Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,428)

Search Parameters:
Keywords = headspace

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3861 KiB  
Review
Research Progress on Biomarkers and Their Detection Methods for Benzene-Induced Toxicity: A Review
by Runan Qin, Shouzhe Deng and Shuang Li
Chemosensors 2025, 13(8), 312; https://doi.org/10.3390/chemosensors13080312 (registering DOI) - 16 Aug 2025
Abstract
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise [...] Read more.
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise prevention and control of its health impacts. Programmed cell death (PCD), an orderly and regulated form of cellular demise controlled by specific intracellular genes in response to various stimuli, has emerged as a key pathway where dysfunction may underlie benzene-induced toxicity. This review systematically integrates evidence linking benzene toxicity to PCD dysregulation, revealing that benzene and its metabolites induce abnormal subtypes of PCD (apoptosis, autophagy, ferroptosis) in hematopoietic cells. This occurs through mechanisms including activation of Caspase pathways, regulation of long non-coding RNAs, and epigenetic modifications, with recent research highlighting the IRP1-DHODH-ALOX12 ferroptosis axis and oxidative stress–epigenetic interactions as pivotal. Additionally, this review describes a comprehensive monitoring system for early toxic effects comprising benzene exposure biomarkers (urinary t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA)), PCD-related molecules (Caspase-3, let-7e-5p, ACSL1), oxidative stress indicators (8-OHdG), and genetic damage markers (micronuclei, p14ARF methylation), with correlative analyses between PCD mechanisms and benzene toxicity elaborated to underscore their integrative roles in risk assessment. Furthermore, the review details analytical techniques for these biomarkers, including direct benzene detection methods—direct headspace gas chromatography with flame ionization detection (DHGC-FID), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and portable headspace sampling (Portable HS)—alongside molecular imprinting and fluorescence probe technologies, as well as methodologies for toxic effect markers such as live-cell imaging, electrochemical techniques, methylation-specific PCR (MSP), and Western blotting, providing technical frameworks for mechanistic studies and translational applications. By synthesizing current evidence and mechanistic insights, this work offers novel perspectives on benzene toxicity through the PCD lens, identifies potential therapeutic targets associated with PCD dysregulation, and ultimately establishes a theoretical foundation for developing interventional strategies against benzene-induced toxicity while emphasizing the translational value of mechanistic research in occupational and environmental health. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

22 pages, 3518 KiB  
Article
Insights into the Flavor Profiles and Key Aroma-Active Compounds of Sichuan Xiaoqu Qingxiangxing Baijiu Across Distilling Stages
by Lei Tian, Pei Xu, Ji Qin, Guojun Hou, Qiao Huang, Ying Liu, Yu Li and Tongwei Guan
Foods 2025, 14(16), 2814; https://doi.org/10.3390/foods14162814 - 14 Aug 2025
Viewed by 34
Abstract
Distillation, a crucial step in Baijiu production, profoundly influences its flavor. However, the aroma-active compounds of Sichuan Xiaoqu Qingxiangxing (SXQ) Baijiu during distillation remain unclear. Here, we comprehensively analyzed the volatile flavor compound (VFC) composition and alcohol content variations across three [...] Read more.
Distillation, a crucial step in Baijiu production, profoundly influences its flavor. However, the aroma-active compounds of Sichuan Xiaoqu Qingxiangxing (SXQ) Baijiu during distillation remain unclear. Here, we comprehensively analyzed the volatile flavor compound (VFC) composition and alcohol content variations across three key distillation stages (i.e., head, heart, and tail) of SXQ Baijiu using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC-MS), alongside electronic nose (E-nose) and electronic tongue (E-tongue). A total of 111 VFCs, 22 key odorants, and 11 pivotal differential VFCs were identified. Ethyl octanoate were identified as the most critical odor-active compounds, while isoamylol was recognized as a key difference marker. VFC concentrations in raw Baijiu decreased from head > heart > tail, while VFC categories increased from tail > head > heart. The flavor profiles of the head differ significantly from those of the heart and tail in Baijiu distillation. Alcohol content decreased as distillation proceeded. The E-nose and E-tongue effectively distinguished raw Baijiu samples from different distillation stages. This study enhances our understanding of volatile compounds and their aroma contributions during the distillation process of SXQ Baijiu. The findings provides bases for optimizing the distillation and quality-based classification of distillates in SXQ Baijiu production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

