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Abstract: Diazo compounds are organic substances that are often used as precursors in organic
synthesis like cyclization reactions, olefinations, cyclopropanations, cyclopropenations, rearrange-
ments, and carbene or metallocarbene insertions into C—H, N—H, O—H, S—H, and Si—H bonds.
Typically, reactions from diazo compounds are catalyzed by transition metals with various ligands
that modulate the capacity and selectivity of the catalyst. These ligands can modify and enhance
chemoselectivity in the substrate, regioselectivity and enantioselectivity by reflecting these prefer-
ences in the products. Porphyrins have been used as catalysts in several important reactions for
organic synthesis and also in several medicinal applications. In the chemistry of diazo compounds,
porphyrins are very efficient as catalysts when complexed with low-cost metals (e.g., Fe and Co) and,
therefore, in recent years, this has been the subject of significant research. This review will summarize
the advances in the studies involving the field of diazo compounds catalyzed by metalloporphyrins
(M—Porph, M = Fe, Ru, Os, Co, Rh, Ir) in the last five years to provide a clear overview and possible
opportunities for future applications. Also, at the end of this review, the properties of artificial
metalloenzymes and hemoproteins as biocatalysts for a broad range of applications, namely those
concerning carbene-transfer reactions, will be considered.

Keywords: diazo compounds; porphyrins; carbenes; metallocarbenes; catalytic reactions

1. Introduction

Diazo compounds have been known since the synthesis of ethyl diazoacetate (EDA),
which was the first aliphatic organic substance to have a diazo group, in 1883 by Curtius [1-3].
Since then, they have fascinated organic chemists due to their synthetic versatility through
many bond-forming reactions (C—C, C=C, C—0O, C—N, C-S5, etc.), including the formation
of carbocyclic and heterocyclic compounds. Reactions with diazo compounds involve the
formation of intermediate carbenes (R1R,C:) that can be produced under different reaction
conditions such as heating, light irradiation, or Lewis and Bronsted acids decomposition.
Metal-carbene complexes or metallocarbenes (R;R,C=M) are carbenes bonded to a metal.
The first of these metallocarbenes was discovered by Schrock [Ta(CH,tBu)s(CHtBu)] [4],
and since then, it has expanded to many other metals, mainly to complexes of the early
transition metals from groups 4-6, with the most diverse types of ligands and became
important reactive synthons that were used in the most diverse syntheses. For a long time,
and up to the present day, these compounds continue to be of interest for organic synthesis
and have been reviewed by many researchers in scientific journals and books, mainly in
using more efficient and selective catalysts [5-8]. The scope of reactions involving carbenes
and metallocarbenes represents a significantly broader and more versatile approach in
organic synthesis compared to reactions with diazo compounds [9-12]. Carbenes are
species containing only two groups covalently bonded to a carbon and two free non-
bonding electrons that can be spin-paired in the same orbital (singlet state) or unpaired
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in two separate orbitals (triplet state) [13]. Therefore, they are electrically neutral species
that can simultaneously form two bonds. Metal-carbene complexes are species made
up of carbenes that are covalently bonded to a metal, usually with expensive transition
metals (M = Ru, Os, Co, Rh, Ir) [14,15]; however, there are several works with iron, an
abundant metal, which is cheap, environmentally benign, and with low toxicity [16-22].
The chemical behavior of carbenes and metal-carbene complexes differ in reactivity and
selectivity. Scheme 1 shows the reaction of carbenes and metal-carbene complexes with
olefins, forming two C—C bonds in one step leading to cyclopropanes. Depending on
the specific combination of initial diazo compounds and olefins, this reaction can yield a
vast array of organic compounds. Moreover, beyond intermolecular reactions involving
diazo compounds, they also demonstrate the potential to engage in diverse intramolecular
reactions, including cyclopropanations, C—H, O—H, S—H, N—H bond insertions, and
aromatic cycloaddition reactions.
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Scheme 1. Synthesis of cyclopropanes involving carbenes or metal-carbene complexes.

Diazo compounds are used in syntheses that produce drugs, agrochemicals, pesticides,
and derivatives that can be used to prepare other substances. The chemistry of these
compounds is widely recognized precisely for having significant importance in total or
partial syntheses. They are the best synthetic building blocks for required target molecules
due to their high reactivity, versatility, multiplicity of reactions and preparation methods.
As amphiphilic reagents, they can undergo geminal difunctionalization by replacing the
corresponding diazo function with two new substituents, which are favored by the release
of nitrogen [23]. In Scheme 2, some reactions are highlighted, among many others, that
can be carried out with diazo compounds, under heating, catalysis with metals, Lewis
and Bronsted acid catalysis, and photochemistry to form carbocycles and heterocycles. In
Scheme 2, R! can represent alkyl, aryl, H, CHO, CO;R, and R? can also be alkyl, aryl, H,
CHO, CO,R. Additionally, R! can be different or equal to R? in Scheme 2.

Discovered in the 1970s, transition metal carbene radicals (R1R,*C=M) turned out to
be fundamental in contemporary catalysis, usually referred to as metalloradical catalysis
(MRC). MRC flourishing applications led to the synthesis of countless organic compounds,
from simple cyclopropanes to trickier eight-membered rings. So far, the emphasis has
mostly been put on Co(Il) based systems (R;R,*C=Co), which are highly appropriate for
catalytic carbene transfer reactions [24-27].
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Legend:
R' = Alkyl, Aryl, H, CHO, CO,R
R? = Alkyl, Aryl, H, CHO, CO,R
R' can be different or equal to R?
1. Lewis acid catalyzed additon of diazocarbonyl
compounds to nitrile
. Cyclopropanation of olefins
. CH insertion reaction forming p-lactams
. Cyclopropanation followed by rearrangement

. Aziridination of imines
. Intramolecular CH insertion
. C=0 insertion
. N-H insertion reactions followed by
conversion into imidazoles
10. Carbene reaction with ureas
11. Assembly of two functional groups
12. 1,3-sigmatropic rearrangement
13. Wolff rearrangement followed by Diels-Alder

2
3
4
5. CH, NH, SH, OH carbene insertions
6
7
8
9

Scheme 2. Some highlighted reactions that can be carried out with diazo compounds.

