Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,647)

Search Parameters:
Keywords = harvesting systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 507 KB  
Article
Agronomic and Utilization Potential of Three Elephant Grass Cultivars for Energy, Forage, and Soil Improvement in Vietnam
by Lovisa Panduleni Johannes, Tran Thi Ngoc Minh, Nguyen Van Son, Do Thanh Tung, Tran Duc Viet and Tran Dang Xuan
Crops 2025, 5(5), 70; https://doi.org/10.3390/crops5050070 (registering DOI) - 14 Oct 2025
Abstract
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This [...] Read more.
Elephant grass (Pennisetum purpureum Schumach, EG) is a promising biomass energy crop due to its high productivity and adaptability to harsh environments. In the transition to renewable energy, varietal evaluation is essential to identify cultivars that maximize biomass and energy yield. This study assessed three varieties (VS-19, VA-06, and VDP as control) across three harvest cycles (new planting, first regrowth, and second regrowth) between 2022 and 2024 at the Cotton and Agricultural Development Research Institute, Ninh Thuan Province, Vietnam. The site was characterized by mean temperatures of 25–36 °C, relative humidity of 65–82%, and average precipitation of 75.7 mm per month. Agronomic traits, energy potential (heating oil equivalent per hectare, HOE/ha), forage quality, and soil amendment value of the EG were examined to address the research question whether EG can be integrated into a three-cycle utilization model (energy, forage, soil amendment) to support a circular bioeconomy in Vietnam. All cultivars showed good growth, strong drought tolerance, and resistance to pests and diseases. VS-19 showed superior tillering, strong lodging resistance, and the highest biomass yield (63.8 t/ha) with an energy output of 32,636 HOE/ha, while VA-06 (56.1 t/ha; 28,699 HOE/ha) and VDP (54.7 t/ha; 27,952 HOE/ha) produced slightly lower but comparable outputs. Forage evaluation indicated moderate nutritional quality, while residues from the third cycle showed favorable carbon and nutrients content, making EG suitable as a soil amendment. EG thus demonstrates high biomass and energy yields, forage potential, and soil improvement capacity, reinforcing its role in integrated bioenergy and agricultural systems. Full article
Show Figures

Figure 1

22 pages, 1401 KB  
Article
Techno-Economic Assessment of Microalgae-Based Biofertilizer Production from Municipal Wastewater Using Scenedesmus sp.
by Alejandro Pérez Mesa, Paula Andrea Céspedes Grattz, Juan José Vidal Vargas, Luis Alberto Ríos and David Ocampo Echeverri
Water 2025, 17(20), 2941; https://doi.org/10.3390/w17202941 - 12 Oct 2025
Viewed by 228
Abstract
This research determines the techno-economic feasibility of valorizing as biofertilizer the nitrogen (N) and the phosphorus (P) from a municipal wastewater effluent using the microalgae Scenedesmus sp., contributing to phosphorus recycling, resource optimization, and diminishing eutrophication by capturing 74% of N, 97% of [...] Read more.
This research determines the techno-economic feasibility of valorizing as biofertilizer the nitrogen (N) and the phosphorus (P) from a municipal wastewater effluent using the microalgae Scenedesmus sp., contributing to phosphorus recycling, resource optimization, and diminishing eutrophication by capturing 74% of N, 97% of P, and 41% of chemical oxygen demand in effluents. The inoculum was conditioned in 20 L photobioreactors by weekly harvesting and refilling at room temperature (25 °C day, 12 °C night) with a 12:12 photoperiod and 4 L/min atmospheric air bubbling. The improved operational conditions were obtained using a Box–Behnken experimental design, establishing that 70% wastewater concentration (vol./vol.), 4.5% nutrient addition, and 3 days’ harvesting time were the best conditions. The estimated biomass production was 176 tons/year, and this represents a maximum net present value of 1.5 MUSD for a 6.8 Ha plant, capturing 10% of municipal wastewater effluent, which serves 64000 inhabitants. The representative operational costs (OPEX) were 32% for utilities, 30% labor costs, and 25% for raw materials, and the required capital expenditures (CAPEX) were 11 MUSD and are related to photobioreactors (64%) and land (21%). The findings demonstrate the potential of microalgae-based systems as a feasible and profitable approach to wastewater valorization, while also highlighting the need for scale-up validation and integration with existing treatment infrastructures, where land requirements and photobioreactor installation will be relevant for financial feasibility. Full article
(This article belongs to the Special Issue Algae-Based Technology for Wastewater Treatment)
Show Figures