16 pages, 1817 KiB  
Article
Development of Pretreatment Approaches for Authentic Representation of Tea Infusion Aroma
by Mingming Zhang, Zhihui Feng, Fang Wang, Jianxin Chen, Yifan Li, Yuqiong Chen and Junfeng Yin
Foods 2025, 14(16), 2759; https://doi.org/10.3390/foods14162759 - 8 Aug 2025
Viewed by 234
Abstract
Appropriate aroma extraction methods are crucial prerequisites for accurately and objectively characterizing the authentic aroma profile of samples. Purified water and ionized water were used as brewing water, and the effects of different tea-to-water ratios, extraction temperatures, and extraction times on the aroma [...] Read more.
Appropriate aroma extraction methods are crucial prerequisites for accurately and objectively characterizing the authentic aroma profile of samples. Purified water and ionized water were used as brewing water, and the effects of different tea-to-water ratios, extraction temperatures, and extraction times on the aroma authenticity and component enrichment of tea infusions were compared. The conditions of a tea-to-water ratio of 1 g:10 mL, extraction at 30 °C for 30 or 45 min were identified as the optimal parameter range, which could maximize the enrichment of aroma while maintaining fidelity. The cosine value of the aroma attribute scores between the optimal parameter set and the control group (tea brewed at 1 g:10 mL ratio for 4 min) exceeded 0.979, and the correlation coefficient surpassed 0.828. Test evaluation results indicate the method had good reproducibility and effectively highlighted the differential impacts of ionic content in brewing water on tea aroma constituents. This approach effectively solved the problem of sensory distortion caused by conventional high-temperature and long-duration extraction, enabling precise analysis of how water quality authentically influences tea infusion aroma characteristics. Full article
Show Figures

Figure 1

19 pages, 3543 KiB  
Article
Chemometric Approach for Discriminating the Volatile Profile of Cooked Glutinous and Normal-Amylose Rice Cultivars from Representative Japanese Production Areas Using GC × GC-TOFMS
by Takayoshi Tanaka, Junhan Zhang, Shuntaro Isoya, Tatsuro Maeda, Kazuya Hasegawa and Tetsuya Araki
Foods 2025, 14(15), 2751; https://doi.org/10.3390/foods14152751 - 6 Aug 2025
Viewed by 333
Abstract
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese [...] Read more.
Cooked-rice aroma strongly affects consumer choice, yet the chemical traits distinguishing glutinous rice from normal-amylose japonica rice remain underexplored because earlier studies targeted only a few dozen volatiles using one-dimensional gas chromatography–mass spectrometry (GC-MS). In this study, four glutinous and seven normal Japanese cultivars were cooked under identical conditions, their headspace volatiles trapped with MonoTrap and qualitatively profiled by comprehensive GC × GC-TOFMS. The two-dimensional platform resolved 1924 peaks—about ten-fold previous coverage—and, together with hierarchical clustering, PCA, heatmap visualization and volcano plots, cleanly separated the starch classes (78.3% cumulative PCA variance; Euclidean distance > 140). Volcano plots highlighted 277 compounds enriched in the glutinous cultivars and 295 in Koshihikari, including 270 compounds that were not previously documented in rice. Normal cultivars were dominated by ethers, aldehydes, amines and other nitrogenous volatiles associated with grainy, grassy and toasty notes. Glutinous cultivars showed abundant ketones, furans, carboxylic acids, thiols, steroids, nitro compounds, pyrroles and diverse hydrocarbons and aromatics, yielding sweeter, fruitier and floral accents. These results expand the volatile library for japonica rice, provide molecular markers for flavor-oriented breeding and demonstrate the power of GC × GC-TOFMS coupled with chemometrics for grain aroma research. Full article
Show Figures

