Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = hemoproteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3187 KiB  
Article
Cytochrome C-like Domain Within the Human BK Channel
by Taleh Yusifov, Fidan Qudretova and Aysel Aliyeva
Int. J. Mol. Sci. 2025, 26(15), 7053; https://doi.org/10.3390/ijms26157053 - 22 Jul 2025
Viewed by 255
Abstract
Large-conductance, voltage- and calcium-activated potassium (BK) channels are crucial regulators of cellular excitability, influenced by various signaling molecules, including heme. The BK channel contains a heme-sensitive motif located at the sequence 612CKACH616, which is a conserved heme regulatory motif (HRM) [...] Read more.
Large-conductance, voltage- and calcium-activated potassium (BK) channels are crucial regulators of cellular excitability, influenced by various signaling molecules, including heme. The BK channel contains a heme-sensitive motif located at the sequence 612CKACH616, which is a conserved heme regulatory motif (HRM) found in the cytochrome c protein family. This motif is situated within a linker region of approximately 120 residues that connect the RCK1 and RCK2 domains, and it also includes terminal α-helices similar to those found in cytochrome c family proteins. However, much of this region has yet to be structurally defined. We conducted a sequence alignment of the BK linker region with mitochondrial cytochrome c and cytochrome c domains from various hemoproteins to better understand this functionally significant region. In addition to the HRM motif, we discovered that important structural and functional elements of cytochrome c proteins are conserved in the BK RCK1-RCK2 linker. Firstly, the part of the BK region that is resolved in available atomic structures shows similarities in secondary structural elements with cytochrome c domain proteins. Secondly, the Met80 residue in cytochrome c domains, which acts as the second axial ligand to the heme iron, aligns with the BK channel. Beyond its role in electron shuttling, cytochrome c domains exhibit various catalytic properties, including peroxidase activity—specifically, the oxidation of suitable substrates using peroxides. Our findings reveal that the linker region endows human BK channels with peroxidase activity, showing an apparent H2O2 affinity approximately 40-fold greater than that of mitochondrial cytochrome c under baseline conditions. This peroxidase activity was reduced when substitutions were made at 612CKACH616 and other relevant sites. These results indicate that the BK channel possesses a novel module similar to the cytochrome c domains of hemoproteins, which may give rise to unique physiological functions for these widespread ion channels. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 1933 KiB  
Article
Profiling the Tox21 Compound Library for Their Inhibitory Effects on Cytochrome P450 Enzymes
by Srilatha Sakamuru, Jameson Travers, Carleen Klumpp-Thomas, Ruili Huang, Kristine L. Witt, Stephen S. Ferguson, Steven O. Simmons, David M. Reif, Anton Simeonov and Menghang Xia
Int. J. Mol. Sci. 2025, 26(11), 4976; https://doi.org/10.3390/ijms26114976 - 22 May 2025
Viewed by 896
Abstract
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To [...] Read more.
Cytochrome P450 (CYP) enzymes are membrane-bound hemoproteins crucial for drug and xenobiotic metabolism. While more than 50 CYPs have been identified in humans, the isoforms from CYP1, 2, and 3 families contribute to the metabolism of about 80% of clinically approved drugs. To evaluate the effects of environmental chemicals on the activities of these important CYP enzyme families, we screened the Tox21 10K compound library to identify chemicals that inhibit CYP1A2, 2C9, 2C19, 2D6, and 3A4 enzymes. The data obtained from these five screenings were analyzed to reveal the structural classes responsible for inhibiting multiple and/or selective CYPs. Some known structural compound classes exhibiting pan-CYP inhibition, such as azole fungicides, along with established clinical inhibitors of CYPs, including erythromycin and verapamil inhibiting CYP3A4 and paroxetine and terbinafine inhibiting CYP2D6, were all confirmed in the current study. In addition, some selective CYP inhibitors, previously unknown but with potent activity (IC50 values < 1 µM), were identified. Examples included yohimbine, an indole alkaloid, and loteprednol, a corticosteroid, which showed inhibitory activity in CYP2D6 and 3A4 assays, respectively. These findings suggest that assessment of a candidate compound’s impact on CYP function may allow pre-emptive mitigation of potential adverse reactions and toxicity during drug development or toxicological characterization of environmental chemicals. Full article
(This article belongs to the Special Issue Cytochrome P450 Mechanism and Reactivity)
Show Figures