2. Porphyrin-Based Catalysts

Porphyrins are macrocyclic organic compounds with a general structure with a
tetrapyrrole macrocycle as the central part, the four pyrrolic subunits connected by me-
thine bridges. The general skeleton of porphyrins has been extensively modified in
several positions to adjust their reactivity, envisaging multiple applications, including
catalysis (Figure 1).
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Figure 1. General structure of the metalloporphyrins’ core.

The outer part of these heterocyclic macrocycles can present several topologies and
numerous substitutions, whereas the central core has rigid planarity in several macrocycles
(Figure 1). These molecules present structural arrangements that form cavities, which have
enough space to accommodate several metal ions bound to the nitrogens in the central cavity.
They perform important biochemical functions (e.g., myoglobin, hemoglobin, cytochromes
P450) and have been used in medicinal chemistry, in catalysis for various reactions, for
the inactivation of microorganisms, as detection probes and materials science. It has been
known for many years that metalloporphyrins are important metal catalysts for various
transformations. These metal-containing macrocycles react with diazo compounds and
induce the formation of carbenes or metallocarbenes, which are helpful in various synthetic
transformations. In this sense, diazo compounds are excellent reactants for interacting with
porphyrins in inter- or intramolecular reactions and structural modifications in the outer
part of the macrocyclic ring. As metalloporphyrins have a metal ion in the center of each
macrocycle, they can form metallocarbene intermediates (mainly from diazo compounds)
that can catalyze various reactions, such as inter- or intramolecular cyclopropanations,
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cyclopropenation reactions, carbene carbonylation, olefination of carbonyl compounds,
formation of C—C, C—N, C—-0O, C—S5i, C—S bonds, intramolecular Buchner reaction, among
others [10,11,17,28-32].

3. Reactions through Unusual Strategies

Nitrogen heterocyclic chemical entities are present in many drugs used in clinical
medicine. Any efficient method focusing on their efficient preparation is very important
in Medicinal Chemistry. One of these prominent N-heterocycles is piperidine, which is
present as a pharmacophore group in several drugs in the therapeutic arsenal. There are
many attractive synthetic routes for the synthesis of piperidines and their analogues.

Based on recent syntheses of 5-membered N—heterocycles by metalloradical cycliza-
tion catalyzed by Co(Il) porphyrins [33], de Bruin and collaborators reported a robust
method with high global yields for the synthesis of piperidines directly starting from
v-amino substituted linear aldehydes. The reaction occurs by ring-closing C—C bond for-
mation after the in-situ formation of N—tosylhydrazones from aldehydes. This is followed
by in situ deprotonation of the hydrazones to afford the corresponding diazo compounds
(Scheme 3). In this reaction, there is also the formation of linear alkenes as secondary prod-
ucts in small amounts [34]. It is crucial to emphasize that in the absence of the Co complex
of meso-tetraphenyl porphyrin (CoTPP), only the diazo compound would be formed, and
the cyclization product would not be obtained.

Co(TPP)
o Pp [ g oo
RN~ R.__N — > H + R__N %
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H H H NH ! H H
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Scheme 3. Piperidines synthesized from linear aldehydes and p-TsNHNH), in one-pot synthesis
catalyzed by Co(TPP) [33].

A unique route to prepare eight-membered rings was also developed by de Bruin and
collaborators, based on metalloradical catalyzed reactions, to construct a series of novel
dibenzocyclooctenes, monobenzocyclooctadienes and 8-membered heterocyclic enol ethers,
which have been synthesized in good to excellent yields and with excellent substituent
tolerance using Co(TPP) as a catalyst, thus producing cobalt(Ill)-carbene radicals as in-
termediates [35-37]. The metalloradical activation of N-tosyl hydrazones with Co(TPP)
offered a novel route to build a series of dibenzocyclooctenes, in good to excellent yields
through selective Cearpene —Cary1 cyclization (Scheme 4A).
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Scheme 4. Metalloradical catalyzed reactions, using Co(TPP) as catalyst, for the synthesis of (A) sev-
eral dibenzocyclooctenes from N-tosyl hydrazones as carbene precursor; (B) different dibenzocy-
clooctenes with in situ generation of the carbene precursor from o-aryl aldehydes and tosylhydrazide;
(C) various monobenzocyclooctadienes with in situ generation of the carbene precursor from o-aryl
aldehydes and tosylhydrazide [35,36].

Moreover, various aromatic substituents were tolerated on both benzene rings. The
proposed mechanism consists of intramolecular hydrogen atom transfer (HAT) to Co(III)-
carbene radical intermediates, followed by the dissociation of an ortho-quinodimethane
that undergoes 87 cyclization. The presence of radical-type intermediates was confirmed
by trapping experiments [35]. The protocol was extended to the synthesis of the novel
monobenzocyclooctadienes that can be synthesized by ring-closure of o-aryl aldehydes
containing bis-allylic C—H bonds. A different mechanism is present here, suggesting
that ring-closure to the monobenzocyclooctadienes involves a direct radical-rebound step
within the coordination sphere of cobalt, thus tolerating enantioselective formation of chiral
monobenzocyclooctadienes (Scheme 4B,C) [36].

4. X—H Functionalization Catalyzed by Metalloporphyrins

The functionalization of C—H bonds with diazo compounds catalyzed by high-cost
transition metals has been explored for many years, mainly with Rh, and many examples
can be found in the literature [8,10,38,39]. However, developing efficient and sustainable
reactions with non-precious metals is still of little use in processes involving diazo com-
pounds; in this sense, iron, being an abundant and low-cost metal, is an excellent candidate
for catalysis. Hock et al. [40] developed highly efficient functionalization reactions on
C—H bonds by diazoacetonitrile with N-heterocycles catalyzed by the iron tetraphenyl-
porphyrin Fe(TPP)CI (Scheme 5). This protocol makes it possible to prepare important
precursors of indole and indazole heterocycles. The authors investigated the possibility
of this reaction going through a mechanism via free radicals, conducting the reaction in
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the presence of TEMPO. This classic radical scavenger completely inhibited the C—H
functionalization reactions.

