Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = hematopoietic stem and progenitor cells (HSPCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2600 KiB  
Article
GMP-like and MLP-like Subpopulations of Hematopoietic Stem and Progenitor Cells Harboring Mutated EZH2 and TP53 at Diagnosis Promote Acute Myeloid Leukemia Relapse: Data of Combined Molecular, Functional, and Genomic Single-Stem-Cell Analyses
by Tal Shahar Gabay, Nofar Stolero, Niv Rabhun, Rawan Sabah, Ofir Raz, Yaara Neumeier, Zipora Marx, Liming Tao, Tamir Biezuner, Shiran Amir, Rivka Adar, Ron Levy, Noa Chapal-Ilani, Natalia Evtiugina, Liran I. Shlush, Ehud Shapiro, Shlomit Yehudai-Resheff and Tsila Zuckerman
Int. J. Mol. Sci. 2025, 26(9), 4224; https://doi.org/10.3390/ijms26094224 - 29 Apr 2025
Viewed by 710
Abstract
Acute myeloid leukemia (AML) is associated with unfavorable patient outcomes primarily related to disease relapse. Since specific types of leukemic hematopoietic stem and progenitor cells (HSPCs) are suggested to contribute to AML propagation, this study aimed to identify and explore relapse-initiating HSPC subpopulations [...] Read more.
Acute myeloid leukemia (AML) is associated with unfavorable patient outcomes primarily related to disease relapse. Since specific types of leukemic hematopoietic stem and progenitor cells (HSPCs) are suggested to contribute to AML propagation, this study aimed to identify and explore relapse-initiating HSPC subpopulations present at diagnosis, using single-cell analysis (SCA). We developed unique high-resolution techniques capable of tracking single-HSPC-derived subclones during AML evolution. Each subclone was evaluated for chemo-resistance, in vivo leukemogenic potential, mutational profile, and the cell of origin. In BM samples of 15 AML patients, GMP-like and MLP-like HSPC subpopulations were identified as prevalent at relapse, exhibiting chemo-resistance to commonly used chemotherapy agents cytosine arabinoside (Ara-C) and daunorubicin. Reconstruction of phylogenetic lineage trees combined with genetic analysis of single HSPCs and single-HSPC-derived subclones demonstrated two distinct clusters, originating from MLP-like or GMP-like subpopulations, observed both at diagnosis and relapse. These subpopulations induced leukemia development ex vivo and in vivo. Genetic SCA showed that these relapse-related subpopulations harbored mutated EZH2 and TP53, detected already at diagnosis. This study, using combined molecular, functional, and genomic analyses at the level of single cells, identified patient-specific chemo-resistant HSPC subpopulations at the time of diagnosis, promoting AML relapse. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

22 pages, 4045 KiB  
Article
Differential Response and Recovery Dynamics of HSPC Populations Following Plasmodium chabaudi Infection
by Federica Bruno, Christiana Georgiou, Deirdre Cunningham, Lucy Bett, Marine A. Secchi, Samantha Atkinson, Sara González Antón, Flora Birch, Jean Langhorne and Cristina Lo Celso
Int. J. Mol. Sci. 2025, 26(6), 2816; https://doi.org/10.3390/ijms26062816 - 20 Mar 2025
Viewed by 714
Abstract
Severe infections such as malaria are on the rise worldwide, driven by both climate change and increasing drug resistance. It is therefore paramount that we better understand how the host responds to severe infection. Hematopoiesis is particularly of interest in this context because [...] Read more.
Severe infections such as malaria are on the rise worldwide, driven by both climate change and increasing drug resistance. It is therefore paramount that we better understand how the host responds to severe infection. Hematopoiesis is particularly of interest in this context because hematopoietic stem and progenitor cells (HSPCs) maintain the turnover of all blood cells, including all immune cells. Severe infections have been widely acknowledged to affect HSPCs; however, this disruption has been mainly studied during the acute phase, and the process and level of HSPC recovery remain understudied. Using a self-resolving model of natural rodent malaria, infection by Plasmodium chabaudi, here we systematically assess phenotypically defined HSPCs’ acute response and recovery upon pathogen clearance. We demonstrate that during the acute phase of infection the most quiescent and functional stem cells are depleted, multipotent progenitor compartments are drastically enlarged, and oligopotent progenitors virtually disappear, underpinned by dramatic, population-specific and sometimes unexpected changes in proliferation rates. HSPC populations return to homeostatic size and proliferation rate again through specific patterns of recovery. Overall, our data demonstrate that HSPC populations adopt different responses to cope with severe infection and suggest that the ability to adjust proliferative capacity becomes more restricted as differentiation progresses. Full article
Show Figures