Figure 1

15 pages, 3914 KiB  
Article
Efficient Synthesis of High-Active Myoglobin and Hemoglobin by Reconstructing the Mitochondrial Heme Synthetic Pathway in Engineered Saccharomyces cerevisiae
by Xiaoyan Sun, Yunpeng Wang, Yijie Wang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Fermentation 2025, 11(5), 246; https://doi.org/10.3390/fermentation11050246 - 1 May 2025
Viewed by 780
Abstract
Currently, various types of myoglobins and hemoglobins are widely used in the fields of food additives and biocatalytic applications. However, the limited availability of heme constrains the biosynthesis of these high-activity hemoproteins in microbial chassis cells. In this work, a new heme synthetic [...] Read more.
Currently, various types of myoglobins and hemoglobins are widely used in the fields of food additives and biocatalytic applications. However, the limited availability of heme constrains the biosynthesis of these high-activity hemoproteins in microbial chassis cells. In this work, a new heme synthetic pathway was reconstructed in the mitochondria by eliminating the spatial barrier during heme synthesis in Saccharomyces cerevisiae, resulting in a significant enhancement in intracellular heme supply. To further enhance the supply of the essential precursor for heme synthesis (5-aminolevulinate, ALA), the special ALA exporter in the mitochondrial membrane (Ort1p) was identified and knocked out. Moreover, the mitochondrial heme exporter (Ygr127wp) was overexpressed to promote the transport of heme to the cytoplasm to participate in the synthesis of various myoglobins and hemoglobins. Based on these strategies in the engineered strain, the binding ratios of heme in porcine myoglobin (52.4 ± 4.9%) and soybean hemoglobin (75.5 ± 2.8%) were, respectively, increased by 2.4-fold and 3.6-fold, and the titers of porcine myoglobin (130.5 ± 2.8 mg·L−1) and soybean hemoglobin (152.8 ± 2.6 mg·L−1), respectively, increased by 31.1% and 42.1%. Furthermore, the engineered strain presents great potential in the efficient synthesis of other heme-binding proteins and enzymes in S. cerevisiae. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

20 pages, 4274 KiB  
Article
Xanthocillin X Dimethyl Ether Exhibits Anti-Proliferative Effect on Triple-Negative Breast Cancer by Depletion of Mitochondrial Heme
by Jingjing Du, Xuening Zhang, Kaiqiang Guo, Wanjun Lin, Wenjian Lan, Zi Wang, Meina Shi, Zifeng Huang, Houjin Li and Wenzhe Ma
Mar. Drugs 2025, 23(4), 146; https://doi.org/10.3390/md23040146 - 28 Mar 2025
Viewed by 708
Abstract
Triple-negative breast cancer (TNBC) presents a significant therapeutic challenge due to the absence of specific targeted treatments. In this study, we explored the therapeutic potential of xanthocillin X dimethyl ether (XanDME), a naturally occurring isocyanide isolated from the marine fungus Scedosporium apiospermum, [...] Read more.
Triple-negative breast cancer (TNBC) presents a significant therapeutic challenge due to the absence of specific targeted treatments. In this study, we explored the therapeutic potential of xanthocillin X dimethyl ether (XanDME), a naturally occurring isocyanide isolated from the marine fungus Scedosporium apiospermum, on TNBC. To elucidate the underlying mechanism, we initially demonstrated that XanDME directly binds to hemin, the oxidized form of heme, in vitro, corroborating previous reports. This interaction led to the depletion of intracellular regulatory heme. We further established that XanDME translocates into the mitochondria, where it interacts with crucial hemoproteins, namely cytochromes. The binding of XanDME with mitochondrial cytochromes disrupts the electron transport chain (ETC), inhibits the activity of mitochondrial complexes, and inactivates mitochondrial respiration. The inhibitory activity of XanDME on mitochondrial function significantly contributes to its anti-TNBC effects, as observed both in vitro and in vivo. Our study underscores the potential of XanDME against TNBC, warranting further investigations. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

