Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = helicase assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3955 KiB  
Article
Study on the Degradation of Aflatoxin B1 by Myroides odoratimimus 3J2MO
by Xue Wang, Yao-Yao Gao, Dun Wang, Qi Zhang, Hao-Ran Wang, Ting-Ting Zhang, Meng-Jie Zhu, Jing Dong, Dong Ling, Peng Feng, Xue-Hui Tang and Pei-Wu Li
Biology 2025, 14(6), 724; https://doi.org/10.3390/biology14060724 - 19 Jun 2025
Viewed by 479
Abstract
To address the issue of aflatoxin contamination, which poses a significant threat to food safety and human health, we have conducted extensive research. We have isolated a strain of Myroides odoratimimus (3J2MO) from the soil that exhibited remarkable efficiency in degrading various aflatoxin [...] Read more.
To address the issue of aflatoxin contamination, which poses a significant threat to food safety and human health, we have conducted extensive research. We have isolated a strain of Myroides odoratimimus (3J2MO) from the soil that exhibited remarkable efficiency in degrading various aflatoxin types, including AFB1, AFB2, AFG1, AFG2, and AFM1. SDS-PAGE analysis confirmed the purity of the enzymes to be over 95%. Through fluorescence assays, we quantified the enzymatic activity, with an AFB1 degradation rate of 95% achieved at 37 °C and a pH of 8.0. Further analysis using HPLC-MS/MS identified the degradation intermediates, revealing the mechanisms of lactone ring cleavage and epoxy group hydrolysis. GO/COG/KEGG annotations provided insights into the functions of these enzymes, with peroxidase linked to reactive oxygen species (ROS) generation and helicase associated with ATP-dependent conformational changes. Helicase, on the other hand, hydrolyzes ATP, driving conformational changes in AFB1 and facilitating its breakdown into non-toxic metabolites. The potential industrial-scale application of this discovery could significantly mitigate aflatoxin-related economic losses while minimizing chemical residues in the food chain. Full article
Show Figures

Figure 1

20 pages, 3984 KiB  
Article
Discovery of Small Molecules Against Foot-and-Mouth Disease Virus Replication by Targeting 2C Helicase Activity
by Saisai Zhou, Suyu Mu, Shuqi Yu, Yang Tian, Sijia Lu, Zhen Li, Hao Wu, Jiaying Zhao, Huanchun Chen, Shiqi Sun and Yunfeng Song
Viruses 2025, 17(6), 785; https://doi.org/10.3390/v17060785 - 29 May 2025
Viewed by 501
Abstract
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed [...] Read more.
Background: The 2C protein of foot-and-mouth disease virus (FMDV), a member of helicase superfamily 3 (SF3), drives viral genome replication and serves as a critical target for antiviral drug development. Methods: A fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) platform was developed to identify 2C helicase inhibitors. Primary screening evaluated 4424 compounds for helicase inhibition. Molecular docking analyzed inhibitor interactions with the N207 residue within the catalytic core and helicase inhibition assays classified the inhibitor type (mixed, competitive, noncompetitive). Differential scanning fluorimetry (nanoDSF) quantified 2C thermal destabilization. Antiviral activity was assessed via indirect immunofluorescence, RT-qPCR, and plaque reduction assays. Results: Six compounds inhibited 2C helicase activity at >620 μM. Molecular docking revealed hydrogen bonding, hydrophobic interactions, and π-cation stabilization at the catalytic core. 2-MPO and MPPI were classified as mixed-type inhibitors, 5-TzS and 2-PyOH as competitive, and DCMQ/Spiro-BD-CHD-dione as noncompetitive. NanoDSF showed a ΔTm ≥ 1.5 °C (2.5 mM compounds), with reduced destabilization in N207A mutants. Antiviral assays identified 2-MPO and MPPI as optimal inhibitors. MPPI achieved effective FMDV suppression at 160 μM, exhibiting two orders of magnitude higher potency than 2-MPO (400 μM). Conclusions: The established FRET-based HTS platform targeting 2C helicase facilitates anti-FMDV lead discovery, while 2C inhibitors may serve as an effective therapeutic strategy against other picornaviruses. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 7164 KiB  
Article
Mechanisms of Viral DNA Replication of Human Papillomavirus: E2 Protein-Dependent Recruitment of E1 DNA Helicase to the Origin of DNA Replication
by Anshul Rana, Gulden Yilmaz, Esther E. Biswas-Fiss and Subhasis Biswas
Int. J. Mol. Sci. 2025, 26(9), 4333; https://doi.org/10.3390/ijms26094333 - 2 May 2025
Viewed by 880
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect epithelial cells and cause cervical, anogenital, and oropharyngeal cancers. HPV genome replication relies on the viral E1 and E2 proteins to initiate DNA replication. The first step is the assembly of the E1-E2 [...] Read more.
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect epithelial cells and cause cervical, anogenital, and oropharyngeal cancers. HPV genome replication relies on the viral E1 and E2 proteins to initiate DNA replication. The first step is the assembly of the E1-E2 complex at the origin of replication. We have examined the role of full-length HPV E1 helicase and its interaction with E2 in pre-initiation complex formation. Electrophoretic mobility shift assays (EMSAs) with purified E1 and E2 proteins revealed that the HPV genome does not have a specific E1 binding site, or such a sequence is not required for pre-initiation complex formation. E1 alone did not show any binding to the origin DNA sequences, while E2 facilitated E1 recruitment to the origin, forming the E1-E2-DNA ternary complex. Formation of such a complex required at least two E2 binding sites. These findings led us to propose a novel mechanism in which E2 dimers serve as the primary recruiters of E1 to form the pre-initiation complex. This study provides new insights into the mechanistic role of E2 in the recruitment of E1 at the origin of HPV DNA replication, enhancing our understanding of HPV biology and potentially informing future therapeutic strategies. Full article
Show Figures