Fe(TTP)CI CN
1 mol% AN R
H e 2
CH,Cly/H,0 N
C

M

\

R1
N >/—CN ; >,—
92% CH3 87%/ 80% 89% K*CN
7
CN CN

86% Ph 99% 78% — 93% H
A S
CN CN CN CN
N N N
75% 41% H 75% H 64% H

Scheme 5. C—H functionalization of indole and indazole heterocycles with diazoacetonitrile cat-
alyzed by Fe(TPP)Cl [40].

Fe(TPP)Cl also catalyzes the insertion of benzylic carbenes, generated in situ from N-
tosylhydrazones derived from different benzaldehydes, into X—H (X = Si, Sn, Ge). Toluene
and NaH were shown to be the best solvent and base, respectively. Silanes with tertiary,
secondary, and primary Si—H bonds afforded the corresponding insertion products in mod-
erate to high yields, and a stepwise double insertion strategy was developed to synthesize
unsymmetrical tetrasubstituted silanes. Moreover, this reaction could be extended to Sn—H
and Ge—H bonds, affording the insertion products in good to high yields (Scheme 6) [41].

Recently, the synthesis and characterization of several donor-acceptor iron porphyrin
carbene complexes obtained from an iron porphyrin and the corresponding donor-acceptor
diazo compounds were reported. Furthermore, the crystal structure of a donor-acceptor
iron porphyrin carbene complex derived from a morpholine-substituted diazo amide was
obtained. The carbene transfer reactivity of the iron porphyrin carbenes was studied for the
N—H insertion reaction with aniline or morpholine (Scheme 7). However, the morpholine-
derived amide complex could only react with aniline to deliver the corresponding N—H
insertion product with very poor efficiency. Hence, iron porphyrin carbenes were identified
as the real intermediates for iron porphyrin-catalyzed carbene transfer reactions from
donor-acceptor diazo compounds [42].
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Scheme 6. Fe(TPP)Cl catalyzed insertion reactions of in situ generated benzylic carbenes from
N-tosylhydrazones into X—H (X = Si, Sn, Ge) [41].
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Scheme 7. Synthesis of iron porphyrin carbene complexes and the corresponding catalyzed N—H
insertion reactions with aniline or morpholine [42].

Phenols and naphthols are present in many natural products, dyes, pharmaceuti-
cals, functional polymers, etc. These versatile building blocks readily engage in diverse
transformations through conventional reactions and exhibit the unique ability to undergo
insertion into vicinal C—H bonds adjacent to OH groups. The importance of these sub-
stances stimulates research into new direct functionalization strategies on the C—H bond in
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a chemoselective manner in the presence of other functionalities. For example, the chemo-
and site-selective C—H functionalization of unprotected phenols and naphthols. However,
this type of functionalization presents considerable challenges. Yu et al. developed a novel
iron-catalyzed chemo and regioselective ortho C—H bond functionalization of phenols and
naphthols with diazoesters. In this transformation, several iron porphyrins were used
as catalysts, the best results being obtained for tetrakis-(2,4,6-trifluorophenyl)porphyrin
chloride Fe(2,4,6-TFPP)CI (Scheme 8) [43].

OH Ar
_ 0,
N, Fe-catalyst (10 mol /o)= N7 Cco,R!
Ar)J\COQR1 AgSoFe (10 molt) e
CH,Cly, 1t R
OH Ar
Fe-catalyst (10 mol%
N, yst ( 0 | X CO,R!
Ar)J\CO R AgSbFg (10 mol%) S
2 CH,Cly, 1t R

Scheme 8. Iron catalyzed ortho C-H bond functionalization of phenols and 1-naphthols with c-aryl
«-diazoesters [43].

Metalloporphyrin dialkylcarbene or bis(dialkylcarbene) complexes prepared from
diazo compounds as carbene sources are rare in the literature and with little structural
information by NMR spectroscopy and X-ray crystallography. They are generally difficult
to use in synthetic methodologies due to their low stability. Furthermore, dialkylcarbene
metalloporphyrin species may be prone to undergo a 1,2-hydride migration side reaction.
However, Che and collaborators [44] were able to solve these problems by synthesizing
stable porphyrin complexes of mono and bis(dialkylcarbene) group 8 metals (Fe, Ru, Os)
with the linker adamantane (generated from photolysis of aziadamantane, a diazirine
compound, as the carbene source). The steric effect of the bulky ligand on the porphyrin
macrocycle makes the Fe—porphyrin complex an effective, active, and robust catalyst for
the intermolecular transfer of diarylcarbene in reactions including cyclopropanation and
S—H,N-H, O—H, and C(sp3 )-H insertion. The authors synthesized several dialkylcarbene
carbene complexes, but for this article, Fe!l(TPFPP) = adamantane (bright red solid) is
highlighted in Scheme 9. Its preparation involves treating Fe'l(TPFPP) with aziadamantane
at room temperature under UV irradiation (365 nm) for 15 min (Scheme 9).

The same research group described the Ir(Ill) porphyrin-catalyzed intermolecular
C(sp®)—H insertion reaction of a quinoid carbene (QC), which showed to be efficient for the
arylation of activated hydrocarbons such as 1,4-cyclohexadienes, thus giving functionalized
phenol moieties anchored onto 1,4-cyclohexadienes (Scheme 10). Moreover, mechanistic
studies point out a radical mechanism for these insertion reactions, this methodology being
enabled by the hydrogen-atom transfer (HAT) reactivity of the Ir(IlI)-QC intermediate.
The system exhibits distinctive regioselectivity, mainly ruled by steric effects since the
insertion into primary C—H bonds is favored over secondary and/or tertiary C—H bonds
in substituted cyclohexene substrates [45].

Combining metallo- and photocatalysis, Ir(IIl) porphyrin-based porous MOFs cat-
alyzed intermolecular C(sp®)—H insertion reaction under visible light was also reported,
allowing the isolation and structural characterization of an Ir(III) porphyrin-carbene species.
Different inert substrates, including cyclic (cyclopentane or cyclohexane) and acyclic (pen-
tane, 2,3-dimethylbutane, 3-methylpentane or hexane) gave satisfactory yields both with
ethyl diazoacetate (EDA) or with quinoid carbene (QC) (Figure 2) [46].
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#ArZCNz (0.2 mmol, added over 3h), substrate (2 mmol), catalyst (0.004 mmol), DCM (1 mL), 80 °C, 12 h, and under Ar.