Figure 1

28 pages, 6949 KB  
Article
Experimentally Validated Modelling of a Base-Excited Piezoelectric Vibration Energy Harvester Connected to a Full Wave Rectified Load
by Philip Bonello and Maher Alalwan
Sensors 2025, 25(20), 6305; https://doi.org/10.3390/s25206305 - 11 Oct 2025
Viewed by 344
Abstract
Practical applications of piezoelectric vibration energy harvesting systems are required to produce a stable DC output through the nonlinear process of AC-DC rectification. In most simulation studies of such systems, the diodes have been idealised as switches, an assumption that is valid only [...] Read more.
Practical applications of piezoelectric vibration energy harvesting systems are required to produce a stable DC output through the nonlinear process of AC-DC rectification. In most simulation studies of such systems, the diodes have been idealised as switches, an assumption that is valid only if the vibration-induced voltage is high enough, which is frequently not the case in practice. This paper presents an experimentally validated simulation of a base excited vibration energy harvester connected to a full wave rectified load, combining the analytical modal transformation of the Euler–Bernoulli model of a piezoelectric beam with the nonlinear current-voltage characteristic of a real (non-ideal) diode. Three types of diodes with significantly different model parameters sourced from industry-standard datasets are considered. Discrepancies between simulated and measured resonant voltage levels are found to be less than 10% on average, and the discrepancy in resonant frequency is less than 1%, demonstrating the reliability of the Shockley diode model despite its omission of the dynamic behaviour of the diode. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

14 pages, 2144 KB  
Article
Productivity and Fermentative and Nutritional Quality of Silages from Biomass Sorghum Intercropped with Tropical Grasses
by Giuliano Reis Pereira Muglia, Marco Antonio Previdelli Orrico Junior, Marciana Retore, Gessí Ceccon, Yara América da Silva, Ana Carolina Amorim Orrico, Isabele Paola de Oliveira Amaral and Verônica Gleice de Oliveira
AgriEngineering 2025, 7(10), 345; https://doi.org/10.3390/agriengineering7100345 - 11 Oct 2025
Viewed by 158
Abstract
Crop–livestock integration is widely adopted as a strategy for recovering degraded pastures. In this system, intercropping crops such as sorghum with tropical grasses enables the harvest of sorghum for silage while simultaneously establishing a new pasture. However, interspecific competition for resources can limit [...] Read more.
Crop–livestock integration is widely adopted as a strategy for recovering degraded pastures. In this system, intercropping crops such as sorghum with tropical grasses enables the harvest of sorghum for silage while simultaneously establishing a new pasture. However, interspecific competition for resources can limit sorghum development and yield, potentially compromise the fermentation process and reduce the nutritional quality of the silage. Therefore, this study aimed to evaluate the agronomic performance, fermentative characteristics, and chemical–bromatological composition of silages produced from different biomass sorghum-grass intercropping systems. The experiment was conducted in a randomized block design with a 3 × 2 factorial arrangement: three cropping systems [sorghum monoculture, sorghum intercropped with Marandu grass (S + M), and sorghum intercropped with Zuri grass (S + Z)] and two sorghum row spacings (45 and 90 cm). The S + Z intercropping system with 90 cm row spacing showed the highest total dry matter yield (16.42 t/ha). It also presented better fermentative parameters, such as pH (4.02) and lactic acid (5.31%DM) and superior nutritional quality, with lower fiber content and higher concentrations of NFC (24.79%DM), TDN (59.75%DM), and digestibility. It is concluded that intercropping biomass sorghum with Zuri grass at 90 cm spacing is the most promising strategy for producing high-quality silage. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

