Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = hereditary optic atrophy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 958 KiB  
Review
Isolated and Syndromic Genetic Optic Neuropathies: A Review of Genetic and Phenotypic Heterogeneity
by Marco Zeppieri, Caterina Gagliano, Marco Di Maita, Alessandro Avitabile, Giuseppe Gagliano, Edoardo Dammino, Daniele Tognetto, Maria Francesca Cordeiro and Fabiana D’Esposito
Int. J. Mol. Sci. 2025, 26(8), 3892; https://doi.org/10.3390/ijms26083892 - 20 Apr 2025
Viewed by 712
Abstract
Nonsyndromic and syndromic hereditary optic neuropathies (HONs) encompass a variety of genetic illnesses that cause progressive optic nerve damage, resulting in considerable vision impairment. These disorders result from pathogenic variants in mitochondrial or nuclear DNA, impacting essential cellular processes like oxidative phosphorylation, mitochondrial [...] Read more.
Nonsyndromic and syndromic hereditary optic neuropathies (HONs) encompass a variety of genetic illnesses that cause progressive optic nerve damage, resulting in considerable vision impairment. These disorders result from pathogenic variants in mitochondrial or nuclear DNA, impacting essential cellular processes like oxidative phosphorylation, mitochondrial dynamics, and neuroprotection. Advances in next-generation sequencing (NGS) have significantly improved the identification of genetic variations, enabling precise diagnoses and genotype–phenotype correlations. This review consolidates current knowledge regarding the classification, molecular pathogenesis, clinical manifestations, diagnostic methodologies, and emerging therapeutic strategies for HONs. The critical role of mitochondrial dysfunction in optic nerve degeneration highlights the necessity for multimodal therapeutic approaches. Recent clinical trials evaluating gene therapy for Leber hereditary optic neuropathy (LHON) and neuroprotective strategies in dominant optic atrophy (DOA) are discussed. Additionally, individualized therapeutic interventions, as demonstrated by recent case studies involving tailored gene therapies, are evaluated. The integration of molecular and imaging biomarkers in future personalized treatment strategies aims to enhance prognosis and therapeutic outcomes. Full article
(This article belongs to the Special Issue Molecular Studies of Mutations Related to Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 3960 KiB  
Article
Early Macular Ganglion Cell Loss in Leber Hereditary Optic Neuropathy, an Optical Coherence Tomography Biomarker to Differentiate Optic Neuritis
by Julian A. Zimmermann, Martin Dominik Leclaire, Jens Julian Storp, Tobias J. Brix, Nicole Eter, Julia Krämer and Julia Biermann
J. Clin. Med. 2025, 14(6), 1998; https://doi.org/10.3390/jcm14061998 - 15 Mar 2025
Viewed by 776
Abstract
Background/Objectives: Leber hereditary optic neuropathy (LHON) is often misdiagnosed in its early stages as idiopathic single isolated optic neuritis (SION) or multiple-sclerosis-associated optic neuritis (MS-ON) due to the young age of the patients, the subacute vision loss, and the central visual field [...] Read more.
Background/Objectives: Leber hereditary optic neuropathy (LHON) is often misdiagnosed in its early stages as idiopathic single isolated optic neuritis (SION) or multiple-sclerosis-associated optic neuritis (MS-ON) due to the young age of the patients, the subacute vision loss, and the central visual field defect. The aim of this retrospective study was to evaluate changes in the peripapillary RNFL and GCLT over time in patients with early LHON, MS-ON, and SION in order to differentiate Leber hereditary optic neuropathy (LHON) from optic neuritis (ON) in the early stages of the disease. Methods: Patients with LHON and ON (either idiopathic single isolated optic neuritis (SION) or ON as the first symptom of relapsing–remitting multiple sclerosis (MS-ON) were included. Optical coherence tomography (OCT) scans were reviewed. The inclusion criteria were at least one follow-up OCT examination and a definite diagnosis after examination. Changes in the peripapillary retinal nerve fibre layer (RNFL) and macular ganglion cell layer thickness (GCLT) in both groups were evaluated over time and compared with normative data. The analysis focused on the early phase (0–45 days) after symptom onset. Results: Nine LHON patients with early OCT scans and twenty patients with ON were included. Quantitative OCT analysis showed greater RNFL swelling in LHON compared to ON during the first 60 days after symptom onset. Between day 61 and day 120, subnormal RNFL values were observed in both groups compared to controls. Thereafter, the RNFL decreased continuously and severely in the LHON group. The RNFL of ON patients did not show a clear progression after day 120. The GCLT in five LHON eyes showed a strong and solid decrease from day 0 to day 45, which was stronger than the moderate atrophy measured in ON eyes. Continuous GCL atrophy was measured until day 121 in LHON, after which a floor effect was reached. The GCLT in the inner nasal and inner inferior sectors was significantly smaller in LHON compared to ON patients on days 0–45. Conclusions: Thinning of the GCLT occurs at an early stage in LHON patients. Thus, GCLT may become a diagnostic tool to differentiate LHON from ON in the early phase of disease. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