23 pages, 3298 KiB  
Article
Construction of a Plasmid-Free Escherichia coli Strain with Enhanced Heme Supply to Produce Active Hemoglobins
by Zihan Zhang, Baodong Hu, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Metabolites 2025, 15(3), 151; https://doi.org/10.3390/metabo15030151 - 23 Feb 2025
Viewed by 697
Abstract
Background: Heme is an important cofactor and plays crucial roles in the correct folding of hemoproteins. The synthesis of heme can be enhanced by the plasmid-based expression of heme biosynthetic genes. However, plasmid-based expression is genetically unstable and requires the utilization of antibiotics [...] Read more.
Background: Heme is an important cofactor and plays crucial roles in the correct folding of hemoproteins. The synthesis of heme can be enhanced by the plasmid-based expression of heme biosynthetic genes. However, plasmid-based expression is genetically unstable and requires the utilization of antibiotics to maintain high copy numbers of plasmids. Methods: The rate-limiting steps in heme biosynthesis were first analyzed based on previous studies and the accumulation of heme intermediates was achieved by adding heme precursor (5-aminolevulinic acid, ALA). Next, the intracellular accumulation of porphyrin was increased by deleting the porphyrin transporter TolC. Finally, the heme synthetic genes were modified by integrating the hemA and hemL genes into the cheW and yciQ locus, assembling the rate-limiting enzymes HemC and HemD with RIAD-RIDD tags, replacing the promoters of hemE/hemH genes with the constitutive promoter PJ23100, and deleting the heme degradation gene yfeX. Results: An enhanced heme supply HEME2 strain was obtained with a heme titer of 0.14 mg/L, which was 4.60-fold higher than that of the C41(DE3) strain. The HEME2 strain was applied to produce human hemoglobin and leghemoglobin. The titer and peroxidase activity of human hemoglobin were 1.29-fold and 42.4% higher in the HEME2-hHb strain than the values in the control strain C41-hHb. In addition, the peroxidase activity and heme content of leghemoglobin were increased by 39.2% and 53.4% in the HEME2-sHb strain compared to the values in the control strain C41-sHb. Conclusions: A plasmid-free Escherichia coli C41(DE3) strain capable of efficient and stable heme supply was constructed and can be used for the production of high-active hemoglobins. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

14 pages, 8768 KiB  
Article
Modifications of Constitutive Promoter to Large-Scale Synthesize Porcine Myoglobin in Komagataella phaffii
by Danni Sun, Yunpeng Wang, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Fermentation 2025, 11(2), 49; https://doi.org/10.3390/fermentation11020049 - 22 Jan 2025
Cited by 1 | Viewed by 1131
Abstract
Myoglobin (MG) is a heme-binding protein and can be used as a color and flavor additive for artificial meat. After the selection of stable constitutive expression, although the synthesis of porcine myoglobin (pMG) was achieved through the application of a modified GAP promoter [...] Read more.
Myoglobin (MG) is a heme-binding protein and can be used as a color and flavor additive for artificial meat. After the selection of stable constitutive expression, although the synthesis of porcine myoglobin (pMG) was achieved through the application of a modified GAP promoter (G1 promoter) in Komagataella phaffii, the lower titer of pMG cannot meet the requirements of commercial production. Herein, another powerful constitutive promoter (GCW14 promoter) was chosen and modified through randomizing its core region for the first time, leading to an increase of 1.18 to 6.01 times in strength. In addition, under the control of a mutated PGCW14 promoter (PGCWm-121), the titer of pMG was further enhanced by optimizing the integrated copy numbers of the pMG gene and knocking out the Yps1-1 protease. Applying the best engineered strain and suitable fermentation conditions, the highest titer of pMG (547.59 mg/L) was achieved in fed-batch fermentation using a cheap and chemically synthesized medium. Furthermore, the obtained pMG had similar peroxide-specific activity (427.50 U/mg) with the extracted natural product after the food-grade purification. The applied strategy can be utilized to synthesize other high value-added hemoproteins, enriching the applications of functional components in the field of artificial meat. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