Graphical abstract

26 pages, 12976 KiB  
Article
HROB Is Implicated in DNA Replication
by Julia Kutz, Hannes Schmietendorf, Sheikh Anika Rahman, Franz Opel and Helmut Pospiech
Genes 2024, 15(12), 1587; https://doi.org/10.3390/genes15121587 - 10 Dec 2024
Viewed by 1422
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication [...] Read more.
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs. Full article
(This article belongs to the Special Issue Mechanisms and Regulation of Human DNA Replication)
Show Figures

Figure 1

7 pages, 1244 KiB  
Brief Report
Kallmann Syndrome: Functional Analysis of a CHD7 Missense Variant Shows Aberrant RNA Splicing
by Josianne Nunes Carriço, Catarina Inês Gonçalves, José Maria Aragüés and Manuel Carlos Lemos
Int. J. Mol. Sci. 2024, 25(22), 12061; https://doi.org/10.3390/ijms252212061 - 10 Nov 2024
Cited by 1 | Viewed by 1641
Abstract
Kallmann syndrome is a rare disorder characterized by hypogonadotropic hypogonadism and an impaired sense of smell (anosmia or hyposmia) caused by congenital defects in the development of the gonadotropin-releasing hormone (GnRH) and olfactory neurons. Mutations in several genes have been associated with Kallmann [...] Read more.
Kallmann syndrome is a rare disorder characterized by hypogonadotropic hypogonadism and an impaired sense of smell (anosmia or hyposmia) caused by congenital defects in the development of the gonadotropin-releasing hormone (GnRH) and olfactory neurons. Mutations in several genes have been associated with Kallmann syndrome. However, genetic testing of this disorder often reveals variants of uncertain significance (VUS) that remain uninterpreted without experimental validation. The aim of this study was to analyze the functional consequences of a heterozygous missense VUS in the CHD7 gene (c.4354G>T, p.Val1452Leu), in a patient with Kallmann syndrome with reversal of hypogonadism. The variant, located in the first nucleotide of exon 19, was analyzed using minigene assays to determine its effect on ribonucleic acid (RNA) splicing. These showed that the variant generates two different transcripts: a full-length transcript with the missense change (p.Val1452Leu), and an abnormally spliced transcript lacking exon 19. The latter results in an in-frame deletion (p.Val1452_Lys1511del) that disrupts the helicase C-terminal domain of the CHD7 protein. The variant was reclassified as likely pathogenic. These findings demonstrate that missense variants can exert more extensive effects beyond simple amino acid substitutions and underscore the critical role of functional analyses in VUS reclassification and genetic diagnosis. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