18 pages, 356 KiB  
Review
Insights on the Genetic and Phenotypic Complexities of Optic Neuropathies
by Fabiana D’Esposito, Marco Zeppieri, Maria Francesca Cordeiro, Matteo Capobianco, Alessandro Avitabile, Giuseppe Gagliano, Mutali Musa, Piero Barboni and Caterina Gagliano
Genes 2024, 15(12), 1559; https://doi.org/10.3390/genes15121559 - 29 Nov 2024
Cited by 1 | Viewed by 1467
Abstract
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic [...] Read more.
Background/Objectives: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies. Methods: A systematic literature review was performed in October 2024, utilizing PubMed, Medline, the Cochrane Library, and ClinicalTrials.gov. Search terms encompassed “optic neuropathy”, “genetic variants”, “LHON”, “DOA”, “glaucoma”, and “molecular therapies”. Studies were chosen according to established inclusion criteria, concentrating on the genetic and molecular dimensions of optic neuropathies and their therapeutic ramifications. Results: The results indicate that DOA and LHON are mostly associated with the mitochondrial dysfunction resulting from pathogenic variants in nuclear genes, mainly OPA1, and mitochondrial DNA (mtDNA) genes, respectively. Glaucoma, especially its intricate variants, is linked to variants in genes like MYOC, OPTN, and TBK1. Molecular mechanisms, such as oxidative stress and inflammatory modulation, are pivotal in disease progression. Innovative therapeutics, including gene therapy, RNA-based treatments, and antioxidants such as idebenone, exhibit promise for alleviating optic nerve damage and safeguarding vision. Conclusions: Genetic and molecular investigations have markedly enhanced our comprehension of ocular neuropathies. The amalgamation of genetic and phenotypic data is essential for customized medical strategies. Additional research is required to enhance therapeutic strategies and fill the gaps in our understanding of the underlying pathophysiology. This interdisciplinary approach shows potential for enhancing patient outcomes in ocular neuropathies. Full article
21 pages, 3542 KiB  
Article
Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model
by Stephanann M. Costello, Anastasia Schultz, Donald Smith, Danielle Horan, Martha Chaverra, Brian Tripet, Lynn George, Brian Bothner, Frances Lefcort and Valérie Copié
Metabolites 2024, 14(8), 423; https://doi.org/10.3390/metabo14080423 - 31 Jul 2024
Cited by 2 | Viewed by 1928
Abstract
Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber’s hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) [...] Read more.
Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber’s hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients’ serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson’s, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (1H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific Elp1 conditional knockout (CKO) FD mouse model (Pax6-Cre; Elp1LoxP/LoxP). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30–P90, and dopamine levels were 25–35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD. Full article
Show Figures