23 pages, 10020 KB  
Article
Microbiological and Mycotoxicological Quality of Stored Wheat, Wholemeal Flour and Bread: The Impact of Extreme Weather Events in Romania in the 2024 Summer
by Valeria Gagiu, Elena Mirela Cucu (Chirtu), Elena Iulia Lazar (Banuta), Cristian Mihai Pomohaci, Alina Alexandra Dobre, Gina Pusa Pirvu, Oana Alexandra Oprea, Cristian Lazar, Elena Mateescu and Nastasia Belc
Toxins 2025, 17(10), 502; https://doi.org/10.3390/toxins17100502 - 11 Oct 2025
Viewed by 396
Abstract
This study examines the effects of the extreme drought and heatwaves that occurred in Romania during the summer of 2024 on the microbiological and mycotoxicological quality of wheat (Triticum aestivum) stored until April 2025, as well as on the quality of [...] Read more.
This study examines the effects of the extreme drought and heatwaves that occurred in Romania during the summer of 2024 on the microbiological and mycotoxicological quality of wheat (Triticum aestivum) stored until April 2025, as well as on the quality of wholemeal flour and bread derived from it. Comparative analyses were conducted against the contamination in wheat harvested in 2024. The hot and dry conditions significantly influenced the microbial and mycotoxicological contamination of both freshly harvested and stored wheat, as well as the derived flour and bread, due to their notably reduced moisture content and water activity. Although levels of total fungi, Fusarium-damaged kernels, and mycotoxins deoxynivalenol, aflatoxin B1, and ochratoxin A remained well below regulatory thresholds, higher contamination was observed in Transylvania and Moldavia—particularly in the Curvature Carpathians, likely due to their cooler and wetter microclimates. The observed quality changes were strongly associated with alterations in physico-chemical, rheological, and colorimetric parameters, posing potential economic challenges for the milling and baking industries. The study recommends implementing integrated regional strategies to enhance wheat resilience, optimize production systems, and improve contamination control in response to increasing climate stress across Southeastern Europe. Full article
(This article belongs to the Collection Impact of Climate Change on Fungal Population and Mycotoxins)
Show Figures

Figure 1

16 pages, 1743 KB  
Article
Bio-Based Mulching Films and Soil Conditioners for Non-Irrigated Tomato Cultivation: Toward Plastic-Free and Water-Efficient Crop Production
by Alessandro Sorze, Francesco Valentini, Tiziana Nardin, Roberto Larcher, Janine Bösing, Sebastian Hirschmüller, Andrea Dorigato and Alessandro Pegoretti
Int. J. Mol. Sci. 2025, 26(20), 9894; https://doi.org/10.3390/ijms26209894 (registering DOI) - 11 Oct 2025
Viewed by 192
Abstract
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or [...] Read more.
This study examined the impact of different bio-based and biodegradable mulching films (TSCs) and soil conditioners (SCs) on plant productivity and fruit quality in a tomato cultivation trial under non-irrigated conditions. In particular, different TSCs were developed based on xanthan gum (XG) or gelatine (GEL) mixed with wood fibres (WFs), while SCs were produced using XG and cellulose fibres. A total of 72 plants of Solanum lycopersicum var. cerasiforme were planted. The yield and number of fruits were measured at harvest, followed by physico-chemical analyses, while plant root systems were examined at the end of the experimental period. The results highlighted that the GEL-based TSCs improved the total fruit yield compared to the control (+50% on average). Furthermore, improved fruit yield was also observed for the XG-based SCs when applied in the soil with a higher organic content. Overall, no significant differences in fruit quality (i.e., Brix degree, carotenoids, lutein and potassium content) and plant root system parameters were found for all the treatments applied. At the end of the test, it was noticed that GEL-based films substantially retained their consistency due to their greater density and thickness, while XG-based films were more disintegrated, indicating higher biodegradation. Full article
Show Figures