Graphical abstract

18 pages, 518 KiB  
Article
Cystic Fluid Total Proteins, Low-Density Lipoprotein Cholesterol, Lipid Metabolites, and Lymphocytes: Worrisome Biomarkers for Intraductal Papillary Mucinous Neoplasms
by Fahimeh Jafarnezhad-Ansariha, Nicole Contran, Chiara Cristofori, Manuela Simonato, Veronica Davanzo, Stefania Moz, Paola Galozzi, Paola Fogar, Evelyn Nordi, Andrea Padoan, Ada Aita, Matteo Fassan, Alberto Fantin, Anna Sartori, Cosimo Sperti, Alessio Correani, Virgilio Carnielli, Paola Cogo and Daniela Basso
Cancers 2025, 17(4), 643; https://doi.org/10.3390/cancers17040643 - 14 Feb 2025
Viewed by 791
Abstract
Objectives: Pancreatic cystic neoplasms (PCNs), particularly intraductal papillary mucinous neoplasms (IPMNs), present a challenge for their potential malignancy. Despite promising biomarkers like CEA, amylase, and glucose, our study investigates whether metabolic indices in blood and cystic fluids (CFs), in addition to lymphocyte subsets [...] Read more.
Objectives: Pancreatic cystic neoplasms (PCNs), particularly intraductal papillary mucinous neoplasms (IPMNs), present a challenge for their potential malignancy. Despite promising biomarkers like CEA, amylase, and glucose, our study investigates whether metabolic indices in blood and cystic fluids (CFs), in addition to lymphocyte subsets and hematopoietic stem/progenitor cells (HSPCs), can effectively differentiate between high- and low-risk PCNs. Materials and Methods: A total of 26 patients (11 males, mean age 69.5 ± 9 years) undergoing Endoscopic Ultrasound-guided Fine Needle Aspiration were consecutively enrolled. Analyses included blood, serum, and CF, assessing glucose, CEA, cholesterol (total, HDL, and LDL), and total proteins. Flow cytometry examined immunophenotyping in peripheral blood and cystic fluids. Mass spectrometry was used for the metabolomic analysis of CF. Sensitivity, specificity, and ROC analyses evaluated discriminatory power. Results: A total of 25 out of 26 patients had IPMN. Patients were categorized as low or high risk based on multidisciplinary evaluation of clinical, radiological, and endoscopic data. High-risk patients showed lower CF total proteins and LDL cholesterol (p = 0.005 and p = 0.031), with a marked reduction in CF lymphocytes (p = 0.005). HSCPs were absent in CF. In blood, high-risk patients showed increased non-MHC-restricted cytotoxic T cells (p = 0.019). The metabolomic analysis revealed significantly reduced middle and long-chain acyl carnitines (AcCa) and tryptophan metabolites in high-risk patients. ROC curves indicated comparable discriminant abilities for CF lymphocytes (AUC 0.868), CF total proteins (AUC 0.859), and CF LDL cholesterol (AUC 0.795). The highest performance was achieved by the AcCa 14:2 and 16:0 (AUC: 0.9221 and 0.8857, respectively). Conclusions: CF levels of glucose, CEA, LDL cholesterol, and total proteins together with lymphocyte counts are easy translational biomarkers that may support risk stratification of PCNs in IPMN patients and might be endorsed by metabolomic analysis. Further studies are required for potential clinical integration. Full article
(This article belongs to the Special Issue Multimodal Treatment for Pancreatic Cancer)
Show Figures