Scheme 9. Examples of intermolecular diarylcarbene transfer reactions catalyzed by the iron(II)
complex Fell(TPFPP) = adamantane [44].

H
0] (0]
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[ R — — [(J®
radical A
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N, M M /C|3\
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-
N (]

88 % yield

Scheme 10. Direct C(sp3)fH arylation based on an Ir(IIl) porphyrin-catalyzed quinoid carbene (QC)
intermolecular insertion reaction, illustrated for 1,4-cyclohexadiene as substrate [45].
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Figure 2. Schematic of the Ir(Ill) porphyrin-based MOF for the photocatalytic activation of inert
C(sp3 )—H bonds via Ir(III) porphyrin carbene intermediate [46]. Reproduced with permission from
the American Chemical Society.

Based on Ir(TCPP)CI (TCPP = tetrakis(4-carboxyphenyl)porphyrin), the metal-organic
framework (MOF), Ir-PMOE-1(Hf), which can resist acid conditions, has been examined
in the O—H insertion reaction of carboxylic acids with diazo compounds, results showing
that Ir-PMOF-1(Hf) is an efficient heterogeneous catalyst for these reactions (Scheme 11).
Moreover, Ir-PMOF-1(Hf) maintained its framework after the catalytic reactions and could
be recycled and reused for at least ten runs. For other carboxylic acids, the yields range from
57% after 10 min (for 2-hydroxybenzoic acid as substrate) to 91% after 6 min of reaction
(for trifluoroacetic acid) [47].

o Ir-PMOF-1(Hf) 0
0.8 [Ir] mol % o)
@Ac’” oY o
o CH,Cly; 9 min O

molar ratio 4 : 1 80 % yield

Scheme 11. O—H insertion reaction of benzoic acid with EDA catalyzed by a heterogeneous MOF
catalyst based on Ir(TCPP)CI [47].

As reported by the same research group, the heterogeneous catalyst Ru-PMOEF-1(Hf),
based on Ru(TCPP)(CO) (TCPP = tetrakis(4-carboxyphenyl)porphyrin), evidenced catalytic
efficiency for the N—H insertion reactions of EDA into a range of secondary amines with
up to 92% yield (Scheme 12). Due to its 3D structure with orthogonal 1D open channels,
Ru-PMOEF-1(Hf) induces size selectivity, displaying an apparent yield-decreasing tendency
along the chain lengthening (yield for diethylamine > dipropylamine > dibutylamine
> dipentylamine). Moreover, Ru-PMOF-1(Hf) could be recovered and reused for at least
ten runs with negligible loss of catalytic activity [48].
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Ru-PMOF-1(Hf)

R
1 mol [Ru] % | o}
RRNH  + N/\n/o\/ — N
2 5 CH,Cl, R o)
80-92 % yield
(30 min - 48 h)
H H H H
\(NY ~oN - AN SN~

92% (30 min) 91 % (30 min) 86 % (30 min) 83 % (30 min)

H H
H N N
AN U Q
80 % (30 min) 93 % (2 h) 80 % (48 h)

Scheme 12. N—H insertion reaction of secondary amines with EDA catalyzed by a heterogeneous
MOF catalyst based on Ru(TCPP)(CO) [48].

The development of metalloporphyrin-based capsules showed to be a promising
strategy to create nanoreactors, real nanoscale chemical environments where chemical
transformations can occur, thus changing the reactivity of molecules upon binding inside
the cavity, for example, in carbene transfer/insertion reactions. A recent example deals with
a Ru(Il) porphyrin-based molecular nanoreactor, bearing a stable and inert diphenylcarbene
axial ligand as a catalyst in selective N—H carbene insertion reactions, where no signs of
dimerization side processes nor double insertions were observed in the rotaxane assembly
reaction, hence leading to the quantitative formation of rotaxanes by active-metal-template
synthetic methodology. Only the internal axial position of the Ru(Il) catalyst is available
for activation of the substrates, explaining the registered high selectivity for rotaxanes
(Scheme 13) [49].

60°C; 8h

Scheme 13. Synthesis of asymmetrical rotaxanes by the active-metal template methodology based on
N—H carbene insertion reactions catalyzed a Ru(Il) porphyrin [49].
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5. Cyclopropanation Reactions Catalyzed by Metalloporphyrins

Of all the reactions using diazo compounds, cyclopropanations (Scheme 1) have
been the most studied as they simultaneously form two C—C bonds. Cyclopropanes are
very useful building blocks in organic synthesis and the best method for their synthesis
is, via one-pot reaction, the addition of carbene (generated by several methods) to an
olefin. Versatility regarding olefins and diazo compounds is quite diverse, generating many
different compounds [38,50-53].

There are reports in the literature that hydrophobic pockets can accelerate cyclo-
propanation reactions. For example, a hybrid system of cationic iron porphyrin and DNA
accelerates the cyclopropanation reactions due to the concentration of reagents occupying
hydrophobic spaces close to DNA [54]. Considering the premise that DNA acts similarly to
a micelle, Roelfes and collaborators [55] studied the combination of cationic Fe-porphyrins
with anionic surfactants, such as sodium dodecyl sulphate (SDS), in concentrations above
their critical micelle concentrations in water (Scheme 14). It was concluded that micellar
catalysis with surfactants eliminates the need for organic solvents and accelerates the cyclo-
propanation reaction of p-methoxystyrene with ethyl diazoacetate (the carbene precursor)
with iron porphyrins. Moreover, the catalytic cyclopropanation of other styrene derivatives
with different diazoacetates was considerably accelerated in the presence of the cationic
iron porphyrin bearing four para-N-methylpyridinium groups at the meso-positions. In
most of the cases, without the addition of surfactant, the reaction yield was below 5%.
Highlighted in Scheme 14 are some examples and the best catalysts that can be used for
these reactions. The acceleration of these micellar reactions, similar to the cyclopropanation
reactions catalyzed by heme and DNA enzymes, suggests that the main effect is the increase
in molarity within the hydrophobic cavities.