Figure 1

28 pages, 9482 KB  
Article
First Phenotypic Characterization of the Edible Fruits of Lardizabala biternata: A Baseline for Conservation and Domestication of a Neglected and Endemic Vine
by Jaime Herrera and Leonardo D. Fernández
Plants 2025, 14(20), 3126; https://doi.org/10.3390/plants14203126 - 10 Oct 2025
Viewed by 202
Abstract
Lardizabala biternata is a culturally valued, endemic vine of the Chilean Winter Rainfall–Valdivian Forest biodiversity hotspot, traditionally harvested for its sweet, edible fruits. Despite its ecological singularity as the sole species in a monotypic genus, the species remains biologically and agronomically understudied, with [...] Read more.
Lardizabala biternata is a culturally valued, endemic vine of the Chilean Winter Rainfall–Valdivian Forest biodiversity hotspot, traditionally harvested for its sweet, edible fruits. Despite its ecological singularity as the sole species in a monotypic genus, the species remains biologically and agronomically understudied, with no formal cultivation systems. There is currently no baseline information on its fruit morphology, which limits the design of conservation strategies and the development of its agronomic potential. This study provides the first phenotypic characterisation of L. biternata fruits, aimed at supporting germplasm evaluation, ex situ conservation, and sustainable domestication of this rare species. A total of 205 fruits were sampled across two seasons and two geographically distant populations. We measured 14 traits, including weight, length, diameter, pulp content, and seed metrics, and analysed morphological variation using t-tests, ANOVA, regression, and principal component analysis or PCA. Fruits averaged 21.0 g in weight, 54.2 mm in length, and 23.8 mm in diameter. Edible pulp constituted 44.4% of total fruit weight and showed strong positive correlations with fruit size, seed number, and seed weight. Significant differences were observed across seasons and populations, with cooler, wetter conditions associated with larger fruits and higher pulp yield. Our findings reveal substantial morphological variability and climate sensitivity, providing a crucial baseline for selecting desirable traits. This work informs ongoing efforts in plant domestication, sustainable agriculture, and the conservation of underutilised species of cultural and ecological importance. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

19 pages, 2080 KB  
Article
Design and Optimization of a Wave-Adaptive Mechanical Converter for Renewable Energy Harvesting Along NEOM’s Surf Coast
by Abderraouf Gherissi, Ibrahim Elnasri, Abderrahim Lakhouit and Malek Ali
Processes 2025, 13(10), 3229; https://doi.org/10.3390/pr13103229 - 10 Oct 2025
Viewed by 309
Abstract
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with [...] Read more.
This study introduces a novel adaptive Mechanical Wave Energy Converter (MWEC) designed to efficiently capture nearshore wave energy for sustainable electricity generation along the southeast surf coast of NEOM (135° longitude). The MWEC system features a polyvinyl chloride (PVC) cubic buoy integrated with a mechanical power take-off (PTO) mechanism, optimized for deployment in shallow waters for a depth of around 1 m. Three buoy volumes, V1: 6000 cm3, V2: 30,000 cm3, and V3: 72,000 cm3, were experimentally evaluated under consistent PTO and spring tension configurations. The findings reveal a direct relationship between buoy volume and force output, with larger buoys exhibiting greater energy capture potential, while smaller buoys provided faster and more stable response dynamics. The energy retention efficiency of the buoy–PTO system was measured at 20% for V1, 14% for V2, and 10% for V3, indicating a trade-off between responsiveness and total energy capture. Notably, the largest buoy (V3) generated a peak power output of 213 W at an average wave amplitude of 65 cm, confirming its suitability for high-energy conditions along NEOM’s surf coast. In contrast, the smaller buoy (V1) performed more effectively during periods of reduced wave activity. Wave climate data collected during November and December 2024 support a hybrid deployment strategy, utilizing different buoy sizes to adapt to seasonal wave variability. These results highlight the potential of modular, wave-adaptive mechanical systems for scalable, site-specific renewable energy solutions in coastal environments like NEOM. The proposed MWEC offers a promising path toward low-cost, low-maintenance wave energy harvesting in shallow waters, contributing to Saudi Arabia’s sustainable energy goals. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

