
Chicago/Turabian StyleNada, Shady, Mohamed Hagar, Omaima Farahat, Ahmed A. Hasanein, Abdul-Hamid Emwas, Abeer Ali Sharfalddin, Mariusz Jaremko, and Mohamed A. Zakaria. 2022. "Three Rings Schiff Base Ester Liquid Crystals: Experimental and Computational Approaches of Mesogenic Core Orientation Effect, Heterocycle Impact" Molecules 27, no. 7: 2304. https://doi.org/10.3390/molecules27072304