Figure 1

15 pages, 6951 KiB  
Article
A Senescent Cluster in Aged Human Hematopoietic Stem Cell Compartment as Target for Senotherapy
by Laura Poisa-Beiro, Jonathan J. M. Landry, Bowen Yan, Michael Kardorff, Volker Eckstein, Laura Villacorta, Peter H. Krammer, Judith Zaugg, Anne-Claude Gavin, Vladimir Benes, Daohong Zhou, Simon Raffel and Anthony D. Ho
Int. J. Mol. Sci. 2025, 26(2), 787; https://doi.org/10.3390/ijms26020787 - 17 Jan 2025
Cited by 1 | Viewed by 1344
Abstract
To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of [...] Read more.
To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin− Kit+ Sca1+ CD150+). Single-cell transcriptomic studies, functional clustering, and developmental trajectory analyses were performed. A significant increase in multipotent progenitor 2A (MPP2A) cluster is found in the early HSC trajectory in old human subjects. This cluster is enriched in senescence signatures (increased telomere attrition, DNA damage, activation of P53 pathway). In mouse models, the accumulation of an analogous subset was confirmed in the aged LT-HSC population. Elimination of this subset has been shown to rejuvenate hematopoiesis in mice. A significant activation of the P53–P21WAF1/CIP1 pathway was found in the MPP2A population in humans. In contrast, the senescent HSCs in mice are characterized by activation of the p16Ink4a pathway. Aging in the human HSC compartment is mainly caused by the clonal evolution and accumulation of a senescent cell cluster. A population with a similar senescence signature in the aged LT-HSCs was confirmed in the murine aging model. Clearance of this senescent population with senotherapy in humans is feasible and potentially beneficial. Full article
Show Figures

Figure 1

20 pages, 1018 KiB  
Review
Implications of Clonal Hematopoiesis in Hematological and Non-Hematological Disorders
by Qi Zhang, Rita Yim, Paul Lee, Lynn Chin, Vivian Li and Harinder Gill
Cancers 2024, 16(23), 4118; https://doi.org/10.3390/cancers16234118 - 9 Dec 2024
Cited by 1 | Viewed by 2354
Abstract
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is [...] Read more.
Clonal hematopoiesis (CH) is associated with an increased risk of developing myeloid neoplasms (MNs) such as myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML). In general, CH comprises clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS). It is an age-related phenomenon characterized by the presence of somatic mutations in hematopoietic stem cells (HSCs) and hematopoietic stem and progenitor cells (HSPCs) that acquire a fitness advantage under selection pressure. Individuals with CHIP have an absolute risk of 0.5–1.0% per year for progressing to MDS or AML. Inflammation, smoking, cytotoxic therapy, and radiation can promote the process of clonal expansion and leukemic transformation. Of note, exposure to chemotherapy or radiation for patients with solid tumors or lymphomas can increase the risk of therapy-related MN. Beyond hematological malignancies, CH also serves as an independent risk factor for heart disease, stroke, chronic obstructive pulmonary disease, and chronic kidney disease. Prognostic models such as the CH risk score and MN-prediction models can provide a framework for risk stratification and clinical management of CHIP/CCUS and identify high-risk individuals who may benefit from close surveillance. For CH or related disorders, therapeutic strategies targeting specific CH-associated mutations and specific selection pressure may have a potential role in the future. Full article
(This article belongs to the Special Issue New Approaches in Leukemia)
Show Figures