Figure 1

18 pages, 2769 KiB  
Article
Characterization of the Flavors and Organoleptic Attributes of Petit Manseng Noble Rot Wines from the Eastern Foothills of Helan Mountain in Ningxia, China
by Fuqi Li, Fan Yang, Quan Ji, Longxuan Huo, Chen Qiao and Lin Pan
Foods 2025, 14(15), 2723; https://doi.org/10.3390/foods14152723 - 4 Aug 2025
Viewed by 331
Abstract
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into [...] Read more.
To investigate the effect of Botrytis cinerea infection severity on the flavor characteristics of Petit Manseng noble rot wine, this study analyzed wines produced from Petit Manseng grapes grown in the eastern foothills of Helan Mountain, Ningxia, China. The grapes were categorized into three groups based on infection status: uninfected, mildly infected, and severely infected with Botrytis cinerea. Headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and an electronic nose were employed to detect and analyze the aroma components of wines under the three infection conditions. Additionally, trained sensory panelists conducted sensory evaluations of the wine aromas. The results revealed that wines made from severely infected grapes exhibited the richest and most complex aroma profiles. A total of 70 volatile compounds were identified, comprising 32 esters, 17 alcohols, 5 acids, 8 aldehydes and ketones, 4 terpenes, and 4 other compounds. Among these, esters and alcohols accounted for the highest contents. Key aroma-active compounds included isoamyl acetate, ethyl decanoate, phenethyl acetate, ethyl laurate, hexanoic acid, linalool, decanoic acid, citronellol, ethyl hexanoate, and methyl octanoate. Sensory evaluation indicated that the “floral aroma”, “pineapple/banana aroma”, “honey aroma”, and “overall aroma intensity” were most pronounced in the severely infected group. These findings provide theoretical support for the harvesting of severely Botrytis cinerea-infected Petit Manseng grapes and the production of high-quality noble rot wine in this region. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

12 pages, 2107 KiB  
Article
The Impact of Harvest Season on Oolong Tea Aroma Profile and Quality
by Chao Zheng, Shuilian Gao, Xiaxia Wang, Zhenbiao Yang, Junling Zhou and Ying Liu
Plants 2025, 14(15), 2378; https://doi.org/10.3390/plants14152378 - 1 Aug 2025
Viewed by 207
Abstract
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. [...] Read more.
The impact of seasonality on the aroma quality of tea has been documented in various tea types, but not specifically in oolong tea. This study is the first to explore the complex relationships between seasonality, volatile compounds, and aroma quality in oolong tea. Using Headspace Solid-Phase Microextraction Gas Chromatography–Mass Spectrometry (HS-SPME-GC-MS)-based untargeted metabolomics, we analyzed 266 samples of Tieguanyin oolong tea. The data identified linalool, linalool oxides (trans-linalool oxide (furanoid) and trans-linalool oxide (pyranoid)), and their metabolites (diendiol I; hotrienol) as key seasonal discriminants. Four out of the top ten key differential compounds for distinguishing aroma scores were metabolites from fatty acid degradation, namely trans-3-hexenyl butyrate, trans-2-hexenyl hexanoate, hexyl hexanoate, and hexyl 2-methyl butyrate. Approximately one-fifth of the seasonal discriminant volatile compounds were significant in influencing aroma quality. Overall, the impact of seasonality on the aroma quality of finished Tieguanyin oolong tea is marginal. These findings enhance our understanding of the interplay between seasonal variations, volatile composition, and aroma quality in oolong tea. Full article
(This article belongs to the Special Issue Production, Quality and Function of Tea)
Show Figures