Figure 1

15 pages, 680 KiB  
Review
Hereditary Optic Neuropathies: An Updated Review
by Samuel K. Lee, Caroline Mura, Nicolas J. Abreu, Janet C. Rucker, Steven L. Galetta, Laura J. Balcer and Scott N. Grossman
J. Clin. Transl. Ophthalmol. 2024, 2(3), 64-78; https://doi.org/10.3390/jcto2030006 - 26 Jun 2024
Cited by 1 | Viewed by 3798
Abstract
Hereditary optic neuropathies (HONs) are a class of genetic disorders that may lead to vision loss due to either acute or progressive injury to the optic nerve. Although HONs may commonly manifest as isolated optic atrophy, these disorders can also have a variety [...] Read more.
Hereditary optic neuropathies (HONs) are a class of genetic disorders that may lead to vision loss due to either acute or progressive injury to the optic nerve. Although HONs may commonly manifest as isolated optic atrophy, these disorders can also have a variety of characteristic clinical features and time courses that may narrow the differential diagnosis. While the two most prevalent HONs are Leber Hereditary Optic Neuropathy (LHON) and Dominant Optic Atrophy (DOA), the phenotypic spectrum of these conditions, as well as genetic landscape of less common optic neuropathies, have been better characterized through advances in molecular diagnostic testing. Treatment targeting various pathogenic mechanisms has been investigated, although studies of clinical applicability remain nascent. Present management largely remains supportive. In this review, we discuss the clinical features, molecular diagnosis, current treatment, and future directions for HONs. Full article
Show Figures

Figure 1

20 pages, 3717 KiB  
Review
Optical Coherence Tomography in Inherited Macular Dystrophies: A Review
by Alba Gómez-Benlloch, Xavier Garrell-Salat, Estefanía Cobos, Elena López, Anna Esteve-Garcia, Sergi Ruiz, Meritxell Vázquez, Laura Sararols and Marc Biarnés
Diagnostics 2024, 14(9), 878; https://doi.org/10.3390/diagnostics14090878 - 24 Apr 2024
Cited by 6 | Viewed by 3246
Abstract
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in [...] Read more.
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Diagnosis of Ophthalmology Disease)
Show Figures

Figure 1

10 pages, 1322 KiB  
Article
Inherited Optic Neuropathies: Real-World Experience in the Paediatric Neuro-Ophthalmology Clinic
by Michael James Gilhooley, Naz Raoof, Patrick Yu-Wai-Man and Mariya Moosajee
Genes 2024, 15(2), 188; https://doi.org/10.3390/genes15020188 - 30 Jan 2024
Cited by 2 | Viewed by 2067
Abstract
Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have [...] Read more.
Inherited optic neuropathies affect around 1 in 10,000 people in England; in these conditions, vision is lost as retinal ganglion cells lose function or die (usually due to pathological variants in genes concerned with mitochondrial function). Emerging gene therapies for these conditions have emphasised the importance of early and expedient molecular diagnoses, particularly in the paediatric population. Here, we report our real-world clinical experience of such a population, exploring which children presented with the condition, how they were investigated and the time taken for a molecular diagnosis to be reached. A retrospective case-note review of paediatric inherited optic neuropathy patients (0–16 years) in the tertiary neuro-ophthalmology service at Moorfields Eye Hospital between 2016 and 2020 identified 19 patients. Their mean age was 9.3 ± 4.6 (mean ± SD) years at presentation; 68% were male, and 32% were female; and 26% had comorbidities, with diversity of ethnicity. Most patients had undergone genetic testing (95% (n = 18)), of whom 43% (n = 8) received a molecular diagnosis. On average, this took 54.8 ± 19.5 weeks from presentation. A cerebral MRI was performed in 70% (n = 14) and blood testing in 75% (n = 15) of patients as part of their workup. Continual improvement in the investigative pathways for inherited optic neuropathies will be paramount as novel therapeutics become available. Full article
Show Figures