30 pages, 2225 KB  
Article
Harvesting Practices and Local Ecological Knowledge (LEK) of Bahamian Land Crabs: Bridging Gaps Between Traditional and Scientific Knowledge
by Iain J. McGaw, Michael T. McSweeney, William F. Bigelow, Kaitlyn T. Gaitor, Scott G. Seamone, Owen R. O’Shea, Nicholas D. Higgs, Candice Brittain and Michelle T. Kuenzi
Animals 2025, 15(20), 2941; https://doi.org/10.3390/ani15202941 - 10 Oct 2025
Viewed by 155
Abstract
Three species of land crab occur in The Bahamas; these are an important source of protein and income for Bahamian islanders. The crab harvesters represent an important and largely untapped knowledge source. We conducted surveys on the Bahamian islands of Andros, New Providence, [...] Read more.
Three species of land crab occur in The Bahamas; these are an important source of protein and income for Bahamian islanders. The crab harvesters represent an important and largely untapped knowledge source. We conducted surveys on the Bahamian islands of Andros, New Providence, and Eleuthera to document crabbing practices and catalogue this local ecological knowledge (LEK) of land crabs. The survey primarily employed close-ended questions targeting land crab harvesters; we also recorded general feedback from open-ended questions. Crab collection was primarily for self-consumption. Catch rates varied among islands, and were the highest on Andros. There was a preference for white land crabs (Cardisoma guanhumi) on Andros, whereas on Eleuthera and New Providence, there was no preference for either white or black crabs (Gecarcinus ruricola). The majority of respondents reported a decline in white and black crab numbers, with land development and overharvesting being consistently cited factors. On Andros, forest fires were also reported to account for the loss of crab habitat, whereas on Eleuthera, invasive raccoons were blamed for the population decline. Respondents identified broadleaf forests as critical refuges and food sources for black crabs. Birds were the major predator, confirming findings for other land crab species. Land crabs were not merely a food resource but represented a complex nexus of ecological knowledge, economic systems, cultural traditions, and community practices within Bahamian society. We demonstrated a substantial overlap between traditional and scientific knowledge systems, providing valuable insights into land crab behaviour, habitat use, and ecology that complements formal scientific research. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
Show Figures

Figure 1

13 pages, 3661 KB  
Article
An Energy Storage Unit Design for a Piezoelectric Wind Energy Harvester with a High Total Harmonic Distortion
by Davut Özhan and Erol Kurt
Processes 2025, 13(10), 3217; https://doi.org/10.3390/pr13103217 - 9 Oct 2025
Viewed by 223
Abstract
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of [...] Read more.
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of the device were measured at several hundred microwatts. The main issue of piezoelectric voltage generation is that voltage waveforms of piezoelectric materials have high total harmonic distortion (THD) with incredibly high subharmonics and superharmonics. Therefore, such a material reply causes a certain power loss at the output of the wind energy generator. In order to fix this problem, we propose a combination of a rectifier and a storage system, where they can operate compatibly under high THD rates (i.e., 125%). Due to high THD values, current–voltage characteristics are not linear-dependent; indeed, because of capacitive effect of the piezoelectric (i.e., lead zirconium titanite) material, harvested power from the material is reduced by nearly a factor of 20% in the output. That also negatively affects the storage on the Li-based battery. In order to compensate, the output waveform of the device, the waveforms, which are received from the energy-harvester device, are first rectified by a full-wave rectifier that has a maximum power point tracking (MPPT) unit. The SOC values prove that almost 40% of the charge is stored in 1.2 s under moderate wind speeds, such as 6.1 m/s. To conclude, a better harvesting performance has been obtained by storing the energy into the Li-ion battery under a current–voltage-controlled boost converter technique. Full article
Show Figures