Figure 1

29 pages, 9521 KiB  
Article
The Chemical Fingerprint of Smokeless Powders: Insights from Headspace Odor Volatiles
by Miller N. Rangel, Andrea Celeste Medrano, Haylie Browning, Shawna F. Gallegos, Sarah A. Kane, Nathaniel J. Hall and Paola A. Prada-Tiedemann
Powders 2025, 4(3), 21; https://doi.org/10.3390/powders4030021 - 29 Jul 2025
Viewed by 1012
Abstract
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, [...] Read more.
Smokeless powders are a commonly used low explosive within the ammunition industry. Their ease of purchase has allowed criminals to use these products to build improvised explosive devices. Canines have become a vital tool in locating such improvised devices. With differing fabrication processes, one of the most difficult challenges for canine handlers is the optimal selection of training aids to choose as odor targets to allow for broad generalization. Several studies have been underway to understand the chemical odor characterization of smokeless powders, which can help provide canine teams with essential information to understand odor signatures from powder varieties. In this study, a SPME method optimization was conducted using unburned smokeless powders to provide a chemical odor profile assessment. Concurrently, statistical analysis using PCA and Spearman’s rank correlations was performed to explore whether odor volatile composition depicted associations between and within powder brands. The results showed that a longer extraction time (24 h) was optimal across all powders, as this yielded higher compound abundance and number of extracted odor volatiles. The optimal SPME fiber varied per powder, depicting the complexity of powder composition. There were 66 highly frequent compounds among the 18 powders, including 2-ethyl-1-hexanol, diphenylamine (DPA), and dibutyl phthalate. Principal component analysis (PCA) showed that while powders may be of the same type (single/double base), they can still portray clustering differences across and within brands. The Spearman’s rank correlation within powder type suggested that the double-base powders had a slightly higher similarity index when compared with the single-base powder types. Understanding the volatile odor profiles of various smokeless powders can enhance canine training by informing the selection of effective training aids and supporting odor generalization. Full article
Show Figures

Figure 1

27 pages, 1179 KiB  
Article
Properties of Plant Extracts from Adriatic Maritime Zone for Innovative Food and Packaging Applications: Insights into Bioactive Profiles, Protective Effects, Antioxidant Potentials and Antimicrobial Activity
by Petra Babić, Tea Sokač Cvetnić, Iva Čanak, Mia Dujmović, Mojca Čakić Semenčić, Filip Šupljika, Zoja Vranješ, Frédéric Debeaufort, Nasreddine Benbettaieb, Emilie Descours and Mia Kurek
Antioxidants 2025, 14(8), 906; https://doi.org/10.3390/antiox14080906 - 24 Jul 2025
Viewed by 342
Abstract
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum [...] Read more.
Knowledge about the composition (volatile and non-volatile) and functionality of natural extracts from Mediterranean plants serves as a basis for their further application. In this study, five selected plants were used for the extraction of plant metabolites. Leaves and flowers of Critmum maritimum, Rosmarinus officinalis, Olea europea, Phylliera latifolia and Mellisa officinalis were collected, and a total of 12 extracts were prepared. Extractions were performed under microwave-assisted conditions, with two solvent types: water (W) and a hydroalcoholic (ethanolic) solution (HA). Detailed extract analysis was conducted. Phenolics were analyzed by detecting individual bioactive compounds using high-performance liquid chromatography and by calculating total phenolic and total flavonoid content through spectrophotometric analysis. Higher concentrations of total phenolics and total flavonoids were obtained in the hydroalcoholic extracts, with the significantly highest total phenolic and flavonoid values in the rosemary hydroalcoholic extract (3321.21 mgGAE/L) and sea fennel flower extract (1794.63 mgQE/L), respectively; and the lowest phenolics in the water extract of olive leaves (204.55 mgGAE/L) and flavonoids in the water extracts of sea fennel leaves, rosemary, olive and mock privet (around 100 mgQE/L). Volatile organic compounds (VOC) were detected using HS-SPME/GC–MS (Headspace Solid-Phase Microextraction coupled with Gas Chromatography-Mass Spectrometry), and antioxidant capacity was estimated using DPPH (2,2-diphenyl-1-picrylhydrazyl assay) and FRAP (Ferric Reducing Antioxidant Power) methods. HS-SPME/GC–MS analysis of samples revealed that sea fennel had more versatile profile, with the presence of 66 and 36 VOCs in W and HA sea fennel leaf extracts, 52 and 25 in W and HA sea fennel flower extracts, 57 in rosemary W and 40 in HA, 20 in olive leaf W and 9 in HA, 27 in W mock privet and 11 in HA, and 35 in lemon balm W and 10 in HA extract. The lowest values of chlorophyll a were observed in sea fennel leaves (2.52 mg/L) and rosemary (2.21 mg/L), and chlorophyll b was lowest in sea fennel leaf and flower (2.47 and 2.25 mg/L, respectively), while the highest was determined in olive (6.62 mg/L). Highest values for antioxidant activity, determined via the FRAP method, were obtained in the HA plant extracts (up to 11,216 mgAAE/L for lemon balm), excluding the sea fennel leaf (2758 mgAAE/L) and rosemary (2616 mgAAE/L). Considering the application of these plants for fresh fish preservation, antimicrobial activity of water extracts was assessed against Vibrio fischeri JCM 18803, Vibrio alginolyticus 3050, Aeromonas hydrophila JCM 1027, Moraxella lacunata JCM 20914 and Yersinia ruckeri JCM 15110. No activity was observed against Y. ruckeri and P. aeruginosa, while the sea fennel leaf showed inhibition against V. fisheri (inhibition zone of 24 mm); sea fennel flower was active against M. lacunata (inhibition zone of 14.5 mm) and A. hydrophila (inhibition zone of 20 mm); and rosemary and lemon balm showed inhibition only against V. fisheri (inhibition zone from 18 to 30 mm). This study supports the preparation of natural extracts from Mediterranean plants using green technology, resulting in extracts rich in polyphenolics with strong antioxidant potential, but with no clear significant antimicrobial efficiency at the tested concentrations. Full article
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Volatile Compounds Profiling of Fresh R. alba L. Blossom by Headspace—Solid Phase Microextraction and Gas Chromatography
by Daniela Antonova-Nedeltcheva, Ana Dobreva, Kamelia Gechovska and Liudmil Antonov
Molecules 2025, 30(15), 3102; https://doi.org/10.3390/molecules30153102 - 24 Jul 2025
Viewed by 331
Abstract
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for [...] Read more.
The white oil-bearing rose (R. alba L.) is the second of the industrially important rose species for Bulgarian rose cultivation and essential oil production. In recent years, the interest in white oil-bearing rose has increased, following the worldwide trend for searching for new aromatic alternatives. Therefore, the purpose of the current research is to evaluate the volatile compounds profile of fresh R. alba L. flowers using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC/MS). More than 75 individual compounds were identified and quantified using HS-SPME-GC/MS. The study revealed that the aroma-bearing fraction of rose volatiles consists mainly of monoterpene alcohols; 2-phenylethanol was the most abundant component (8.4–33.9%), followed by geraniol (12.8–32.5%) and citronellol + nerol (17.7–26.5%). Linalool, α-pinene, β-myrcene, and rose oxides were also observed in low concentrations. The stearopten fraction in the HS phase was observed in low concentration, with main representatives nonadecane + nonadecene, heptadecane, heneicosane, and tricosane. The HS-GC profile of the R. alba fresh flowers shows distinct differences in relative abundance of the components between the two studied clones of the population, as well as between volatiles in petals and in the whole blossom. The absence of some undesirable components, such as allergenic and potentially carcinogenic methyl eugenol in fresh R. alba blossom, makes white oil-bearing rose a promising alternative to R. damascena in perfumery, natural cosmetics, and aromatherapy. Full article
Show Figures

Figure 1

24 pages, 2960 KiB  
Review
Driving Sustainable Energy Co-Production: Gas Transfer and Pressure Dynamics Regulating Hydrogen and Carboxylic Acid Generation in Anaerobic Systems
by Xiao Xiao, Meng He, Yanning Hou, Bilal Abdullahi Shuaibu, Wenjian Dong, Chao Liu and Binghua Yan
Processes 2025, 13(8), 2343; https://doi.org/10.3390/pr13082343 - 23 Jul 2025
Viewed by 241
Abstract
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected [...] Read more.
To achieve energy transition, hydrogen and carboxylic acids have attracted much attention due to their cleanliness and renewability. Anaerobic fermentation technology is an effective combination of waste biomass resource utilization and renewable energy development. Therefore, the utilization of anaerobic fermentation technology is expected to achieve efficient co-production of hydrogen and carboxylic acids. However, this process is fundamentally affected by gas–liquid mass transfer kinetics, bubble behaviors, and system partial pressure. Moreover, the related studies are few and unfocused, and no systematic research has been developed yet. This review systematically summarizes and discusses the basic mathematical models used for gas–liquid mass transfer kinetics, the relationship between gas solubility and mass transfer, and the liquid-phase product composition. The review analyzes the roles of the headspace gas composition and partial pressure of the reaction system in regulating co-production. Additionally, we discuss strategies to optimize the metabolic pathways by modulating the gas composition and partial pressure. Finally, the feasibility of and prospects for the realization of hydrogen and carboxylic acid co-production in anaerobic fermentation systems are outlined. By exploring information related to gas mass transfer and system pressure, this review will surely provide an important reference for promoting cleaner production of sustainable energy. Full article
(This article belongs to the Special Issue Green Hydrogen Production: Advances and Prospects)
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 242
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