29 pages, 2072 KiB  
Review
Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity
by Isabel S. Barata, José Rueff, Michel Kranendonk and Francisco Esteves
J. Xenobiot. 2024, 14(2), 575-603; https://doi.org/10.3390/jox14020034 - 1 May 2024
Cited by 2 | Viewed by 2358
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, [...] Read more.
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)’s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1’s involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI). Full article
Show Figures

Figure 1

3 pages, 161 KiB  
Editorial
Editorial on the Special Issue “Heme Metabolism and Porphyria”
by Elena Di Pierro, Jasmin Barman-Aksözen and Emmanuel Richard
Life 2024, 14(5), 581; https://doi.org/10.3390/life14050581 - 30 Apr 2024
Viewed by 1150
Abstract
Porphyria denotes a heterogeneous group of metabolic disorders caused by anomalies in the biosynthesis of heme, a crucial component of hemoglobin and other vital hemoproteins [...] Full article
(This article belongs to the Special Issue Heme Metabolism and Porphyria)
20 pages, 11479 KiB  
Article
Efficient Secretory Expression for Mammalian Hemoglobins in Pichia pastoris
by Chenyang Li, Tao Zhang, Zhengshan Luo, Jingwen Zhou, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Fermentation 2024, 10(4), 208; https://doi.org/10.3390/fermentation10040208 - 11 Apr 2024
Cited by 5 | Viewed by 2559
Abstract
Mammalian hemoglobins (HB) are a kind of heme-binding proteins that play crucial physiological roles in various organisms. The traditional techniques employed for the extraction of HB are expensive and time-consuming, while the yields of mammalian HB in previous reports were quite low. The [...] Read more.
Mammalian hemoglobins (HB) are a kind of heme-binding proteins that play crucial physiological roles in various organisms. The traditional techniques employed for the extraction of HB are expensive and time-consuming, while the yields of mammalian HB in previous reports were quite low. The industrial Pichia pastoris is a highly effective platform for the secretory expression of heterologous proteins. To achieve efficient secretory expression of HB in P. pastoris, multiple strategies were applied, including the selection of a suitable host, the screening of optimal endogenous signal peptides, the knockout of VPS10, VTH1, and PEP5, and the co-expression of Alpha-Hemoglobin Stabilizing Protein (AHSP). In addition, the conditions for producing HB were optimized at shaking-flask level (BMMY medium with 100 mg/L of hemin, 2% methanol, and 24 °C). Based on these conditions, the higher titers of bovine hemoglobin (bHB, 376.9 ± 13.3 mg/L), porcine hemoglobin (pHB, 119.2 ± 7.3 mg/L), and human hemoglobin (hHB, 101.1 ± 6.7 mg/L) were achieved at fermenter level. The engineered P. pastoris strain and comprehensive strategies can also be applied to facilitate the synthesis of other high-value-added hemoproteins or hemoenzymes. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

19 pages, 3774 KiB  
Article
Redox Reactivity of Nonsymbiotic Phytoglobins towards Nitrite
by Cezara Zagrean-Tuza, Galaba Pato, Grigore Damian, Radu Silaghi-Dumitrescu and Augustin C. Mot
Molecules 2024, 29(6), 1200; https://doi.org/10.3390/molecules29061200 - 7 Mar 2024
Cited by 1 | Viewed by 2097
Abstract
Nonsymbiotic phytoglobins (nsHbs) are a diverse superfamily of hemoproteins grouped into three different classes (1, 2, and 3) based on their sequences. Class 1 Hb are expressed under hypoxia, osmotic stress, and/or nitric oxide exposure, while class 2 Hb are induced by cold [...] Read more.
Nonsymbiotic phytoglobins (nsHbs) are a diverse superfamily of hemoproteins grouped into three different classes (1, 2, and 3) based on their sequences. Class 1 Hb are expressed under hypoxia, osmotic stress, and/or nitric oxide exposure, while class 2 Hb are induced by cold stress and cytokinins. Both are mainly six-coordinated. The deoxygenated forms of the class 1 and 2 nsHbs from A. thaliana (AtHb1 and AtHb2) are able to reduce nitrite to nitric oxide via a mechanism analogous to other known globins. NsHbs provide a viable pH-dependent pathway for NO generation during severe hypoxia via nitrite reductase-like activity with higher rate constants compared to mammalian globins. These high kinetic parameters, along with the relatively high concentrations of nitrite present during hypoxia, suggest that plant hemoglobins could indeed serve as anaerobic nitrite reductases in vivo. The third class of nsHb, also known as truncated hemoglobins, have a compact 2/2 structure and are pentacoordinated, and their exact physiological role remains mostly unknown. To date, no reports are available on the nitrite reductase activity of the truncated AtHb3. In the present work, three representative nsHbs of the plant model Arabidopsis thaliana are presented, and their nitrite reductase-like activity and involvement in nitrosative stress is discussed. The reaction kinetics and mechanism of nitrite reduction by nsHbs (deoxy and oxy form) at different pHs were studied by means of UV-Vis spectrophotometry, along with EPR spectroscopy. The reduction of nitrite requires an electron supply, and it is favored in acidic conditions. This reaction is critically affected by molecular oxygen, since oxyAtHb will catalyze nitric oxide deoxygenation. The process displays unique autocatalytic kinetics with metAtHb and nitrate as end-products for AtHb1 and AtHb2 but not for the truncated one, in contrast with mammalian globins. Full article
(This article belongs to the Special Issue Redox Stress in Bioinorganic Chemistry)
Show Figures

Figure 1

35 pages, 1109 KiB  
Review
The Cellular and Organismal Effects of Nitroxides and Nitroxide-Containing Nanoparticles
by Izabela Sadowska-Bartosz and Grzegorz Bartosz
Int. J. Mol. Sci. 2024, 25(3), 1446; https://doi.org/10.3390/ijms25031446 - 24 Jan 2024
Cited by 11 | Viewed by 2751
Abstract
Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, [...] Read more.
Nitroxides are stable free radicals that have antioxidant properties. They react with many types of radicals, including alkyl and peroxyl radicals. They act as mimics of superoxide dismutase and stimulate the catalase activity of hemoproteins. In some situations, they may exhibit pro-oxidant activity, mainly due to the formation of oxoammonium cations as products of their oxidation. In this review, the cellular effects of nitroxides and their effects in animal experiments and clinical trials are discussed, including the beneficial effects in various pathological situations involving oxidative stress, protective effects against UV and ionizing radiation, and prolongation of the life span of cancer-prone mice. Nitroxides were used as active components of various types of nanoparticles. The application of these nanoparticles in cellular and animal experiments is also discussed. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

20 pages, 2157 KiB  
Review
Sigma Receptors: Novel Regulators of Iron/Heme Homeostasis and Ferroptosis
by Nhi T. Nguyen, Valeria Jaramillo-Martinez, Marilyn Mathew, Varshini V. Suresh, Sathish Sivaprakasam, Yangzom D. Bhutia and Vadivel Ganapathy
Int. J. Mol. Sci. 2023, 24(19), 14672; https://doi.org/10.3390/ijms241914672 - 28 Sep 2023
Cited by 6 | Viewed by 3744
Abstract
Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their [...] Read more.
Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein–protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine. Full article
(This article belongs to the Special Issue Recent Advance on Iron Metabolism, Ferritin and Hepcidin Research 2.0)
Show Figures

Figure 1

27 pages, 5738 KiB  
Review
Recent Synthetic Advances on the Use of Diazo Compounds Catalyzed by Metalloporphyrins
by Mário M. Q. Simões, José A. S. Cavaleiro and Vitor F. Ferreira
Molecules 2023, 28(18), 6683; https://doi.org/10.3390/molecules28186683 - 18 Sep 2023
Cited by 7 | Viewed by 4115
Abstract
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C−H, N−H, O−H, S−H, and Si−H bonds. Typically, reactions from diazo compounds are catalyzed by transition [...] Read more.
Diazo compounds are organic substances that are often used as precursors in organic synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrangements, and carbene or metallocarbene insertions into C−H, N−H, O−H, S−H, and Si−H bonds. Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these preferences in the products. Porphyrins have been used as catalysts in several important reactions for organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds, porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and, therefore, in recent years, this has been the subject of significant research. This review will summarize the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins (M−Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible opportunities for future applications. Also, at the end of this review, the properties of artificial metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those concerning carbene-transfer reactions, will be considered. Full article
Show Figures

Figure 1

13 pages, 2921 KiB  
Article
Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins
by Dhruv C. Rathod, Sonali M. Vaidya, Marie-T. Hopp, Toni Kühl and Diana Imhof
Biomolecules 2023, 13(7), 1031; https://doi.org/10.3390/biom13071031 - 23 Jun 2023
Cited by 11 | Viewed by 4214
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, [...] Read more.
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein. Full article
(This article belongs to the Special Issue Unraveling Mysteries of Heme Metabolism)
Show Figures

Figure 1

13 pages, 1979 KiB  
Article
Lysine Methyltransferase SMYD1 Regulates Myogenesis via skNAC Methylation
by Li Zhu, Mark A. Brown, Robert J. Sims, Gayatri R. Tiwari, Hui Nie, R. Dayne Mayfield and Haley O. Tucker
Cells 2023, 12(13), 1695; https://doi.org/10.3390/cells12131695 - 22 Jun 2023
Cited by 4 | Viewed by 2768
Abstract
The SMYD family is a unique class of lysine methyltransferases (KMTases) whose catalytic SET domain is split by a MYND domain. Among these, Smyd1 was identified as a heart- and skeletal muscle-specific KMTase and is essential for cardiogenesis and skeletal muscle development. SMYD1 [...] Read more.
The SMYD family is a unique class of lysine methyltransferases (KMTases) whose catalytic SET domain is split by a MYND domain. Among these, Smyd1 was identified as a heart- and skeletal muscle-specific KMTase and is essential for cardiogenesis and skeletal muscle development. SMYD1 has been characterized as a histone methyltransferase (HMTase). Here we demonstrated that SMYD1 methylates Skeletal muscle-specific splice variant of the Nascent polypeptide-Associated Complex (skNAC) transcription factor. SMYD1-mediated methylation of skNAC targets K1975 within the carboxy-terminus region of skNAC. Catalysis requires physical interaction of SMYD1 and skNAC via the conserved MYND domain of SMYD1 and the PXLXP motif of skNAC. Our data indicated that skNAC methylation is required for the direct transcriptional activation of myoglobin (Mb), a heart- and skeletal muscle-specific hemoprotein that facilitates oxygen transport. Our study revealed skNAC as a methylation target of SMYD1, illuminates the molecular mechanism by which SMYD1 cooperates with skNAC to regulate transcriptional activation of genes crucial for muscle functions and implicates the MYND domain of the SMYD-family KMTases as an adaptor to target substrates for methylation. Full article
(This article belongs to the Collection Skeletal Muscle Differentiation and Epigenetics)
Show Figures

Figure 1

Back to TopTop