Figure 1

15 pages, 1954 KB  
Article
Adaptation of Microalgae for the Production of Settling Flocs, Carotenoids, and Mineral Recovery from Municipal Secondary Effluents
by Claudio Guajardo-Barbosa, Tomás Guajardo-Rodríguez, Ulrico Javier López-Chuken, Icela Dagmar Barceló-Quintal, David Cruz-Chávez and Julio César Beltrán-Rocha
Phycology 2025, 5(4), 57; https://doi.org/10.3390/phycology5040057 - 9 Oct 2025
Viewed by 183
Abstract
Microalgae cultivation offers a sustainable approach for nutrient recovery from municipal effluents and the production of valuable biomass, although efficient harvesting remains challenging. This study evaluated the adaptation of the microalgal consortium MC-10 in a sequential batch system through reinoculation of its flocculating [...] Read more.
Microalgae cultivation offers a sustainable approach for nutrient recovery from municipal effluents and the production of valuable biomass, although efficient harvesting remains challenging. This study evaluated the adaptation of the microalgal consortium MC-10 in a sequential batch system through reinoculation of its flocculating fraction to enhance harvesting efficiency and mineral recovery. The consortium was initially cultivated under high ionic stress to promote cell aggregation. Laboratory preadaptation using secondary municipal effluents was then conducted, followed by an outdoor evaluation. In the initial propagation stage, flocculation efficiency reached 98%. Using municipal effluents, flocculation values of 99% were obtained, with a 149% increase in flocculating biomass under laboratory conditions, and 84% flocculation with a 125% increase in biomass production under outdoor conditions, demonstrating the consortium’s stability under environmental fluctuations and its suitability for biomass harvesting. The resulting biomass showed high potential as a biofertilizer due to its mineral content (47% dry weight, DW) and acid solubility (83%), indicating high nutrient bioavailability. Additionally, it contained a total carotenoid concentration of 451 μg/g DW, adding antioxidant value. These findings support the use of microalgae cultivation for the valorization of municipal effluents through the production of easily harvestable biomass with potential for reintegration into agricultural systems. Full article
Show Figures

Figure 1

16 pages, 580 KB  
Review
Evolutionary Game Theory Use in Healthcare: A Synthetic Knowledge Synthesis
by Peter Kokol, Jernej Završnik, Helena Blažun Vošner and Bojan Žlahtič
Information 2025, 16(10), 874; https://doi.org/10.3390/info16100874 - 8 Oct 2025
Viewed by 356
Abstract
Background: Evolutionary game theory (EGT), originating from Darwinian competition studies, offers a powerful framework for understanding complex healthcare interactions where multiple stakeholders with conflicting interests evolve strategies over time. Unlike traditional game theory, EGT accounts for bounded rationality and strategic evolution through imitation [...] Read more.
Background: Evolutionary game theory (EGT), originating from Darwinian competition studies, offers a powerful framework for understanding complex healthcare interactions where multiple stakeholders with conflicting interests evolve strategies over time. Unlike traditional game theory, EGT accounts for bounded rationality and strategic evolution through imitation and selection. Aims and objectives: In our study, we use Synthetic Knowledge Synthesis (SKS) that integrates descriptive bibliometrics and bibliometric mapping to systematically analyze the application of EGT in healthcare. The SKS aimed to identify prolific research topics, suitable publishing venues, and productive institutions/countries for collaboration and funding. Data was harvested from the Scopus bibliographic database, encompassing 539 publications from 2000 to June 2025, Results: Production dynamics is revealing an exponential growth in scholarly output since 2019, with peak productivity in 2024. Descriptive bibliometrics showed China as the most prolific country (376 publications), followed by the United States and the United Kingdom. Key institutions are predominantly Chinese, and top journals include PLoS One and Frontiers in Public Health. Funding is primarily from Chinese entities like the National Natural Science Foundation of China. Bibliometric mapping identified five key research themes: game theory in cancer research, evolution game-based simulation of supply management, evolutionary game theory in epidemics, evolutionary games in trustworthy connected public health, and evolutionary games in collaborative governance. Conclusions: Despite EGT’s utility, significant research gaps exist in methodological robustness, data availability, contextual modelling, and interdisciplinary translation. Future research should focus on integrating machine learning, longitudinal data, and explicit ethical frameworks to enhance EGT’s practical application in adaptive, patient-centred healthcare systems. Full article
Show Figures