B

R catalyst
+ SDS R OR3 . N
R? [ OR® mo ? ?
N
MeO
MeO
OFEt o) OEt
o) 0
>99% 80% 97% 59%
HsC
HC OFEt OFEt OFEt
HsC
o] o) o]
60% 23% 25%

(mixture of cis and trans isomers)

Scheme 14. Cyclopropanation reaction of styrene derivatives with diazo compounds in the presence
of a cation iron-porphyrin under micellar catalysis conditions [55].
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Asymmetric cyclopropanation reactions using chiral catalysts and catalyzed N—H
insertion reactions in the presence of diazo compounds are well-established methodologies.
However, reactions using organometallic diazo derivatives are still a challenge, as the
influence of the metal complex on the course of the reaction with these diazo compounds
is not well understood. Specifically, the influence of the ferrocene group is not known in
these reactions, nor the best reaction conditions. To investigate the influence of the ferro-
cenyl metal complex, Simonneaux and collaborators [56] investigated (1) the asymmetric
cyclopropanation of styrene derivatives with diazoacetylferrocene in the presence of the
Halterman ruthenium chiral porphyrin (Scheme 15); (2) N—H insertion of aminoesters
with diazoacetylferrocene catalyzed by Fe(TPP)Cl (Scheme 16).

R
o)
= Ru(CO)-Porphyrin !
+ : o Fle
R CH,Cl,, Argon '
[ R=H 53% (74 % ee)
S 7 R =4-CH, 69% (79 % ee)
Ar= O R=4-CH;0  72% (96 % ee)
R = 4-CF3 53% (86 % ee)
0 R = 4-Cl 78% (83 % ee)
R = 3-CF3 30% (76 % ee)

catalyst

Scheme 15. Asymmetric cyclopropanation of olefins by diazoacetylferrocene catalyzed by a
Ru(CO)—porphyrin.

COzEt
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Fe(TPP)CI
;COZMe

+ >
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Ag—cozt-su

R? 88%
OR!
Scheme 16. N-H insertion of aminoesters by diazoacetylferrocene catalyzed by Fe(TPP)CL
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In asymmetric cyclopropanation, the reaction between diazoacetylferrocene and differ-
ent styrene was used to form the corresponding optically active ferrocenyl 2-arylcyclopropyl
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ketones (30-78% yield). The ferrocene group remained intact in the final cyclopropyl ke-
tones, and the enantiomeric excesses found for the trans-isomer stayed between 74% and
96%. The N—H insertion reaction between diazoacetylferrocene and aminoesters was cat-
alyzed by the tetraphenylporphyrin iron chloride Fe(TPP)Cl. The insertion is regioselective
onto the NH; group and occurs in high yields (82-87%), being chemoselective even in the
presence of the O—H group of tyrosine.

Asymmetric cyclopropanation is one of the areas of the chemistry of diazo com-
pounds that has evolved the most over the last few years through Rh and Ru-based
catalysts [10,38,39]. However, there is always room to create new chiral catalysts and new
reaction pathways to improve chiral induction under more favourable conditions [57].
Gallo and collaborators reported the synthesis of iron and ruthenium glycoporphyrins
and their catalytic activity in cyclopropanation reactions by using diazo compounds as
carbene precursors, thus concluding that the number and location of carbohydrate units (a
cellobioside) on the porphyrin skeleton modulate the diastereoselectivity of the reactions.
However, none of the complexes studied induced enantiocontrol, probably due to the long
distance between the chiral carbohydrates and the active metal centre [58].

Zhang and collaborators [59] developed the asymmetric radical cyclopropanation of
alkenes using N-arylsulfonyl hydrazones (as diazo precursors) to generate metalloradicals
from chiral Co—porphyrins, followed by their insertion into the double bond of the alkene.
This reaction produced cyclopropanes in high yields with effective control of diastereo-
and enantioselectivity. Following this line of research, Zhang, and collaborators [57,60]
also developed a highly asymmetric system for radical cyclopropanation with asymmetric
diazomalonates. The asymmetric reaction of 1,1-cyclopropanediesters was quite effective
with several types of alkenes. The study of the mechanism of this reaction indicated that it
happens via metalloradical catalysis (MRC). These optically active 1,1-cyclopropanediesters
are important chiral building blocks in organic syntheses. The catalysts for the reactions
are chiral Co—porphyrins containing chiral groups in an arrangement with D2 symmetry.
The products obtained from 1,1-cyclopropanation can react with alkenes with various
functional groups (Scheme 17).

The origin of enantioselectivity is due to the non-covalent interactions of the catalytic
system, which is very efficient in various styrene derivatives, regardless of the electronic
nature of the aromatic alkene used. The reaction yields were high (up to 99%), as diastere-
oselectivity (ranged up to 94:6 dr) and enantioselectivity (up to 97% ee). Increasing steric
hindrance did not affect the enantioselectivity of the reaction, but it did affect the reaction
yield and diastereoselectivity. Unsaturated substrates reacted well but under different
catalytic conditions.

Entities that have cavities or cages can function as catalysts and carry out selective
reactions inside them through non-covalent host-guest interactions, or the cavities can allow
the encapsulation of catalysts, in some cases enhancing their reactivity. This is how most
enzymes catalyze reactions in their cavities, and because of the supramolecular interactions
of substrates within these cavities, they exhibit high specificity and efficiency [61]. Many
natural products, such as chiral cyclodextrins, have different cavity sizes and catalyze
reactions (e.g., B-cyclodextrin). Many of these supramolecular entities were designed and
synthesized to mimic the structure and functionality of discrete coordination enzymes to
accelerate substrate-specific reactions and manipulate regio- and enantioselectivity [62].
In this line of research, the calixarene macrocycle can be highlighted, which has phenolic
units connected by methylene bridges in the ortho-positions relative to the hydroxyl group.
These caged entities combine a hydrophobic cavity and a hydrophilic external surface that
includes various substrates, accommodating metallic compounds and catalyzing reactions
with results that surpass reactions with different types of catalysis [63].
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Scheme 17. Asymmetric radical cyclopropanation of styrenes with diazomalonates catalyzed by
chiral Co—porphyrins via metalloradical catalysis (MRC) [60].