Figure 1

12 pages, 3031 KiB  
Case Report
PNPT1 Spectrum Disorders: An Underrecognized and Complex Group of Neurometabolic Disorders
by Paulo Sgobbi, Igor Braga Farias, Paulo de Lima Serrano, Bruno de Mattos Lombardi Badia, Hélvia Bertoldo de Oliveira, Alana Strucker Barbosa, Camila Alves Pereira, Vanessa de Freitas Moreira, Marco Antônio Troccoli Chieia, Adriel Rêgo Barbosa, Pedro Henrique Almeida Fraiman, Vinícius Lopes Braga, Roberta Ismael Lacerda Machado, Sophia Luiz Calegaretti, Isabela Danziato Fernandes, Roberta Correa Ribeiro, Marco Antonio Orsini Neves, Wladimir Bocca Vieira de Rezende Pinto and Acary Souza Bulle Oliveira
Muscles 2024, 3(1), 4-15; https://doi.org/10.3390/muscles3010002 - 19 Jan 2024
Viewed by 2518
Abstract
An 18-year-old man presented with slowly progressive infancy-onset spasticity of the lower limbs and cerebellar ataxia, associated with painless strabismus, intellectual disability, urinary incontinence, bilateral progressive visual loss, and cognitive decline since early adolescence. A neurological examination disclosed spastic dysarthria, left eye divergent [...] Read more.
An 18-year-old man presented with slowly progressive infancy-onset spasticity of the lower limbs and cerebellar ataxia, associated with painless strabismus, intellectual disability, urinary incontinence, bilateral progressive visual loss, and cognitive decline since early adolescence. A neurological examination disclosed spastic dysarthria, left eye divergent strabismus, bilateral ophthalmoparesis, impaired smooth pursuit, severe spastic paraparesis of the lower limbs with global brisk tendon reflexes, bilateral extensor plantar responses, and bilateral ankle clonus reflex. Bilateral dysdiadochokinesia of the upper limbs, Stewart-Holmes rebound phenomenon, bilateral dysmetria, and a bilateral abnormal finger-to-nose test were observed. Markedly reduced bilateral visual acuity (right side 20/150, left side 20/400) and moderate to severe optic atrophy were detected. Neuroimaging studies showed cerebellar atrophy and bilateral optic nerves and optic tract atrophy as the main findings. As a complicated Hereditary Spastic Paraplegia, autosomal dominant Spinocerebellar Ataxia, or inherited neurometabolic disorders were suspected, a large next-generation sequencing-based gene panel testing disclosed the heterozygous pathogenic variant c.162-1G>A in intron 1 of the PNPT1 gene. A diagnosis of PNPT1-related spastic ataxia was established. Clinicians must be aware of the possibility of PNPT1 pathogenic variants in cases of spastic ataxia and spastic paraplegias that are associated with optic atrophy and marked cognitive decline, regardless of the established family history of neurological compromise. Full article
Show Figures

Figure 1

20 pages, 1737 KiB  
Review
Hereditary Optic Neuropathies: A Systematic Review on the Interplay between Biomaterials and Induced Pluripotent Stem Cells
by Miguel Ladero, Jose Alberto Reche-Sainz and M. Esther Gallardo
Bioengineering 2024, 11(1), 52; https://doi.org/10.3390/bioengineering11010052 - 3 Jan 2024
Cited by 2 | Viewed by 2827
Abstract
Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying [...] Read more.
Hereditary optic neuropathies (HONs) such as dominant optic atrophy (DOA) and Leber Hereditary Optic Neuropathy (LHON) are mitochondrial diseases characterized by a degenerative loss of retinal ganglion cells (RGCs) and are a cause of blindness worldwide. To date, there are only limited disease-modifying treatments for these disorders. The discovery of induced pluripotent stem cell (iPSC) technology has opened several promising opportunities in the field of HON research and the search for therapeutic approaches. This systematic review is focused on the two most frequent HONs (LHON and DOA) and on the recent studies related to the application of human iPSC technology in combination with biomaterials technology for their potential use in the development of RGC replacement therapies with the final aim of the improvement or even the restoration of the vision of HON patients. To this purpose, the combination of natural and synthetic biomaterials modified with peptides, neurotrophic factors, and other low- to medium-molecular weight compounds, mimicking the ocular extracellular matrices, with human iPSC or iPSC-derived cell retinal progenitors holds enormous potential to be exploited in the near future for the generation of transplantable RGC populations. Full article
(This article belongs to the Special Issue Biopolymers and Nano-Objects Applications in Bioengineering)
Show Figures