9 pages, 1824 KiB  
Article
A New Case of Mitochondrial RNA Helicase SUPV3L1-Associated Neurodegenerative Disease: Ataxia, Spasticity, Optic Atrophy, and Skin Hypopigmentation (ASOASH)
by Polina Tsygankova, Denis Chistol, Tatiana Krylova, Igor Bychkov, Vyacheslav Tabakov, Tatiana Markova, Elena Dadali and Ekaterina Zakharova
Genes 2024, 15(11), 1406; https://doi.org/10.3390/genes15111406 - 30 Oct 2024
Viewed by 1579
Abstract
Background: The SUPV3L1 gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the SUPV3L1 gene [...] Read more.
Background: The SUPV3L1 gene encodes ATP-dependent RNA helicase SUPV3L1, which is a part of the mitochondrial degradosome complex or SUV3. SUPV3L1 unwinds secondary structures of mitochondrial RNA (mtRNA) and facilitates the degradation of mtRNA molecules. A nonsense homozygous variant in the SUPV3L1 gene was recently associated with mitochondrial disease. Our study presents the second documented case of SUPV3L1 pathology in humans. Methods: Whole-genome sequencing was performed on the NovaSeq 6000 platform using pair-end reading. Data analysis was performed with an in-house developed pipeline. Results: The 17-year-old female patient exhibited a diverse array of symptoms, including ataxia, spastic paraparesis, cognitive deficit, optic atrophy, and horizontal gaze-evoked nystagmus. Early onset of symptoms, such as ataxic gait and nystagmus, was noted, with subsequent progression of neurological manifestations. At the time of the observation, the proband had extensive regions of hypopigmented skin patches on the body and extremities, which have progressed over time. Whole-genome sequencing revealed compound heterozygous variants in the SUPV3L1 gene: c.272-2A>G and c.1924A>C; p.(Ser642Arg). RNA analysis demonstrated splicing changes attributable to the c.272-2A>G variant. ELISA assay showed increased Complex I content in the patient’s fibroblasts. This case underscores the phenotypic diversity associated with SUPV3L1 mutations, emphasizing the importance of considering mitochondrial RNA helicase dysfunction in the differential diagnosis of neurodegenerative disorders. Further elucidation of the molecular mechanisms underlying SUPV3L1-associated pathology may provide valuable insights into targeted therapeutic interventions. Full article
(This article belongs to the Section Genetic Diagnosis)
Show Figures

Figure 1

18 pages, 2776 KiB  
Article
Immune Modulatory Profile of the Pateamines PatA and Des-Methyl Des-Amino PatA
by Susanne Schiffmann, Marina Henke, Sophie Brünner, Alexandre Bennett, Yassin Yagubi, Francesca Magari, Michael J. Parnham and Arnold Grünweller
Int. J. Mol. Sci. 2024, 25(21), 11430; https://doi.org/10.3390/ijms252111430 - 24 Oct 2024
Viewed by 1059
Abstract
Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of [...] Read more.
Pateamines act as inhibitors of the RNA helicase eIF4A and exhibit antiviral and anticancer properties. Recently, we observed that inhibition of eIF4A by rocaglates affects the immune response. To investigate whether the observed immunomodulatory effects are specific to rocaglates or the inhibition of eIF4A, a comprehensive study was conducted on the influence of pateamines that exhibit the same inhibitory mode of action as rocaglates on various immune cells. The effects of pateamine A (PatA) and des-methyl des-amino pateamine A (DMDA) on the expression of surface markers, release of cytokines, cell proliferation, inflammatory mediators and metabolic activity in primary human monocyte-derived macrophages (MdM), T cells and B cells were assessed. Additionally, safety and bioavailability profiles were determined. DMDA revealed almost no immunomodulatory effects within the tested concentration range of 0.5–5 nM. PatA reduced B cell activation, as shown by reduced immune globulin release and decreased chemokine release from macrophages, while T cell function remained unaffected. Both DMDA and PatA showed low permeability in Caco-2 and Calu-3 cell barrier assays and no mutagenic potential. However, 10 nM PatA exhibited genotoxic potential, as shown by the micronucleus assay. In conclusion, DMDA had a good safety profile but exhibited low permeability, whereas PatA had a poor safety profile and also low permeability. The observed immunomodulatory effects of elF4A inhibitors on B cells appear to be target-specific. Full article
(This article belongs to the Special Issue Antiviral Drugs Discovery)
Show Figures

Figure 1

14 pages, 1251 KiB  
Article
Screening and Characterization of a New Iflavirus Virus in the Fruit Tree Pest Pyrops candelaria
by Hong Lin, Weitao Song, Dongmei Ma, Chi Yang, Yanfang Yao, Renyi Liu, Ling Hao, Dandan Wu, Shihua Wang, Jimou Jiang, Jun Xiong, Rui Ma, Jiajing Xiao and Zhenhong Zhuang
Insects 2024, 15(8), 625; https://doi.org/10.3390/insects15080625 - 19 Aug 2024
Cited by 1 | Viewed by 1725
Abstract
Pyrops candelaria is one of the common pests of fruit trees, but the research on the pathogenic microorganisms it may carry is very limited. Therefore, it is essential to reveal the pathogenic microbes it carries and their potential hazards. This study found a [...] Read more.
Pyrops candelaria is one of the common pests of fruit trees, but the research on the pathogenic microorganisms it may carry is very limited. Therefore, it is essential to reveal the pathogenic microbes it carries and their potential hazards. This study found a new virus from the transcriptome of P. candelaria, which was first reported in P. candelaria and named PyCaV (Pyrops candelaria associated virus). RACE and bioinformatics assay revealed that the full length of PyCaV is 10,855 bp with the polyA tail, containing a single open-reading frame (ORF) encoding a polyprotein consisting of 3171 amino acid (aa). The virus has a typical iflavirus structure, including two rhv domains, an RNA helicase domain (HEL), a 3C cysteine protease domain (Pro), and an RNA–dependent RNA polymerase domain (RdRp). Further phylogenetic analysis revealed that this virus belongs to family Iflaviridae and sequence alignments analysis suggested PyCaV is a new member in an unassigned genus of family Iflaviridae. Further in-depth analysis of the virus infection showed that PyCaV is distributed throughout the whole P. candelaria, including its head, chest, and abdomen, but more PyCaV was identified in the chest. The distribution of PyCaV in different parts of P. candelaria was further explored, which showed that more PyCaV was detected in its piercing–sucking mouthparts and chest viscera. Statistical analysis showed that the PyCaV infection was affected by time and location. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