Mouarrawis et al. were able to synthesize three cubic cages with different exopolarities
attributed to the different groups on the periphery (Figure 3). These cages were used
as hosts to encapsulate the catalytic active cobalt(Il) meso-tetra(4-pyridyl)porphyrin, the
guest. The resulting caged catalysts were studied in the cobalt-catalyzed cyclopropanation
reaction of styrene with EDA (Figure 3) involving cobalt-carbene radical intermediates.
The exofunctionalized cage catalyst with apolar icosyl groups evidenced higher activity
than the non-functionalized or the polar (PEG-4) exofunctionalized counterparts. However,
the polar PEG exofunctionalized catalyst evidenced higher selectivity for the cyclopropane
product than the non-functionalized or the apolar icosyl exofunctionalized catalyst. On the
other hand, encapsulation of the cobalt(Il) meso-tetra(4-pyridyl)porphyrin guest into the
cage with apolar icosyl groups led to a three times more active catalyst than Co(TPP) and a
significantly increased TON if compared to both Co(TPP) and non-encapsulated cobalt(II)
meso-tetra(4-pyridyl)porphyrin. According to the authors, the increased local concentration
of the substrates in the hydrophobic cage compared to the bulk explains the higher catalytic
activities registered [64,65].
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Figure 3. Modeled structures of the apolar cage (functionalized with 24 icosyl groups in the periphery;
left), the non-functionalized cage (middle), and the polar cage (functionalized with 24 PEG-4 groups
in the periphery; right), showing their inner cavity (red) and the different peripheral substituents
(grey) [64,65]. Reproduced with permission from John Wiley and Sons.

Fischer and collaborators reported a catalytic process where the diastereoselectivity
remarkably rests on specific local confinement effects, which can be modified by the careful
choice of the MOF catalyst. The heterogeneous porphyrin-based MOF catalysts, PCN-
222(Rh) and PCN-224(Rh) (Figure 4), that contain no stereocenters, were studied in the
diastereoselective cyclopropanation of different styrenes with EDA, demonstrating good
catalytic activity. When styrene and other non-coordinating olefins were the substrates,
no diastereoselectivity was registered. Remarkably, styrenes carrying coordinating amino
and hydroxy groups exhibited a high diastereomeric ratio (dr) of up to 23:1 (trans:cis) over
PCN-224(Rh), which was attributed to substrate coordination to neighboring Rh centers
caused by local cavity confinement effects. For 4-aminostyrene, the diastereoselectivity was
increased to a dr of 42:1 (trans:cis) over PCN-222(Rh), a structural analogue of PCN-224(Rh),
although featuring shorter Rh—Rh distances, that is 9.7 A for PCN-222(Rh) and 13.6 A for
PCN-224(Rh) [66].
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6-connect Zr, TCPP

Figure 4. Crystal structure, structural components, and underlying network topology of PCN-224(Rh):
(a) the 6-connected D34 symmetric Zrg in PCN-224. (b) TCPP ligands (violet square) with twisted
dihedral angles generate a framework with 3-D nanochannels (c,d). Color scheme: Zr, green spheres;
C, gray; O, red; N, blue; Rh, orange; and H, white [67]. Adapted with permission from J. Am. Chem.
Soc. 2013, 135, 17105—17110. Copyright 2013 American Chemical Society.

Olefin cyclopropanation was studied in the synthesis of rotaxanes by radical carbene
transfer reactions promoted by Co(Il) porphyrin-based semi-rigid macrocycle, and the
highest yield (95%) was obtained in the presence of 3,5-diphenylpyridine as axial ligand.
The active-metal-template strategy, which includes the radical-type activation of ligands by
the cobalt ion of the porphyrin, is the basis for the reported methodology (Scheme 18) [68,69].

3,5-diphenylpyridine
toluene; Np; r.t;; 18 h

ROO
95 % yield

Scheme 18. Synthesis of rotaxanes promoted by Co(II) —porphyrins using the radical-carbene-transfer
cyclopropanation reaction as a metal-active-template methodology [68,69].
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6. Catalytic Properties of Metalloenzymes and Hemoproteins

Metalloporphyrins are recognized as useful supports for oxene, carbene, and ni-
trene transfer reactions. The development of artificial hemoproteins, which can be seen
as non-natural oxene, carbene, and nitrene transferases, was inspired by natural heme
monooxygenases. Hence, these activities were originally revealed by testing hemoproteins
for their ability to mimic the identified activities of metalloporphyrin catalysts [70,71]. Be-
ing aware that the first evidence of hemoproteins acting as biocatalysts for carbene transfer
reactions was published online on 12 December 2012 [72], we may realize why engineered
metalloenzymes and hemoproteins (e.g., myoglobin, cytochrome P450s) only recently arose
as a highly promising tool to create biocatalysts for a broad range of applications involving
non-native substrates, namely those concerning carbene-transfer reactions [20,70,73-86].

One example is the cyclopropanation of 5-chloropent-1-ene with diazoacetone to pro-
duce the corresponding cyclopropyl ketone in the presence of hemoprotein biocatalysts de-
rived from thermophilic bacterial globins (Scheme 19a). These biocatalysts were developed
as variants of the mutant heme protein derived from the thermophile Methylacidophilium
infernorum (named Hell’s Gate globin I-HGG), reaching high diastereoselectivity (cis/trans
ratio up to 1:99) and good enantioselectivity for (1R,2R) enantiomer (75% ee) [77].

In recent years, Fasan and co-workers have demonstrated the ability of engineered
metalloenzymes for several efficient and selective biocatalytic transformations. The devel-
opment of an iron-based biocatalyst for enantioselective o-C—H functionalization of pyrro-
lidines, via carbene transfer reaction with diazoacetone, is a possible strategy (Scheme 19b).
This transformation could be achieved in high yields, high catalytic activity, and high stere-
oselectivity (up to 99% ee and over 20,000 TON) using engineered variants of CYP119 from
Sulfolobus solfataricus [87]. Furthermore, an engineered dehaloperoxidase (DHP) enzyme
(from Amphitrite ornata) was used as carbene transferase for the stereoselective synthesis
of cyclopropanol esters (with up to 99% de and ee) through the biocatalytic asymmetric
cyclopropanation of vinyl esters with EDA (Scheme 19¢) [88].