Figure 1

16 pages, 263 KiB  
Article
Expanding the Knowledge of KIF1A-Dependent Disorders to a Group of Polish Patients
by Justyna Paprocka, Aleksandra Jezela-Stanek, Robert Śmigiel, Anna Walczak, Hanna Mierzewska, Anna Kutkowska-Kaźmierczak, Rafał Płoski, Ewa Emich-Widera and Barbara Steinborn
Genes 2023, 14(5), 972; https://doi.org/10.3390/genes14050972 - 25 Apr 2023
Cited by 6 | Viewed by 2886
Abstract
Background: KIF1A (kinesin family member 1A)-related disorders encompass a variety of diseases. KIF1A variants are responsible for autosomal recessive and dominant spastic paraplegia 30 (SPG, OMIM610357), autosomal recessive hereditary sensory and autonomic neuropathy type 2 (HSN2C, OMIM614213), and autosomal dominant neurodegeneration and spasticity [...] Read more.
Background: KIF1A (kinesin family member 1A)-related disorders encompass a variety of diseases. KIF1A variants are responsible for autosomal recessive and dominant spastic paraplegia 30 (SPG, OMIM610357), autosomal recessive hereditary sensory and autonomic neuropathy type 2 (HSN2C, OMIM614213), and autosomal dominant neurodegeneration and spasticity with or without cerebellar atrophy or cortical visual impairment (NESCAV syndrome), formerly named mental retardation type 9 (MRD9) (OMIM614255). KIF1A variants have also been occasionally linked with progressive encephalopathy with brain atrophy, progressive neurodegeneration, PEHO-like syndrome (progressive encephalopathy with edema, hypsarrhythmia, optic atrophy), and Rett-like syndrome. Materials and Methods: The first Polish patients with confirmed heterozygous pathogenic and potentially pathogenic KIF1A variants were analyzed. All the patients were of Caucasian origin. Five patients were females, and four were males (female-to-male ratio = 1.25). The age of onset of the disease ranged from 6 weeks to 2 years. Results: Exome sequencing identified three novel variants. Variant c.442G>A was described in the ClinVar database as likely pathogenic. The other two novel variants, c.609G>C; p.(Arg203Ser) and c.218T>G, p.(Val73Gly), were not recorded in ClinVar. Conclusions: The authors underlined the difficulties in classifying particular syndromes due to non-specific and overlapping signs and symptoms, sometimes observed only temporarily. Full article
(This article belongs to the Special Issue Genetics and Genomics of Heritable Pediatric Disorders)
3 pages, 228 KiB  
Proceeding Paper
Generation of iPSC-Derived RGCs for Modeling Dominant Optic Atrophy
by Marta García-López and M. Esther Gallardo
Med. Sci. Forum 2023, 21(1), 3; https://doi.org/10.3390/ECB2023-14087 - 1 Mar 2023
Viewed by 811
Abstract
Dominant optic atrophy (DOA), mainly caused by pathogenic variants in OPA1, is one of the most common forms of hereditary optic neuropathy. OPA1 is involved in mitochondrial dynamics and oxidative phosphorylation, among other functions. Hence, mutations in this gene cause the degeneration [...] Read more.
Dominant optic atrophy (DOA), mainly caused by pathogenic variants in OPA1, is one of the most common forms of hereditary optic neuropathy. OPA1 is involved in mitochondrial dynamics and oxidative phosphorylation, among other functions. Hence, mutations in this gene cause the degeneration of retinal ganglion cells (RGCs), leading to reduced visual acuity. In this work, we have used induced pluripotent stem cell (iPSC) technology to generate RGCs, starting from an iPSC line created from fibroblasts from a DOA patient and also its CRISPR isogenic control. The generated RGCs showed expression of BRN3A, SNCG or THY1, and could potentially serve as a platform for DOA modeling. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Biomedicines)
20 pages, 2876 KiB  
Article
Optimisation of AAV-NDI1 Significantly Enhances Its Therapeutic Value for Correcting Retinal Mitochondrial Dysfunction
by Naomi Chadderton, Arpad Palfi, Daniel M. Maloney, Matthew Carrigan, Laura K. Finnegan, Killian S. Hanlon, Ciara Shortall, Mary O’Reilly, Peter Humphries, Lorraine Cassidy, Paul F. Kenna, Sophia Millington-Ward and G. Jane Farrar
Pharmaceutics 2023, 15(2), 322; https://doi.org/10.3390/pharmaceutics15020322 - 18 Jan 2023
Cited by 5 | Viewed by 4953
Abstract
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial [...] Read more.
AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature. Full article
(This article belongs to the Special Issue Gene- and Cell-Based Therapies for Retinal Diseases)
Show Figures