13 pages, 1446 KiB  
Article
Characterization of Brown Seaweed (Ascophyllum nodosum) and Sugar Kelp (Saccharina latissima) Extracts Using Temporal Check-All-That-Apply
by Zach Adams, Nicoletta Faraone and Matthew B. McSweeney
Foods 2025, 14(15), 2565; https://doi.org/10.3390/foods14152565 - 22 Jul 2025
Viewed by 207
Abstract
Seaweed is a sustainable ingredient that has been suggested to improve the nutritional aspects as well as the sensory properties of different food products. The objective of this study was to evaluate the flavor properties of extracts from brown seaweed (Ascophyllum nodosum [...] Read more.
Seaweed is a sustainable ingredient that has been suggested to improve the nutritional aspects as well as the sensory properties of different food products. The objective of this study was to evaluate the flavor properties of extracts from brown seaweed (Ascophyllum nodosum) and sugar kelp (Saccharina latissimi) obtained at different temperatures. These varieties commonly grow in the Atlantic Ocean. The seaweed samples were extracted using water at three different temperatures (50 °C, 70 °C, and 90 °C). The volatile fraction of the extracts was extracted with headspace solid-phase microextraction and analyzed by gas chromatography–mass spectrometry. The headspace chemical composition varies significantly among seaweed extracts and at different extraction temperatures. Major classes of identified compounds were aldehydes, ketones, alcohols, hydrocarbons, and halogenated compounds. Extracts were also evaluated using temporal check-all-that-apply (with 84 untrained participants). The different temperatures had minimal impact on the flavour properties of the brown seaweed samples, but the extraction temperature did influence the properties of the sugar kelp samples. Increasing the extraction temperature seemed to lead to an increase in bitterness, savouriness, and earthy flavor, but future studies are needed to confirm this finding. This study continues the exploration of the flavor properties of seaweeds and identifies the dynamic flavor profile of brown seaweed and sugar kelp under different extraction conditions. Full article
Show Figures

Figure 1

29 pages, 1532 KiB  
Article
Effect of Rearing, Physiological, and Processing Conditions on the Volatile Profile of Atlantic Salmon (Salmo salar) Using SIFT-MS
by Manpreet Kaur, Konrad Dabrowski, Kevin J. Fisher, Md Zakir Hossain and Sheryl Barringer
Foods 2025, 14(14), 2540; https://doi.org/10.3390/foods14142540 - 21 Jul 2025
Viewed by 402
Abstract
This study examined the effects of rearing, physiological, and processing conditions on the volatile profile of Atlantic salmon. Fish were reared under two different temperature and light conditions, and three harvests were conducted at different time points for male and female fish. Fish [...] Read more.
This study examined the effects of rearing, physiological, and processing conditions on the volatile profile of Atlantic salmon. Fish were reared under two different temperature and light conditions, and three harvests were conducted at different time points for male and female fish. Fish were processed to yield fillets with or without skin. Volatiles were analyzed using SIFT-MS headspace analysis. Atlantic salmon reared in cooler temperatures under a 12 h light/dark cycle exhibited significantly lower concentrations of off-odor volatiles compared to those reared in warm conditions under continuous light, suggesting that cooler temperatures with a dark cycle help maintain freshness. A temperature shift from cool to warm further increased volatile accumulation. Longer rearing time resulted in higher volatile concentrations, attributed to greater biochemical products, increased susceptibility to lipid oxidation, protein degradation, and contaminant accumulation from the rearing environment. Males had higher volatile levels at 202 days, while females surpassed males by 242 days, likely due to increased biochemical accumulation associated with reproductive development. Fillets with skin exhibited significantly higher concentration of off-odor volatiles. These findings highlight the role of all studied factors in establishing optimum conditions to minimize spoilage-related volatiles and preserve the freshness of Atlantic salmon, with rearing temperature being the most critical factor. Full article
(This article belongs to the Special Issue Aquatic Products Processing and Preservation Technology)
Show Figures