More recently, an engineered artificial metalloenzyme containing an Ir—porphyrin
complex was reported. In this work, E. coli cells expressing Ir-CYP119 catalyzed the cyclo-
propanation of (—)-limonene with high diastereoselectivity. So, by using a heterologous
heme transport system, the authors constructed an artificial biosynthetic pathway incor-
porating an Ir-porphyrin-based metalloenzyme in E. coli (Scheme 19d) [79]. The same
research group described artificial metalloenzymes generated from the combination of a
CYP450 scaffold and an Ir-porphyrin cofactor that catalyze the intermolecular insertion of
carbenes into the C—H bonds of a range of phthalan derivatives containing substituents
that render the two methylene positions in each phthalan nonequivalent (Scheme 19e).
These reactions occur with site selectivity ratios of up to 17.8:1 and, in most cases, with
pairs of enzyme mutants that preferentially form each of the two constitutional isomers [89].
Finally, the authors have shown that the non-pathogenic E. coli strain Nissle 1917 (EcN),
possessing a genetically encoded transport system, is a suitable host for the efficient uptake
of an Ir-porphyrin complex and the in vivo assembly of Ir-CYP119. This strain enabled
stereoselective and site-selective functionalization by carbene insertion into benzylic C—H
bonds of phthalan derivatives catalyzed by an artificial metalloenzyme in whole cells. It
was shown to accelerate the directed evolution of Ir-CYP119 by enabling high-throughput
screening of reactions with new substrates in whole cells [90].

The intermolecular cyclopropanation reaction using a phosphorus-containing diazo
compound [dimethyl(diazomethyl)phosphonate)] as carbene precursor, developed by
Fasan and co-workers, was considered to be the first example of an efficient and enantios-
elective synthesis of enantioenriched cyclopropylphosphonate esters (up to 99% de and
ee for the (15,2R) stereoisomer), catalyzed by myoglobin-based biocatalysts (Mb variants;
Scheme 19f) [91]. Using also engineered myoglobin catalysts, the same research group re-
ported the cyclopropanation of «-difluoromethyl alkenes in the presence of EDA, affording
CHF,-containing cyclopropanes in high yield (up to >99%) and with high stereoselectiv-
ity (up to >99% de and ee) [92], along with the construction of 2,3-dihydrobenzofurans
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in high enantiopurity (>99.9% de and ee) and high yields via benzofuran cyclopropana-
tion [93]. Additionally, a myoglobin-based carbene transferase incorporating a non-native
iron-porphyrin cofactor and axial ligand showed to be highly efficient as a catalyst for the
asymmetric cyclopropanation of electron-rich and electron-poor alkenes, reaching high
diastereo- and enantioselectivity (up to >99% de and ee). Mechanistic studies showed that
the reaction depends on radical-type carbene-transfer reactivity due to the reconfigured
primary coordination sphere around the iron center [94].
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Scheme 19. Transformations involving carbene-transfer reactions catalyzed by artificial biocatalysts.
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Moreover, biocatalysts derived from sperm whale myoglobin proved to be active
for carbene transfer in the asymmetric synthesis of fused cyclopropane-b-lactones via
intramolecular cyclopropanation of homoallylic diazoacetates in high yields and with up to
99% ee (Scheme 19g) [95], and in the asymmetric synthesis of fused cyclopropane-y-lactams
via cyclization of allyl diazoacetamides into the corresponding bicyclic lactams, as can be
seen in Scheme 1%h for (E)-2-diazo-N-(3-(4-fluorophenyl)allyl)-N-methylacetamide, in high
yields and up to 99% ee [96].

Most recently, Arnold and co-workers reported that engineered hemoproteins derived
from a bacterial cytochrome P450 can catalyze the synthesis of chiral 1,2,3-polysubstituted
cyclopropanes, regardless of the stereo purity of the olefin substrates used. Cytochrome
P450p)3 variant P411-INC-5185 exclusively converts (Z)-enol acetates into enantio- and
diastereo-enriched cyclopropanes if starting from mixtures of (Z/E)-olefins. So, in the end,
the reaction delivers a leftover (E)-enol acetate with 98% stereo purity (Scheme 20a) [97].