Graphical abstract

20 pages, 4045 KiB  
Article
A Generic Pixel Pitch Calibration Method for Fundus Camera via Automated ROI Extraction
by Tengfei Long, Yi Xu, Haidong Zou, Lina Lu, Tianyi Yuan, Zhou Dong, Jiqun Dong, Xin Ke, Saiguang Ling and Yingyan Ma
Sensors 2022, 22(21), 8565; https://doi.org/10.3390/s22218565 - 7 Nov 2022
Cited by 16 | Viewed by 3310
Abstract
Pixel pitch calibration is an essential step to make the fundus structures in the fundus image quantitatively measurable, which is important for the diagnosis and treatment of many diseases, e.g., diabetes, arteriosclerosis, hereditary optic atrophy, etc. The conventional calibration approaches require the specific [...] Read more.
Pixel pitch calibration is an essential step to make the fundus structures in the fundus image quantitatively measurable, which is important for the diagnosis and treatment of many diseases, e.g., diabetes, arteriosclerosis, hereditary optic atrophy, etc. The conventional calibration approaches require the specific parameters of the fundus camera or several specially shot images of the chess board, but these are generally not accessible, and the calibration results cannot be generalized to other cameras. Based on automated ROI (region of interest) and optic disc detection, the diameter ratio of ROI and optic disc (ROI–disc ratio) is quantitatively analyzed for a large number of fundus images. With the prior knowledge of the average diameter of an optic disc in fundus, the pixel pitch can be statistically estimated from a large number of fundus images captured by a specific camera without the availability of chess board images or detailed specifics of the fundus camera. Furthermore, for fundus cameras of FOV (fixed field-of-view), the pixel pitch of a fundus image of 45° FOV can be directly estimated according to the automatically measured diameter of ROI in the pixel. The average ROI–disc ratio is approximately constant, i.e., 6.404 ± 0.619 in the pixel, according to 40,600 fundus images, captured by different cameras, of 45° FOV. In consequence, the pixel pitch of a fundus image of 45° FOV can be directly estimated according to the automatically measured diameter of ROI in the pixel, and results show the pixel pitches of Canon CR2, Topcon NW400, Zeiss Visucam 200, and Newvision RetiCam 3100 cameras are 6.825 ± 0.666 μm, 6.625 ± 0.647 μm, 5.793 ± 0.565 μm, and 5.884 ± 0.574 μm, respectively. Compared with the manually measured pixel pitches, based on the method of ISO 10940:2009, i.e., 6.897 μm, 6.807 μm, 5.693 μm, and 6.050 μm, respectively, the bias of the proposed method is less than 5%. Since our method doesn’t require chess board images or detailed specifics, the fundus structures on the fundus image can be measured accurately, according to the pixel pitch obtained by this method, without knowing the type and parameters of the camera. Full article
(This article belongs to the Collection Biomedical Imaging & Instrumentation)
Show Figures