11 pages, 1575 KiB  
Communication
Novel Tetrazolium-Based Colorimetric Assay for Helicase nsp13 in SARS-CoV-2
by Triet M. Pham, Morgan G. Howard, Shane M. Carey, Lindsey R. Baker and Edward L. D’Antonio
BioChem 2024, 4(2), 115-125; https://doi.org/10.3390/biochem4020006 - 15 May 2024
Viewed by 2213
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a human pathogenic virus that encodes for a helicase (SC2Hel) that is essential for viral replication. SC2Hel has the ability to unravel dsRNA or dsDNA in an NTP-dependent manner from the 5′ [...] Read more.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a human pathogenic virus that encodes for a helicase (SC2Hel) that is essential for viral replication. SC2Hel has the ability to unravel dsRNA or dsDNA in an NTP-dependent manner from the 5′ to 3′ directionality. The standard helicase assay from studies involving SARS-CoV and SARS-CoV-2 have relied on the concept of fluorescence resonance energy transfer. Adding to the collection of helicase assays, herein, we have developed a novel tetrazolium-based colorimetric assay system for the detection of ADP that is produced via SC2Hel activity. This SC2Hel assay combines three enzyme-coupled steps involving the ADP-dependent Thermococcus litoralis glucokinase (TlGlcK), Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase (LmG6PDH), and Clostridium kluyveri diaphorase (CkDIA). Iodonitrotetrazolium chloride (INT), a colorimetric tetrazolium reagent, was used in the final step of the assay that converted into INT-formazan during reduction. INT-formazan in the assay’s buffered solution at pH 7.6 exhibited an intense colorimetric response at a wavelength maximum of 505 nm. The assay exhibited excellent performance characteristics as it revealed a Z’ factor of 0.87 and it has the potential to be further adopted into high-throughput screening studies for therapeutic drug discovery research. Full article
Show Figures

Figure 1

13 pages, 3227 KiB  
Article
Development of a Fluorescent Assay and Imidazole-Containing Inhibitors by Targeting SARS-CoV-2 Nsp13 Helicase
by Chuang Zhang, Junhui Yu, Mingzhenlong Deng, Qingqing Zhang, Fei Jin, Lei Chen, Yan Li and Bin He
Molecules 2024, 29(10), 2301; https://doi.org/10.3390/molecules29102301 - 14 May 2024
Cited by 3 | Viewed by 1748
Abstract
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5′–3′ polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication–transcription complex (RTC), playing an indispensable role in the coronavirus life cycle [...] Read more.
Nsp13, a non-structural protein belonging to the coronavirus family 1B (SF1B) helicase, exhibits 5′–3′ polarity-dependent DNA or RNA unwinding using NTPs. Crucially, it serves as a key component of the viral replication–transcription complex (RTC), playing an indispensable role in the coronavirus life cycle and thereby making it a promising target for broad-spectrum antiviral therapies. The imidazole scaffold, known for its antiviral potential, has been proposed as a potential scaffold. In this study, a fluorescence-based assay was designed by labeling dsDNA substrates with a commercial fluorophore and monitoring signal changes upon Nsp13 helicase activity. Optimization and high-throughput screening validated the feasibility of this approach. In accordance with the structural characteristics of ADP, we employed a structural-based design strategy to synthesize three classes of imidazole-based compounds through substitution reaction. Through in vitro activity research, pharmacokinetic parameter analysis, and molecular docking simulation, we identified compounds A16 (IC50 = 1.25 μM) and B3 (IC50 = 0.98 μM) as potential lead antiviral compounds for further targeted drug research. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

18 pages, 7338 KiB  
Article
DDX18 Facilitates the Tumorigenesis of Lung Adenocarcinoma by Promoting Cell Cycle Progression through the Upregulation of CDK4
by Bingbing Feng, Xinying Wang, Ding Qiu, Haiyang Sun, Jianping Deng, Ying Tan, Kaile Ji, Shaoting Xu, Shuishen Zhang and Ce Tang
Int. J. Mol. Sci. 2024, 25(9), 4953; https://doi.org/10.3390/ijms25094953 - 1 May 2024
Cited by 1 | Viewed by 2130
Abstract
Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been [...] Read more.
Lung adenocarcinoma (LUAD) is the most prevalent and aggressive subtype of lung cancer, exhibiting a dismal prognosis with a five-year survival rate below 5%. DEAD-box RNA helicase 18 (DDX18, gene symbol DDX18), a crucial regulator of RNA metabolism, has been implicated in various cellular processes, including cell cycle control and tumorigenesis. However, its role in LUAD pathogenesis remains elusive. This study demonstrates the significant upregulation of DDX18 in LUAD tissues and its association with poor patient survival (from public databases). Functional in vivo and in vitro assays revealed that DDX18 knockdown potently suppresses LUAD progression. RNA sequencing and chromatin immunoprecipitation experiments identified cyclin-dependent kinase 4 (CDK4), a cell cycle regulator, as a direct transcriptional target of DDX18. Notably, DDX18 depletion induced G1 cell cycle arrest, while its overexpression promoted cell cycle progression even in normal lung cells. Interestingly, while the oncogenic protein c-Myc bound to the DDX18 promoter, it did not influence its expression. Collectively, these findings establish DDX18 as a potential oncogene in LUAD, functioning through the CDK4-mediated cell cycle pathway. DDX18 may represent a promising therapeutic target for LUAD intervention. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