Figure 1

19 pages, 11749 KiB  
Article
Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis
by Yueying Zeng, Chunlu Li, Fei Yang, Ling Zhang, Wanqi Xu, Long Wang, Anguo Wu, Wenjun Zou, Jianming Wu and Feihong Huang
Biomolecules 2024, 14(9), 1147; https://doi.org/10.3390/biom14091147 - 11 Sep 2024
Cited by 1 | Viewed by 1548
Abstract
Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of [...] Read more.
Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow, which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure, we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 925 KiB  
Review
Development of VLA4 and CXCR4 Antagonists for the Mobilization of Hematopoietic Stem and Progenitor Cells
by Peter G. Ruminski, Michael P. Rettig and John F. DiPersio
Biomolecules 2024, 14(8), 1003; https://doi.org/10.3390/biom14081003 - 14 Aug 2024
Cited by 4 | Viewed by 2582
Abstract
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into [...] Read more.
The treatment of patients diagnosed with hematologic malignancies typically includes hematopoietic stem cell transplantation (HSCT) as part of a therapeutic standard of care. The primary graft source of hematopoietic stem and progenitor cells (HSPCs) for HSCT is mobilized from the bone marrow into the peripheral blood of allogeneic donors or patients. More recently, these mobilized HSPCs have also been the source for gene editing strategies to treat diseases such as sickle-cell anemia. For a HSCT to be successful, it requires the infusion of a sufficient number of HSPCs that are capable of adequate homing to the bone marrow niche and the subsequent regeneration of stable trilineage hematopoiesis in a timely manner. Granulocyte-colony-stimulating factor (G-CSF) is currently the most frequently used agent for HSPC mobilization. However, it requires five or more daily infusions to produce an adequate number of HSPCs and the use of G-CSF alone often results in suboptimal stem cell yields in a significant number of patients. Furthermore, there are several undesirable side effects associated with G-CSF, and it is contraindicated for use in sickle-cell anemia patients, where it has been linked to serious vaso-occlusive and thrombotic events. The chemokine receptor CXCR4 and the cell surface integrin α4β1 (very late antigen 4 (VLA4)) are both involved in the homing and retention of HSPCs within the bone marrow microenvironment. Preclinical and/or clinical studies have shown that targeted disruption of the interaction of the CXCR4 or VLA4 receptors with their endogenous ligands within the bone marrow niche results in the rapid and reversible mobilization of HSPCs into the peripheral circulation and is synergistic when combined with G-CSF. In this review, we discuss the roles CXCR4 and VLA4 play in bone marrow homing and retention and will summarize more recent development of small-molecule CXCR4 and VLA4 inhibitors that, when combined, can synergistically improve the magnitude, quality and convenience of HSPC mobilization for stem cell transplantation and ex vivo gene therapy after the administration of just a single dose. This optimized regimen has the potential to afford a superior alternative to G-CSF for HSPC mobilization. Full article
Show Figures

Figure 1

12 pages, 1753 KiB  
Article
The Leukemic Isocitrate Dehydrogenase (IDH) 1/2 Mutations Impair Myeloid and Erythroid Cell Differentiation of Primary Human Hematopoietic Stem and Progenitor Cells (HSPCs)
by Sara Pierangeli, Serena Donnini, Valerio Ciaurro, Francesca Milano, Valeria Cardinali, Sofia Sciabolacci, Gaetano Cimino, Ilaria Gionfriddo, Roberta Ranieri, Sabrina Cipriani, Eleonora Padiglioni, Roberta Iacucci Ostini, Tiziana Zei, Antonio Pierini and Maria Paola Martelli
Cancers 2024, 16(15), 2675; https://doi.org/10.3390/cancers16152675 - 27 Jul 2024
Cited by 1 | Viewed by 1822
Abstract
How hematopoietic stem and progenitor cell (HSPC) fate decisions are affected by genetic alterations acquired during AML leukemogenesis is poorly understood and mainly explored in animal models. Here, we study isocitrate dehydrogenase (IDH) gene mutations in the human model of HSPC [...] Read more.
How hematopoietic stem and progenitor cell (HSPC) fate decisions are affected by genetic alterations acquired during AML leukemogenesis is poorly understood and mainly explored in animal models. Here, we study isocitrate dehydrogenase (IDH) gene mutations in the human model of HSPC and discuss the available literature on this topic. IDH1/2 mutations occur in ~20% of AML cases, are recognized among the mutations earliest acquired during leukemogenesis, and are targets of specific inhibitors (ivosidenib and enasidenib, respectively). In order to investigate the direct effects of these mutations on HSPCs, we expressed IDH1-R132H or IDH2-R140Q mutants into human CD34+ healthy donor cells via lentiviral transduction and analyzed the colony-forming unit (CFU) ability. CFU ability was dramatically compromised with a complete trilineage block of differentiation. Strikingly, the block was reversed by specific inhibitors, confirming that it was a specific effect induced by the mutants. In line with this observation, the CD34+ leukemic precursors isolated from a patient with IDH2-mutated AML at baseline and during enasidenib treatment showed progressive and marked improvements in their fitness over time, in terms of CFU ability and propensity to differentiate. They attained clonal trilinear reconstitution of hematopoiesis and complete hematological remission. Full article
(This article belongs to the Special Issue Blood Stem Cell and Hematological Malignancies)
Show Figures