This very recent work is just the extension of a path that began a decade ago in
Professor F. Arnold’s research lab, which gave rise to a remarkable journey based on
directed evolution, offering new meanings to the world of enzymatic catalysis, of which
we highlight below some of the most recent discoveries. One example is the results
obtained for the construction of C—C bonds through sp® C-H functionalization, achieved
by using E. coli expressing cytochrome P411-CHF iron-based catalyst, derived from a
cytochrome P450 enzyme in which the native cysteine axial ligand was substituted by
serine (cytochrome P411). This engineered iron-based catalyst evidenced enantio-, regio-
and chemoselectivity for the intermolecular alkylation of sp?> C-H bonds through carbene
C-H insertion (Scheme 20b) [98]. On the other hand, the P411-HF variant stood out as a
highly active alkylation enzyme catalyst for the alkylation of indoles, as exemplified for
1-methylindole (Scheme 20c). Moreover, no N—H insertion products were observed, and
alkylated products were isolated in good yields across a range of substituted, unprotected
indoles, knowing how transferring carbene moieties to heterocycles to obtain C(sp?)—H
alkylation products are valuable transformations in organic synthesis [99]. Likewise, by
engineering cytochrome P450 enzymes, Arnold and co-workers were able to develop
several P411 variants able to catalyze the insertion of fluoroalkyl carbenes into x-amino
C(sp®)—H bonds, as shown for N-phenylpyrrolidine and 2,2,2-trifluoro-1-diazoethane. The
enantiodivergent synthesis of fluoroalkyl-containing molecules turned out to be possible
with P411-PFA and P411-PFA-(S) variants as biocatalysts, originating selectively the (R)-
and the (S)-enantiomer, respectively (Scheme 20d). Finally, these variants could install
a trifluoroethyl group onto various N-aryl pyrrolidine substrates by directly activating
the a-amino C—H bonds, thus achieving excellent turnovers and enantiomeric excess (ee)
up to 99% [100]. Following the stereoselective carbene addition to terminal alkynes to
produce cyclopropenes (P411-C6 variant as biocatalyst) and bicyclo [1.1.0]butanes (P411-
E10 variant as biocatalyst) [101], the more challenging carbene transfer to internal alkynes
for cyclopropene synthesis was achieved with P411-C10 variants (which belong to the
family of P411-CHF) with impressive efficiency and stereoselectivity (all with >99.9% ee),
as illustrated for 1-phenylbutyne and EDA (Scheme 20e) [102]. This P411-C10 engineered
enzyme was also shown to be efficient for lactone carbene insertion into primary and
secondary a-amino C—H bonds, thus allowing chiral lactone derivatives synthesis with
high catalytic efficiency. Moreover, for carbene insertion into secondary C—H bonds, a
single mutation was uncovered to invert the two contiguous chiral centers, hence leading
to the opposite enantiomers of the same major diastereomers, thus in a stereo divergent
manner (Scheme 20f) [103]. Based on their previous work, which demonstrated that variants
of a heme protein, Rhodothermus marinus cytochrome c¢ (Rma cyt c), catalyze abiological
carbene boron-hydrogen (B-H) bond insertion with high efficiency and selectivity [104],
the authors explored a similar approach with lactone-based carbenes. One of the Rma cyt ¢
variants showed high selectivity and efficiency for B-H insertion of 5- and 6-membered
lactone carbenes (Scheme 20g) [104].
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Engineered variants of Aeropyrum pernix protoglobin (ApePgb) represent the first
example of a biocatalyst for carbene transfer from diazirines (cyclic isomers of diazo
compounds) at ambient temperature, not requiring exogenous heat or light. Moderate
yields and modest diastereo- or enatioselectivity values were reached, as exemplified for
benzyl acrylate, using 3-phenyl-3H-diazirine as a carbene precursor (Scheme 20h) [105]. The
same ApePgb variant was shown to catalyze the cyclopropanation of unactivated alkenes
using EDA, yielding the corresponding cis-cyclopropanes [106], which was the basis for the
development of a method for the challenging synthesis of cis-trifluoromethyl-substituted
cyclopropanes (Scheme 20i) using ApePgb that can catalyze the reaction with low-to-
excellent yield (6-55%) and enantioselectivity (17-99% ee), depending on the substrate [107].
The same research group reported the enantioselective one-carbon ring enlargement of
aziridines into azetidines, where two new bonds are formed (one C—C and one C—N bond)
through a [1,2]-Stevens rearrangement strategy, catalyzed by P411-AzetS, an engineered
variant of cytochrome P450p)3, which exhibited carbene transferase activity with utmost
stereo control, favoring the (S)-enantiomer (99:1 er) (Scheme 20j) [108]. Very recently, a
high-affinity heme-binding protein with an open coordination site adjacent to a large
reconfigurable substrate binding cavity was designed from scratch, and its catalytic activity
tested for the enantioselective cyclopropanation of styrene with EDA (up to 93% isolated
yield, 5000 TON, 97:3 e.r.) [85].

7. Final Remarks

The chemistry of diazo compounds has always aroused the interest of synthetic organic
chemists due to the many reactions that can be carried out through the decomposition of
these compounds. Some of these reactions are very difficult to perform by other methods.
These reactions proceed through the formation of carbenes or metallocarbenes, depending
on the reaction conditions. Reactions catalyzed by low-cost metal-complexed porphyrins
offer advantages over rarer transition metal-complexed porphyrins. Porphyrins complexed
with these metals are powerful tools for creating new C—C, C—H, C=C, O—H, N—-H, S—H,
Se—H bonds, etc. Depending on the porphyrin system involved, the carbene insertion can
be efficiently targeted to a specific functional group for the synthesis of a broad portfolio
of fine chemicals. For this reason, in recent years, porphyrins have been highly efficient
and low-cost catalysts. Particularly, those Fe and Co complexes have promoted the alkene
cyclopropanations, C—H and X—H functionalizations (X =N, O, S, Se, Si, Sn, Ge).

Metalloenzyme-catalyzed carbene transformations are potent routes for creating tricky
molecules. These lab-designed enzymes harness proteins’ ability to control reactive car-
bene species, ensuring precise outcomes. Novel artificial carbene transferases enable
diverse methodologies, even unprecedented ones, which cover various reactions such as
cyclopropanation, cyclopropenation, and carbene X-H insertion. In these conversions,
biocatalysts surpass small-molecule catalysts in selectivity and turnover. The integration
of these enzymatic reactions into synthesis, biological pathways, and chemo-enzymatic
cascades is promising despite current limitations.

The new achievements involving diazo compounds discussed in this updated review
and resulting from the studies carried out in the last five to six years provide an overview
of the significance of such compounds in novel organic synthesis procedures.

8. Future Research Directions and Perspectives

The use of porphyrin-based catalysts in the decomposition of diazo compounds is
an interesting research area with potential future directions and perspectives. Diazo com-
pounds are versatile synthetic intermediates that can undergo various transformations,
and their controlled decomposition is a crucial step in many organic synthesis processes.
Several potential future research directions and perspectives can be highlighted in utiliz-
ing porphyrin-based catalysts for diazo compound decomposition, such as mechanistic
insights and the pathways involved in the decomposition of diazo compounds catalyzed
by porphyrin-based catalysts. Investigating reaction intermediates and transition states can



Molecules 2023, 28, 6683 23 of 27

provide insights into the factors influencing catalytic efficiency and selectivity, ligand de-
sign that coordinate to the metal core of porphyrins and could enhance the catalytic activity
and selectivity in diazo compound decomposition. Ligand modifications can influence the
electronic and steric properties of the catalyst, affecting its reactivity; substrate scope of
porphyrin-based catalysts in diazo compound decomposition is essential and can provide
valuable information about the catalyst’s versatility; enantioselective catalysis using chiral
porphyrin-based catalysts is an emerging research direction and an opportunities for the
synthesis of chiral building blocks and molecules; catalytic site engineering to explore site-
specific modifications of the porphyrin catalyst’s active site can lead to enhanced catalytic
properties; porphyrin-based catalysts can also be utilized in photocatalytic diazo com-
pound decomposition reactions and sustainable catalysis that focus on the development
of sustainable and environmentally friendly processes using porphyrin-based catalysts
coupled with green solvents, mild reaction conditions, and renewable resources could be
integrated into the catalytic systems.
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