25 pages, 9467 KiB  
Review
Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle
by Mingzhenlong Deng, Chuang Zhang, Wanli Yan, Lei Chen, Bin He and Yan Li
Int. J. Mol. Sci. 2024, 25(5), 2850; https://doi.org/10.3390/ijms25052850 - 1 Mar 2024
Cited by 4 | Viewed by 3215
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and [...] Read more.
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals. Full article
(This article belongs to the Special Issue Recent Therapeutic Strategies against Infectious Agents)
Show Figures

Figure 1

12 pages, 2252 KiB  
Article
1,6-Hexanediol Is Inducing Homologous Recombination by Releasing BLM from Assemblysomes in Drosophila melanogaster
by Bence György Gombás and Zoltán Villányi
Int. J. Mol. Sci. 2024, 25(3), 1611; https://doi.org/10.3390/ijms25031611 - 28 Jan 2024
Cited by 2 | Viewed by 2505
Abstract
We recently demonstrated that 1,6-hexanediol inhibits the formation of assemblysomes. These membraneless cell organelles have important roles in co-translational protein complex assembly and also store halfway translated DNA damage response proteins for a timely stress response. Recognizing the therapeutic potential of 1,6-hexanediol in [...] Read more.
We recently demonstrated that 1,6-hexanediol inhibits the formation of assemblysomes. These membraneless cell organelles have important roles in co-translational protein complex assembly and also store halfway translated DNA damage response proteins for a timely stress response. Recognizing the therapeutic potential of 1,6-hexanediol in dismantling assemblysomes likely to be involved in chemo- or radiotherapy resistance of tumor cells, we initiated an investigation into the properties of 1,6-hexanediol. Our particular interest was to determine if this compound induces DNA double-strand breaks by releasing the BLM helicase. Its yeast ortholog Sgs1 was confirmed to be a component of assemblysomes. The BLM helicase induces DNA damage when overexpressed due to the DNA double-strand breaks it generates during its normal function to repair DNA damage sites. It is evident that storing Sgs1 helicase in assemblysomes is crucial to express the full-length functional protein only in the event of DNA damage. Alternatively, if we dissolve assemblysomes using 1,6-hexanediol, ribosome-nascent chain complexes might become targets of ribosome quality control. We explored these possibilities and found, through the Drosophila wing-spot test assay, that 1,6-hexanediol induces DNA double-strand breaks. Lethality connected to recombination events following 1,6-hexanediol treatment can be mitigated by inducing DNA double-strand breaks with X-ray. Additionally, we confirmed that SMC5 recruits DmBLM to DNA damage sites, as knocking it down abolishes the rescue effect of DNA double-strand breaks on 1,6-hexanediol-induced lethality in Drosophila melanogaster. Full article
(This article belongs to the Special Issue Novel Biological Molecules for Cancer Treatments 2.0)
Show Figures