Figure 1

19 pages, 4502 KiB  
Article
Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche
by Dionysia Kefallinou, Maria Grigoriou, Dimitrios T. Boumpas and Angeliki Tserepi
Bioengineering 2024, 11(8), 748; https://doi.org/10.3390/bioengineering11080748 - 24 Jul 2024
Cited by 2 | Viewed by 4358
Abstract
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome [...] Read more.
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

21 pages, 5573 KiB  
Article
Overlapping Stromal Alterations in Myeloid and Lymphoid Neoplasms
by Lucienne Bogun, Annemarie Koch, Bo Scherer, Ulrich Germing, Roland Fenk, Uwe Maus, Felix Bormann, Karl Köhrer, Patrick Petzsch, Thorsten Wachtmeister, Guido Kobbe, Sascha Dietrich, Rainer Haas, Thomas Schroeder, Stefanie Geyh and Paul Jäger
Cancers 2024, 16(11), 2071; https://doi.org/10.3390/cancers16112071 - 30 May 2024
Cited by 1 | Viewed by 1537
Abstract
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow [...] Read more.
Myeloid and lymphoid neoplasms share the characteristics of potential bone marrow infiltration as a primary or secondary effect, which readily leads to hematopoietic insufficiency. The mechanisms by which clonal malignant cells inhibit normal hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM) have not been unraveled so far. Given the pivotal role of mesenchymal stromal cells (MSCs) in the regulation of hematopoiesis in the BM niche it is assumed that MSCs also play a relevant role in the pathogenesis of hematological neoplasms. We aimed to identify overlapping mechanisms in MSCs derived from myeloid and lymphoid neoplasms contributing to disease progression and suppression of HSPCs to develop interventions that target these mechanisms. MSCs derived from healthy donors (n = 44) and patients diagnosed with myeloproliferative neoplasia (n = 11), myelodysplastic syndromes (n = 16), or acute myeloid leukemia (n = 25) and B-Non-Hodgkin lymphoma (n = 9) with BM infiltration and acute lymphoblastic leukemia (n = 9) were analyzed for their functionality and by RNA sequencing. A reduced growth and differentiation capacity of MSCs was found in all entities. RNA sequencing distinguished both groups but clearly showed overlapping differentially expressed genes, including major players in the BMP/TGF and WNT-signaling pathway which are crucial for growth, osteogenesis, and hematopoiesis. Functional alterations in healthy MSCs were inducible by exposure to supernatants from malignant cells, implicating the involvement of these factors in disease progression. Overall, we were able to identify overlapping factors that pose potential future therapeutic targets. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Graphical abstract

17 pages, 5121 KiB  
Article
A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of CRISPR/Cas9 Gene Therapy
by Seren Sevim-Wunderlich, Tu Dang, Jana Rossius, Frank Schnütgen and Ralf Kühn
Genes 2024, 15(6), 706; https://doi.org/10.3390/genes15060706 - 28 May 2024
Cited by 1 | Viewed by 2012
Abstract
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) [...] Read more.
Chronic granulomatous disease (CGD) is an inherited immunodeficiency disease mainly caused by mutations in the X-linked CYBB gene that abrogate reactive oxygen species (ROS) production in phagocytes and microbial defense. Gene repair using the CRISPR/Cas9 system in hematopoietic stem and progenitor cells (HSPCs) is a promising technology for therapy for CGD. To support the establishment of efficient and safe gene therapies for CGD, we generated a mouse model harboring a patient-derived mutation in the CYBB gene. Our CybbC517del mouse line shows the hallmarks of CGD and provides a source for Cybb-deficient HSPCs that can be used to evaluate gene-therapy approaches in vitro and in vivo. In a setup using Cas9 RNPs and an AAV repair vector in HSPCs, we show that the mutation can be repaired in 19% of treated cells and that treatment restores ROS production by macrophages. In conclusion, our CybbC517del mouse line provides a new platform for refining and evaluating novel gene therapies and studying X-CGD pathophysiology. Full article
(This article belongs to the Special Issue Rodent Genetic Models for Human Diseases)
Show Figures