Figure 1

20 pages, 1258 KiB  
Article
The Crime of Vehicular Homicide in Italy: Trends in Alcohol and Drug Use in Fatal Road Accidents in Lazio Region from 2018 to 2024
by Francesca Vernich, Leonardo Romani, Federico Mineo, Giulio Mannocchi, Lucrezia Stefani, Margherita Pallocci, Luigi Tonino Marsella, Michele Treglia and Roberta Tittarelli
Toxics 2025, 13(7), 607; https://doi.org/10.3390/toxics13070607 - 19 Jul 2025
Viewed by 428
Abstract
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating [...] Read more.
In Italy, the law on road homicide (Law no. 41/2016) introduced specific provisions for drivers who cause severe injuries or death to a person due to the violation of the Highway Code. The use of alcohol or drugs while driving constitutes an aggravating circumstance of the offence and provides for a tightening of penalties. Our study aims to report on the analysis performed on blood samples collected between January 2018 and December 2024 from drivers convicted of road homicide and who tested positive for alcohol and/or drugs. The majority of the involved subjects were males belonging to the 18–30 and 41–50 age groups. Alcohol, cocaine and cannabinoids were the most detected substances and the most frequent polydrug combination was alcohol and cocaine. We also investigated other influencing factors in road traffic accidents as the day of the week and the time of the day in which fatal road traffic accident occurred, and the time elapsed between the road accident and the collection of biological samples. Our data, in line with the international scenario, strongly support that, in addition to the tightening of penalties, raising awareness plays a key role in preventing alcohol- and drug-related traffic accidents by increasing risk perception and encouraging safer driving behaviors. Full article
(This article belongs to the Special Issue Current Issues and Research Perspectives in Forensic Toxicology)
Show Figures

Graphical abstract

14 pages, 870 KiB  
Article
Evaluation of Packaging Effects on the Phenolic Profile and Sensory Characteristics of Extra Virgin Olive Oil During Storage Using Liquid Chromatography Coupled with Mass Spectrometry
by Mohamed M. Abuhabib, Francesc M. Campins-Machado, Julián Lozano-Castellón, Antònia Ninot, Agustí Romero-Aroca, Rosa M. Lamuela-Raventós, Maria Pérez and Anna Vallverdú-Queralt
Foods 2025, 14(14), 2532; https://doi.org/10.3390/foods14142532 - 19 Jul 2025
Viewed by 474
Abstract
The health benefits of extra virgin olive oil (EVOO), including improved cardiovascular health and metabolic function, are linked to its phenolic content. This study evaluated how storage duration and packaging affect the phenolic composition and sensory quality of Corbella EVOO. Oils were analyzed [...] Read more.
The health benefits of extra virgin olive oil (EVOO), including improved cardiovascular health and metabolic function, are linked to its phenolic content. This study evaluated how storage duration and packaging affect the phenolic composition and sensory quality of Corbella EVOO. Oils were analyzed at production and after 6 and 12 months of storage in two types of packaging: bag-in-box; stainless steel containers with a nitrogen headspace. UPLC-MS/MS profiling quantified 23 phenolic compounds, predominantly secoiridoids such as oleuropein and ligstroside aglycones. Oleuropein aglycone increased over time, whereas ligstroside aglycone peaked mid-storage before declining, likely converting to oleocanthal. Lignans and flavonoids degraded during storage, although luteolin increased, potentially due to glucoside hydrolysis. Bag-in-box packaging better preserved phenolic content than stainless steel. A sensory analysis corroborated the chemical findings, with oils stored in stainless steel showing greater reductions in pungency and astringency. A Pearson correlation linked bitterness with oleuropein aglycone (r = 0.44) and oleacein (r = 0.66), pungency with oleocanthal (r = 0.81), and astringency with oleacein (r = 0.86) and oleocanthal (r = 0.71). These findings highlight the importance of packaging in preserving the phenolic composition responsible for the sensory qualities of EVOO over time. Full article
(This article belongs to the Special Issue Application of Mass Spectrometry-Based Omics and Chemometrics in Food)
Show Figures

Figure 1

Back to TopTop