Figure 1

31 pages, 6480 KiB  
Article
The Frq–Frh Complex Light-Dependently Delays Sfl1-Induced Microsclerotia Formation in Verticillium dahliae
by Alexandra Nagel, Miriam Leonard, Isabel Maurus, Jessica Starke, Kerstin Schmitt, Oliver Valerius, Rebekka Harting and Gerhard H. Braus
J. Fungi 2023, 9(7), 725; https://doi.org/10.3390/jof9070725 - 4 Jul 2023
Cited by 2 | Viewed by 1997
Abstract
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or [...] Read more.
The vascular plant pathogenic fungus Verticillium dahliae has to adapt to environmental changes outside and inside its host. V. dahliae harbors homologs of Neurospora crassa clock genes. The molecular functions and interactions of Frequency (Frq) and Frq-interacting RNA helicase (Frh) in controlling conidia or microsclerotia development were investigated in V. dahliae JR2. Fungal mutant strains carrying clock gene deletions, an FRH point mutation, or GFP gene fusions were analyzed on transcript, protein, and phenotypic levels as well as in pathogenicity assays on tomato plants. Our results support that the Frq–Frh complex is formed and that it promotes conidiation, but also that it suppresses and therefore delays V. dahliae microsclerotia formation in response to light. We investigated a possible link between the negative element Frq and positive regulator Suppressor of flocculation 1 (Sfl1) in microsclerotia formation to elucidate the regulatory molecular mechanism. Both Frq and Sfl1 are mainly present during the onset of microsclerotia formation with decreasing protein levels during further development. Induction of microsclerotia formation requires Sfl1 and can be delayed at early time points in the light through the Frq–Frh complex. Gaining further molecular knowledge on V. dahliae development will improve control of fungal growth and Verticillium wilt disease. Full article
(This article belongs to the Special Issue Plant and Fungal Interactions, 2nd Edition)
Show Figures

Figure 1

23 pages, 10504 KiB  
Article
METTL3-Modulated circUHRF2 Promotes Colorectal Cancer Stemness and Metastasis through Increasing DDX27 mRNA Stability by Recruiting IGF2BP1
by Miao Chen, Buning Tian, Gui Hu and Yihang Guo
Cancers 2023, 15(12), 3148; https://doi.org/10.3390/cancers15123148 - 11 Jun 2023
Cited by 19 | Viewed by 2334
Abstract
Increasing evidence has implicated that circular RNAs (circRNAs) exert important roles in colorectal cancer (CRC) occurrence and progression. However, the role of a novel circRNA, circUHRF2, remains unknown in CRC. Our work aimed at identifying the functional roles of circUHRF2 in CRC [...] Read more.
Increasing evidence has implicated that circular RNAs (circRNAs) exert important roles in colorectal cancer (CRC) occurrence and progression. However, the role of a novel circRNA, circUHRF2, remains unknown in CRC. Our work aimed at identifying the functional roles of circUHRF2 in CRC and illustrating the potential mechanisms. As assessed by quantitative real-time PCR (qRT-PCR), circUHRF2 and methyltransferase-like 3 (METTL3) were highly expressed in CRC specimens and cells. Sanger sequencing and RNase R assays were performed to verify the ring structure of circUHRF2. Notably, aberrantly increased expression of circUHRF2 was positively correlated with poor prognosis of CRC patients. Functional experiments indicated that CRC stemness, migration, and epithelial-mesenchymal transition (EMT) were suppressed by the knockdown of circUHRF2 or METTL3. Mechanistically, METTL3 enhanced circUHRF2 expression through N6-methyladenine (m6A) modification. Rescue experiments showed that overexpression of circUHRF2 reversed the repressive effect of METTL3 silencing on CRC progression. Moreover, circUHRF2 inhibited the loss of DEAD-box helicase 27 (DDX27) protein via promoting the interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) and DDX27 mRNA. DDX27 knockdown repressed CRC malignant properties, which was counteracted by circUHRF2 overexpression. The in vivo assays in nude mice demonstrated that circUHRF2 or METTL3 silencing exerted a suppressive effect on CRC growth and liver metastasis via repressing DDX27 protein expression. Taken together, METTL3-mediated m6A modification upregulated circUHRF2 and subsequently inhibited loss of DDX27 protein via recruitment of IGF2BP1, which conferred CRC stemness and metastasis. These findings shed light on CRC pathogenesis and suggest circUHRF2 as a novel target for CRC treatment. Full article
Show Figures

Graphical abstract

Back to TopTop