Figure 1

23 pages, 3030 KiB  
Article
The Role of Macrophage Dynamics in Atherosclerosis Analyzed Using a Petri Net-Based Model
by Agnieszka Rybarczyk, Dorota Formanowicz and Piotr Formanowicz
Appl. Sci. 2024, 14(8), 3219; https://doi.org/10.3390/app14083219 - 11 Apr 2024
Cited by 1 | Viewed by 1773
Abstract
Atherosclerosis, a chronic inflammatory and oxidative stress-mediated disease impacting the arterial system, stands as a primary cause of morbidity and mortality worldwide. The complexity of this disease, driven by numerous factors, requires a thorough investigation of its underlying mechanisms. In our study, we [...] Read more.
Atherosclerosis, a chronic inflammatory and oxidative stress-mediated disease impacting the arterial system, stands as a primary cause of morbidity and mortality worldwide. The complexity of this disease, driven by numerous factors, requires a thorough investigation of its underlying mechanisms. In our study, we explore the complex interplay between cholesterol homeostasis, macrophage dynamics, and atherosclerosis development using a Petri net-based model anchored in credible, peer-reviewed biological and medical research. Our findings underscore the significant role of macrophage colony-stimulating factor (M-CSF) inhibition in reducing atherosclerotic plaque formation by modulating inflammatory responses and lipid accumulation. Furthermore, our model highlights the therapeutic potential of targeting the C-X-C motif ligand 12 (CXCL12)/ C-X-C motif chemokine receptor type 4 (CXCR4) pathway to hinder hematopoietic stem and progenitor cells’ (HSPCs’) mobilization and plaque development. Based on the results obtained, which are in agreement with current studies, additional strategies are also proposed, such as decreasing M1 macrophage polarization for therapeutic gains, opening the door to future research and novel treatment approaches. Full article
Show Figures

Figure 1

13 pages, 2313 KiB  
Article
Lentivirus-Mediated BCL-XL Overexpression Inhibits Stem Cell Apoptosis during Ex Vivo Expansion and Provides Competitive Advantage Following Xenotransplantation
by Patricia M. A. Zehnle, Ying Wu, Naile Koleci, Sheila Bohler and Miriam Erlacher
Int. J. Mol. Sci. 2024, 25(7), 4105; https://doi.org/10.3390/ijms25074105 - 7 Apr 2024
Viewed by 1980
Abstract
Hematopoietic reconstitution after hematopoietic stem cell transplantation (HSCT) is influenced by the number of transplanted cells. However, under certain conditions donor cell counts are limited and impair clinical outcome. Hematopoietic stem and progenitor cell (HSPC) expansion prior to HSCT is a widely used [...] Read more.
Hematopoietic reconstitution after hematopoietic stem cell transplantation (HSCT) is influenced by the number of transplanted cells. However, under certain conditions donor cell counts are limited and impair clinical outcome. Hematopoietic stem and progenitor cell (HSPC) expansion prior to HSCT is a widely used method to achieve higher donor cell counts and minimize transplantation-related risks such as graft failure or delayed engraftment. Still, expansion in a non-physiological environment can trigger cell death mechanisms and hence counteract the desired effect. We have shown earlier that during HSCT a relevant amount of HSPCs were lost due to apoptosis and that cell death inhibition in donor HSPCs improved engraftment in xenotransplantation experiments. Here, we assessed the effect of combined ex vivo expansion and cell death inhibition on HSPC yield and their reconstitution potential in vivo. During expansion with cytokines and the small molecule inhibitor StemRegenin 1, concomitant lentiviral overexpression of antiapoptotic BCL-XL resulted in an increased yield of transduced HSPCs. Importantly, BCL-XL overexpression enhanced the reconstitution potential of HSPCs in xenotransplantation experiments in vivo. In contrast, treatment with caspase and necroptosis inhibitors had no favorable effects on HSPC yields nor on cell viability. We postulate that overexpression of antiapoptotic BCL-XL, both during ex vivo expansion and transplantation, is a promising approach to improve the outcome of HSCT in situations with limited donor cell numbers. However, such apoptosis inhibition needs to be transient to avoid long-term sequelae like leukemia. Full article
Show Figures

Figure 1

17 pages, 2263 KiB  
Article
Characterization of CD34+ Cells from Patients with Acute Myeloid Leukemia (AML) and Myelodysplastic Syndromes (MDS) Using a t-Distributed Stochastic Neighbor Embedding (t-SNE) Protocol
by Cathrin Nollmann, Wiebke Moskorz, Christian Wimmenauer, Paul S. Jäger, Ron P. Cadeddu, Jörg Timm, Thomas Heinzel and Rainer Haas
Cancers 2024, 16(7), 1320; https://doi.org/10.3390/cancers16071320 - 28 Mar 2024
Cited by 3 | Viewed by 2222
Abstract
Using multi-color flow cytometry analysis, we studied the immunophenotypical differences between leukemic cells from patients with AML/MDS and hematopoietic stem and progenitor cells (HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of markers included CD34, CD38, CD45RA, CD123 [...] Read more.
Using multi-color flow cytometry analysis, we studied the immunophenotypical differences between leukemic cells from patients with AML/MDS and hematopoietic stem and progenitor cells (HSPCs) from patients in complete remission (CR) following their successful treatment. The panel of markers included CD34, CD38, CD45RA, CD123 as representatives for a hierarchical hematopoietic stem and progenitor cell (HSPC) classification as well as programmed death ligand 1 (PD-L1). Rather than restricting the evaluation on a 2- or 3-dimensional analysis, we applied a t-distributed stochastic neighbor embedding (t-SNE) approach to obtain deeper insight and segregation between leukemic cells and normal HPSCs. For that purpose, we created a t-SNE map, which resulted in the visualization of 27 cell clusters based on their similarity concerning the composition and intensity of antigen expression. Two of these clusters were “leukemia-related” containing a great proportion of CD34+/CD38 hematopoietic stem cells (HSCs) or CD34+ cells with a strong co-expression of CD45RA/CD123, respectively. CD34+ cells within the latter cluster were also highly positive for PD-L1 reflecting their immunosuppressive capacity. Beyond this proof of principle study, the inclusion of additional markers will be helpful to refine the differentiation between normal HSPCs and leukemic cells, particularly in the context of minimal disease detection and antigen-targeted therapeutic interventions. Furthermore, we suggest a protocol for the assignment of new cell ensembles in quantitative terms, via a numerical value, the Pearson coefficient, based on a similarity comparison of the t-SNE pattern with a reference. Full article
(This article belongs to the Topic AI in Medical Imaging and Image Processing)
Show Figures

Figure 1

20 pages, 5694 KiB  
Article
Phenotypic Analysis of Hematopoietic Stem and Progenitor Cell Populations in Acute Myeloid Leukemia Based on Spectral Flow Cytometry, a 20-Color Panel, and Unsupervised Learning Algorithms
by Thomas Matthes
Int. J. Mol. Sci. 2024, 25(5), 2847; https://doi.org/10.3390/ijms25052847 - 29 Feb 2024
Cited by 5 | Viewed by 2776
Abstract
The analysis of hematopoietic stem and progenitor cell populations (HSPCs) is fundamental in the understanding of normal hematopoiesis as well as in the management of malignant diseases, such as leukemias, and in their diagnosis and follow-up, particularly the measurement of treatment efficiency with [...] Read more.
The analysis of hematopoietic stem and progenitor cell populations (HSPCs) is fundamental in the understanding of normal hematopoiesis as well as in the management of malignant diseases, such as leukemias, and in their diagnosis and follow-up, particularly the measurement of treatment efficiency with the detection of measurable residual disease (MRD). In this study, I designed a 20-color flow cytometry panel tailored for the comprehensive analysis of HSPCs using a spectral cytometer. My investigation encompassed the examination of forty-six samples derived from both normal human bone marrows (BMs) and patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) along with those subjected to chemotherapy and BM transplantation. By comparing my findings to those obtained through conventional flow cytometric analyses utilizing multiple tubes, I demonstrate that my innovative 20-color approach enables a more in-depth exploration of HSPC subpopulations and the detection of MRD with at least comparable sensitivity. Furthermore, leveraging advanced analytical tools such as t-SNE and FlowSOM learning algorithms, I conduct extensive cross-sample comparisons with two-dimensional gating approaches. My results underscore the efficacy of these two methods as powerful unsupervised alternatives for manual HSPC subpopulation analysis. I expect that in the future, complex multi-dimensional flow cytometric data analyses, such as those employed in this study, will be increasingly used in hematologic diagnostics. Full article
(This article belongs to the Special Issue Trends and Prospects of Flow Cytometry in Cell and Molecular Biology)
Show Figures

Figure 1

Back to TopTop