Figure 1

16 pages, 3092 KiB  
Article
The Relative Preservation of the Central Retinal Layers in Leber Hereditary Optic Neuropathy
by Sanja Petrovic Pajic, Luka Lapajne, Bor Vratanar, Ana Fakin, Martina Jarc-Vidmar, Maja Sustar Habjan, Marija Volk, Ales Maver, Borut Peterlin and Marko Hawlina
J. Clin. Med. 2022, 11(20), 6045; https://doi.org/10.3390/jcm11206045 - 13 Oct 2022
Cited by 8 | Viewed by 2150
Abstract
(1) Background: The purpose of this study was to evaluate the thickness of retinal layers in Leber hereditary optic neuropathy (LHON) in the atrophic stage compared with presumably inherited bilateral optic neuropathy of unknown cause with the aim of seeing if any LHON-specific [...] Read more.
(1) Background: The purpose of this study was to evaluate the thickness of retinal layers in Leber hereditary optic neuropathy (LHON) in the atrophic stage compared with presumably inherited bilateral optic neuropathy of unknown cause with the aim of seeing if any LHON-specific patterns exist. (2) Methods: 14 patients (24 eyes) with genetically confirmed LHON (LHON group) were compared with 13 patients (23 eyes) with negative genetic testing results (mtDNA + WES) and without identified etiology of bilateral optic atrophy (nonLHON group). Segmentation analysis of retinal layers in the macula and peripapillary RNFL (pRNFL) measurements was performed using Heidelberg Engineering Spectralis SD-OCT. (3) Results: In the LHON group, the thickness of ganglion cell complex (GCC) (retinal nerve fiber layer (RNFL)—ganglion cell layer (GCL)—inner plexiform layer (IPL)) in the central ETDRS (Early Treatment Diabetic Retinopathy Study) circle was significantly higher than in the nonLHON group (p < 0.001). In all other ETDRS fields, GCC was thinner in the LHON group. The peripapillary RNFL (pRNFL) was significantly thinner in the LHON group in the temporal superior region (p = 0.001). Longitudinal analysis of our cohort during the follow-up time showed a tendency of thickening of the RNFL, GCL, and IPL in the LHON group in the central circle, as well as a small recovery of the pRNFL in the temporal region, which corresponds to the observed central macular thickening. (4) Conclusions: In LHON, the retinal ganglion cell complex thickness (RNFL-GCL-IPL) appears to be relatively preserved in the central ETDRS circle compared to nonLHON optic neuropathies in the chronic phase. Our findings may represent novel biomarkers as well as a structural basis for possible recovery in some patients with LHON. Full article
Show Figures

Figure 1

14 pages, 10329 KiB  
Article
Biallelic Optic Atrophy 1 (OPA1) Related Disorder—Case Report and Literature Review
by Bayan Al Othman, Jia Ern Ong and Alina V. Dumitrescu
Genes 2022, 13(6), 1005; https://doi.org/10.3390/genes13061005 - 2 Jun 2022
Cited by 9 | Viewed by 4165
Abstract
Dominant optic atrophy (DOA), MIM # 605290, is the most common hereditary optic neuropathy inherited in an autosomal dominant pattern. Clinically, it presents a progressive decrease in vision, central visual field defects, and retinal ganglion cell loss. A biallelic mode of inheritance causes [...] Read more.
Dominant optic atrophy (DOA), MIM # 605290, is the most common hereditary optic neuropathy inherited in an autosomal dominant pattern. Clinically, it presents a progressive decrease in vision, central visual field defects, and retinal ganglion cell loss. A biallelic mode of inheritance causes syndromic DOA or Behr phenotype, MIM # 605290. This case report details a family with Biallelic Optic Atrophy 1 (OPA1). The proband is a child with a severe phenotype and two variants in the OPA1 gene. He presented with congenital nystagmus, progressive vision loss, and optic atrophy, as well as progressive ataxia, and was found to have two likely pathogenic variants in his OPA1 gene: c.2287del (p.Ser763Valfs*15) maternally inherited and c.1311A>G (p.lIle437Met) paternally inherited. The first variant is predicted to be pathogenic and likely to cause DOA. In contrast, the second is considered asymptomatic by itself but has been reported in patients with DOA phenotype and is presumed to act as a phenotypic modifier. On follow-up, he developed profound vision impairment, intractable seizures, and metabolic strokes. A literature review of reported biallelic OPA1-related Behr syndrome was performed. Twenty-one cases have been previously reported. All share an early-onset, severe ocular phenotype and systemic features, which seem to be the hallmark of the disease. Full article
(This article belongs to the Special Issue Insights into Heritability of Glaucoma and Other Optic Neuropathies)
Show Figures

Figure 1

Back to TopTop