Figure 1

38 pages, 3155 KB  
Article
Analysis of Vibration Comfort and Vibration Energy Distribution in the Child Restraint System-Base Configuration
by Damian Frej
Energies 2025, 18(19), 5309; https://doi.org/10.3390/en18195309 - 8 Oct 2025
Viewed by 224
Abstract
This study presents the results of an experimental evaluation of ride comfort for children transported in child restraint systems (CRS) during passages over speed bumps, with particular emphasis on the energy contained in vibrations. The tests were carried out under real operating conditions [...] Read more.
This study presents the results of an experimental evaluation of ride comfort for children transported in child restraint systems (CRS) during passages over speed bumps, with particular emphasis on the energy contained in vibrations. The tests were carried out under real operating conditions using two vehicles with different suspension characteristics and three loading levels corresponding to different stages of child development. Vertical accelerations were recorded at key points of the vehicle–seat system and subsequently analyzed in accordance with ISO 2631-1. Based on the vibration signals, root mean square acceleration (RMS), vibration dose value (VDV), seat effective amplitude transmissibility (SEAT), and root mean quad (RMQ) indices were calculated, enabling not only the assessment of discomfort levels but also the estimation of mechanical energy transmitted through the seat structure. The results showed that, depending on the type of vehicle, bump geometry, and load mass, the vibration energy can be significant and, in many cases, corresponds to levels classified as “severe” or “extreme discomfort.” At the same time, this energy constitutes a potential power source for low-power sensors in “smart seat” systems, such as those monitoring the child’s posture or environmental conditions. The findings highlight the need to consider vibration comfort criteria and the potential for vibration energy harvesting in the design and homologation of CRS, which aligns with the concept of sustainable transport and the development of energy self-sufficient technologies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 5983 KB  
Article
Theoretical Modeling of Light-Fueled Self-Harvesting in Piezoelectric Beams Actuated by Liquid Crystal Elastomer Fibers
by Lin Zhou, Haiming Chen, Wu Bao, Xuehui Chen, Ting Gao and Dali Ge
Mathematics 2025, 13(19), 3226; https://doi.org/10.3390/math13193226 - 8 Oct 2025
Viewed by 151
Abstract
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, [...] Read more.
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, two resistors, and two piezoelectric cantilever beams arranged symmetrically. Based on the photothermal temperature evolution, we derive the governing equations of the liquid crystal elastomer fiber–piezoelectric beam system. Two distinct states, namely a self-harvesting state and a static state, are revealed through numerical simulations. The self-oscillation results from light-induced cyclic contraction of the liquid crystal elastomer fibers, driving beam bending, stress generation in the piezoelectric layer, and voltage output. Additionally, the effects of various system parameters on amplitude, frequency, voltage, and power are analyzed in detail. Unlike traditional vibration energy harvesters, this light-fueled self-harvesting system features a compact structure, flexible installation, and ensures continuous and stable energy output. Furthermore, by coupling the light-responsive LCE fibers with piezoelectric transduction, the system provides a non-contact actuation mechanism that enhances durability and broadens potential application scenarios. Full article
(This article belongs to the Special Issue Mathematical Models in Mechanics and Engineering)
Show Figures

Figure 1

24 pages, 6407 KB  
Article
Lightweight SCC-YOLO for Winter Jujube Detection and 3D Localization with Cross-Platform Deployment Evaluation
by Meng Zhou, Yaohua Hu, Anxiang Huang, Yiwen Chen, Xing Tong, Mengfei Liu and Yunxiao Pan
Agriculture 2025, 15(19), 2092; https://doi.org/10.3390/agriculture15192092 - 8 Oct 2025
Viewed by 206
Abstract
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this [...] Read more.
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this study, RGB-D cameras were integrated with an improved YOLOv11 network optimized by ShuffleNetV2, CBAM, and a redesigned C2f_WTConv module, which enables joint spatial–frequency feature modeling and enhances small-object detection in complex orchard conditions. The model was trained on a diversified dataset with extensive augmentation to ensure robustness. In addition, the original localization loss was replaced with DIoU to improve bounding box regression accuracy. A robotic harvesting system was developed, and an Eye-to-Hand calibration-based 3D localization pipeline was implemented to map fruit coordinates to the robot workspace for accurate picking. To validate engineering applicability, the SCC-YOLO model was deployed on both desktop (PyTorch and ONNX Runtime) and mobile (NCNN with Vulkan+FP16) platforms, and FPS, latency, and stability were comparatively analyzed. Experimental results showed that SCC-YOLO improved mAP by 5.6% over YOLOv11, significantly enhanced detection precision and robustness, and achieved real-time performance on mobile devices while maintaining peak throughput on high-performance desktops. Field and laboratory tests confirmed the system’s effectiveness for detection, localization, and harvesting efficiency, demonstrating its adaptability to diverse deployment environments and its potential for broader agricultural applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop