Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = halogen-π interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4299 KiB  
Article
Green Synthesis, Characterization, and Biological Activity of 4-Aminoquinoline Derivatives: Exploring Antibacterial Efficacy, MRSA Inhibition, and PBP2a Docking Insights
by Lo’ay A. Al-Momani, Ula A. Abu Shawar, Ayman H. Abu Sarhan, Rand Shahin, Panayiotis A. Koutentis, Mohammad K. Abu-Sini and Nada J. Mohammad
Chemistry 2025, 7(3), 71; https://doi.org/10.3390/chemistry7030071 - 25 Apr 2025
Viewed by 935
Abstract
A series of 4-aminoquinoline derivatives were prepared using a microwave-assisted method. The reactions were initially carried out on a small scale and subsequently scaled up using a sealed tube. Heating the reactions to 90–150 °C for 90–120 minutes obtained products with up to [...] Read more.
A series of 4-aminoquinoline derivatives were prepared using a microwave-assisted method. The reactions were initially carried out on a small scale and subsequently scaled up using a sealed tube. Heating the reactions to 90–150 °C for 90–120 minutes obtained products with up to 95% yields. Structural analysis and characterization were achieved using FT-IR, 1H- and 13C-NMR spectroscopy and HR-MS. Four compounds displayed low-to-moderate antibacterial activity, with 6-chlorocyclopentaquinolinamine (7b) exhibiting potent inhibition against MRSA (MIC = 0.125 mM) and 2-fluorocycloheptaquinolinamine (9d) showing activity against S. pyogenes (MIC = 0.25 mM). Structure–activity relationship (SAR) docking studies within the Penicillin Binding Protein (PBP2a) binding site (PDB: 4DK1) showed that compounds 7b and 5b (7-chlorophenylquinolinamine) bind through hydrophobic interactions (ALA601, ILE614), hydrogen bonding (GLN521), and halogen contacts (TYR519, THR399). Compound 7b demonstrated enhanced MRSA inhibition due to additional π-alkyl interactions and optimal docking parameters. Conversely, the bulky structure of 9d may explain its weaker activity as it likely hindered binding to the target site. This paper highlights the role of structural features in antibacterial efficacy and guides the future optimization of 4-aminoquinoline derivatives. Full article
(This article belongs to the Section Molecular Organics)
Show Figures

Graphical abstract

21 pages, 5433 KiB  
Article
Adsorption–Desorption Behaviors of Enrofloxacin and Trimethoprim and Their Interactions with Typical Microplastics in Aqueous Systems
by Zhichao Li, Xiao Meng, Xiaoyong Shi, Chunyue Li and Chuansong Zhang
Sustainability 2025, 17(2), 516; https://doi.org/10.3390/su17020516 - 10 Jan 2025
Cited by 2 | Viewed by 1149
Abstract
Microplastics can transfer antibiotics in water through adsorption and desorption, causing adverse effects on the water environment. Therefore, understanding the interaction between microplastics and antibiotics is important in order to assess their impact on the environment. In this study, the adsorption–desorption behaviors of [...] Read more.
Microplastics can transfer antibiotics in water through adsorption and desorption, causing adverse effects on the water environment. Therefore, understanding the interaction between microplastics and antibiotics is important in order to assess their impact on the environment. In this study, the adsorption–desorption behaviors of two commonly used antibiotics [enrofloxacin (ENR) and trimethoprim (TMP)] in aquaculture and their interactions with three typical microplastics [polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE)] were investigated through laboratory experiments. The results showed that the adsorption capacity of the three microplastics was 1.229–1.698 mg/g for ENR and 1.110–1.306 mg/g for TMP, correlating with the octanol–water partition coefficients (logKow) of antibiotics. Due to the larger specific surface areas and special functional groups of microplastics, the antibiotic adsorption capacity of PS and PVC was higher than that of PE. The adsorption behavior followed pseudo-second-order kinetics and a Freundlich isotherm model, indicating a non-uniform surface with multilayer adsorption. A thermodynamic analysis showed that these were all spontaneous endothermic adsorptions. X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses indicated that the adsorption mechanism was dominated by physical adsorption, involving π–π conjugation, halogen bonds, hydrogen bonding, and electrostatic interactions. High salinity and alkaline environments were conducive to desorption, and the ENR and TMP desorption rates of the microplastics ranged from 20.65% to 24.95%. This indicates that microplastics adsorbed with antibiotics will desorb antibiotics when entering the seawater system, thereby affecting marine ecosystems. These findings reveal the interaction mechanism between microplastics and aquaculture antibiotics in aqueous systems, providing theoretical support for environmental protection and sustainable development. Full article
Show Figures

Figure 1

19 pages, 5252 KiB  
Article
Impact of Molecular and Crystal Structure on the Melting Points in Halo-Substituted Phenyl-Quinazolinones
by Ivica Đilović, Nenad Judaš, Mario Komar, Maja Molnar, Marta Počkaj and Tomislav Balić
Crystals 2025, 15(1), 39; https://doi.org/10.3390/cryst15010039 - 30 Dec 2024
Viewed by 1207
Abstract
Three halo-substituted phenyl-quinazolinone derivatives were prepared and structurally characterized [1 = 3-(4-chlorophenyl)-6-iodo-2-methylquinazolin-4(3H)-one, 2 = 6-iodo-3-(4-methoxyphenyl)-2-methylquinazolin-4(3H)-one, and 3 = 7-chloro-2-methyl-3-[4-(trifluoromethoxy)phenyl]quinazolin-4(3H)-one)] in order to explore the relationship between structure and melting point in this group of compounds. Depending [...] Read more.
Three halo-substituted phenyl-quinazolinone derivatives were prepared and structurally characterized [1 = 3-(4-chlorophenyl)-6-iodo-2-methylquinazolin-4(3H)-one, 2 = 6-iodo-3-(4-methoxyphenyl)-2-methylquinazolin-4(3H)-one, and 3 = 7-chloro-2-methyl-3-[4-(trifluoromethoxy)phenyl]quinazolin-4(3H)-one)] in order to explore the relationship between structure and melting point in this group of compounds. Depending on the compound, molecules are interconnected by weak π∙∙∙π interactions, have I···Cl or Cl···Cl halogen bonding, or primarily form C–H∙∙∙N, C–H∙∙∙O, and π∙∙∙π interactions (no halogen bonding). The presence of the OCF3 group leads to interactions between fluorine atoms that are shorter than the sum of the van der Waals radius for fluorine, suggesting that these interactions contribute to the overall lattice energy. The sequence of melting points cannot be fully explained by intermolecular interactions present in the solid state (enthalpy factor). To address this, a concept related to entropy called the functional group rotation influence, which relates to a decrease in fusion entropy caused by the rotational freedom of polyatomic groups, was introduced. Analysis of previously synthesized 3-phenylquinazolinones showed that the compounds with the highest melting point are the quinazoline-substituted and phenyl-nitro-substituted ones. Among halo-phenyl-substituted compounds, the melting point follows the sequence ortho < meta < para. Regarding the halogen atom type, the order of melting points is Cl ≈ Br > F > I for enantiopure and Br > I ≈ Cl > F for racemic compounds. Also, the melting point order correlates to halogen bond energy (I > Br > Cl > F) only when the geometry and energy of these interactions are favorable. Full article
(This article belongs to the Special Issue Young Crystallographers Across Europe)
Show Figures

Figure 1

12 pages, 5083 KiB  
Article
α-Halogenated Curcumins
by Phuong-Truc T. Pham and Mamoun M. Bader
Crystals 2024, 14(12), 1041; https://doi.org/10.3390/cryst14121041 - 30 Nov 2024
Viewed by 830
Abstract
α- or 4-Substituted curcumin analogues are scarce. We describe herein the syntheses and crystal structures of the first α-halogenated curcumin derivatives: (1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-4-bromo-5-hydroxy-1,3,6-heptatriene-3-one or (4-bromocurcumin) (1) and (1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-4-chloro-5-hydroxy-1,3,6-heptatriene-3-one or (4-chlorocurcumin) (2). We note that the key step in [...] Read more.
α- or 4-Substituted curcumin analogues are scarce. We describe herein the syntheses and crystal structures of the first α-halogenated curcumin derivatives: (1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-4-bromo-5-hydroxy-1,3,6-heptatriene-3-one or (4-bromocurcumin) (1) and (1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-4-chloro-5-hydroxy-1,3,6-heptatriene-3-one or (4-chlorocurcumin) (2). We note that the key step in the successful synthesis of the bromo-analog is the use of slightly acidic media to favor the diketo form of curcumin prior to carrying out the reaction. Both newly prepared compounds assume the keto–enol form in the solid state and crystallize in the monoclinic space group P21/c with four molecules in the unit cell each with slightly different dimensions. Inter- and intra- molecular hydrogen bonds were observed in the two structures. Most significant observed features were the inter-molecular O…O distances of 2.842 and 2.840 Å and intra-molecular O…O distances of 2.460 and 2.451 Å for bromo-or (1) and chloro- or (2) derivatives, respectively. No close halogen…halogen contacts were observed in either of the two structures. Both molecules are nearly planar with torsion angles of 0.54 and 1.16 °C between the planes of two terminal phenyl groups for (1) and (2), respectively. π-Stacks were observed in both structures with interplanar distances of 3.367 and 3.454 Å for the bromo- and chloro- compounds, respectively. Hirshfeld surface analysis confirms quantitively a picture of the inter- and intra-molecular interactions in both compounds compared with polymorph I (the most common form) of curcumin. UV–Vis absorption spectra are shifted to higher wavelengths with lmax of 475 and 477 nm for compounds 1 and 2, respectively, compared with 442 nm in dichloromethane solutions. The newly synthesized molecules will open the door for numerous possible synthetic modifications of the α-carbon to prepare valuable analogues of curcumin with more favorable solubility profiles. Full article
(This article belongs to the Special Issue Analysis of Halogen and Other σ-Hole Bonds in Crystals (2nd Edition))
Show Figures

Figure 1

15 pages, 5157 KiB  
Article
Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5
by Christian Klein-Heßling and Karlheinz Sünkel
Inorganics 2024, 12(12), 305; https://doi.org/10.3390/inorganics12120305 - 26 Nov 2024
Viewed by 1020
Abstract
In this study, the molecular and crystal structures of iodocymantrenes [Mn(C5InH5−n)(CO)2(PPh3)] (1b n = 1; 2, n = 2; 3, n = 3) are reported and compared with [...] Read more.
In this study, the molecular and crystal structures of iodocymantrenes [Mn(C5InH5−n)(CO)2(PPh3)] (1b n = 1; 2, n = 2; 3, n = 3) are reported and compared with the known structures of [Mn(C5InH5−n)(CO)3] (1a, n = 1; 5, n = 5) and [Mn(C5I4H)(CO)2(PPh3)] (4). In the crystals, many weak interactions like H bonds (H…O, H…I, H…π), halogen bonds (I…I, I…O, I…C, I…π), and π-π contacts are found. Hirshfeld analyses show that H bonding is far more important when the PPh3 ligand is present, and this is mainly based on dispersive interactions. However, without the PPh3 ligand, H…I and other I…X contacts are the most frequently observed intermolecular interactions. Full article
(This article belongs to the Special Issue Current Advances in Coordination and Bioinorganic Chemistry)
Show Figures

Figure 1

19 pages, 3441 KiB  
Article
The Relationship Between Spin Crossover (SCO) Behaviors, Cation and Ligand Motions, and Intermolecular Interactions in a Series of Anionic SCO Fe(III) Complexes with Halogen-Substituted Azobisphenolate Ligands
by Mai Hirota, Suguru Murata, Takahiro Sakurai, Hitoshi Ohta and Kazuyuki Takahashi
Molecules 2024, 29(22), 5473; https://doi.org/10.3390/molecules29225473 - 20 Nov 2024
Viewed by 1372
Abstract
To investigate the halogen substitution effect on the anionic spin crossover (SCO) complexes, azobisphenolate ligands with 5,5′-dihalogen substituents from fluorine to iodine were synthesized, and their anionic FeIII complexes 1F, 1Cl, 1Br, and 1I were isolated. The temperature dependence [...] Read more.
To investigate the halogen substitution effect on the anionic spin crossover (SCO) complexes, azobisphenolate ligands with 5,5′-dihalogen substituents from fluorine to iodine were synthesized, and their anionic FeIII complexes 1F, 1Cl, 1Br, and 1I were isolated. The temperature dependence of magnetic susceptibility and crystal structure revealed that 1F, 1Cl, and 1Br are all isostructural and exhibit SCO with the rotational motion of the cation and ligands, whereas 1I shows incomplete SCO. Note that 1Cl and 1Br showed irreversible and reversible cooperative SCO transitions, respectively. Short intermolecular contacts between the FeIII complex anions were found despite Coulomb repulsions for all the complexes. The topological analysis of the electron density distributions revealed the existence of X···X halogen bonds, C–H···X, C–H···N, and C–H···O hydrogen bonds, and C–H···π interactions are evident. The dimensionality of intermolecular interactions is suggested to be responsible for the cooperative SCO transitions in 1Cl and 1Br, whereas the disorder due to the freezing of ligand rotations in 1Cl is revealed to inhibit the SCO cooperativity. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3558 KiB  
Article
Experimental and Theoretical Studies on the Adsorption of Bromocresol Green from Aqueous Solution Using Cucumber Straw Biochar
by Chenxi Zhang, Lingbin Meng, Zhihao Fang, Youxin Xu, Yue Zhou, Hongsen Guo, Jinyu Wang, Xiaotian Zhao, Shuyan Zang and Hailin Shen
Molecules 2024, 29(19), 4517; https://doi.org/10.3390/molecules29194517 - 24 Sep 2024
Cited by 2 | Viewed by 1628
Abstract
Biochar prepared from crop straw is an economical method for adsorbing bromocresol green (BCG) from textile industrial wastewater. However, there is limited research on the adsorption mechanism of biochar for the removal of BCG. This study utilized cucumber straw as raw material to [...] Read more.
Biochar prepared from crop straw is an economical method for adsorbing bromocresol green (BCG) from textile industrial wastewater. However, there is limited research on the adsorption mechanism of biochar for the removal of BCG. This study utilized cucumber straw as raw material to prepare biochar with good adsorption potential and characterized its physicochemical properties. Through adsorption experiments, the effects of solution pH, biochar dosage, and initial dye concentration on adsorption performance were examined. The adsorption mechanism of cucumber straw biochar (CBC) for BCG was elucidated at the molecular level using adsorption kinetics, adsorption isotherm models, and density functional theory (DFT) calculations. Results show that the specific surface area of the CBC is 101.58 m2/g, and it has a high degree of carbonization, similar to the structure of graphite crystals. The presence of aromatic rings, –OH groups, and –COOH groups in CBC provides abundant adsorption sites for BCG. The adsorption process of CBC for BCG is influenced by both physical and chemical adsorption, and can be described by the Langmuir isotherm model, indicating a monolayer adsorption process. The theoretical maximum monolayer adsorption capacity (qm) of BCG at 298 K was calculated to be 99.18 mg/g. DFT calculations reveal interactions between BCG and CBC involving electrostatic interactions, van der Waals forces, halogen–π interactions, π–π interactions, and hydrogen bonds. Additionally, the interaction of hydrogen bonds between BCG and the –COOH group of biochar is stronger than that between BCG and the –OH group. These findings provide valuable insights into the preparation and application of efficient organic dye adsorbents. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

15 pages, 2340 KiB  
Article
Using Hybrid PDI-Fe3O4 Nanoparticles for Capturing Aliphatic Alcohols: Halogen Bonding vs. Lone Pair–π Interactions
by María de las Nieves Piña, Alberto León, Antonio Frontera, Jeroni Morey and Antonio Bauzá
Int. J. Mol. Sci. 2024, 25(12), 6436; https://doi.org/10.3390/ijms25126436 - 11 Jun 2024
Viewed by 1012
Abstract
In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. [...] Read more.
In this study, Fe3O4 nanoparticles (FeNPs) decorated with halogenated perylene diimides (PDIs) have been used for capturing VOCs (volatile organic compounds) through noncovalent binding. Concretely, we have used tetrachlorinated/brominated PDIs as well as a nonhalogenated PDI as a reference system. On the other hand, methanol, ethanol, propanol, and butanol were used as VOCs. Experimental studies along with theoretical calculations (the BP86-D3/def2-TZVPP level of theory) pointed to two possible and likely competitive binding modes (lone pair–π through the π-acidic surface of the PDI and a halogen bond via the σ-holes at the Cl/Br atoms). More in detail, thermal desorption (TD) experiments showed an increase in the VOC retention capacity upon increasing the length of the alkyl chain, suggesting a preference for the interaction with the PDI aromatic surface. In addition, the tetrachlorinated derivative showed larger VOC retention times compared to the tetrabrominated analog. These results were complemented by several state-of-the-art computational tools, such as the electrostatic surface potential analysis, the Quantum Theory of Atoms in Molecules (QTAIM), as well as the noncovalent interaction plot (NCIplot) visual index, which were helpful to rationalize the role of each interaction in the VOC···PDI recognition phenomena. Full article
(This article belongs to the Collection Feature Papers in Molecular Nanoscience)
Show Figures

Figure 1

25 pages, 3481 KiB  
Review
The Occurrence, Distribution, Environmental Effects, and Interactions of Microplastics and Antibiotics in the Aquatic Environment of China
by Yiping Guo, Wanfei Shao, Weigao Zhao and Hong Zhu
Water 2024, 16(10), 1435; https://doi.org/10.3390/w16101435 - 17 May 2024
Cited by 3 | Viewed by 2514
Abstract
Microplastics (MPs) and antibiotics (ATs) have been detected in various aquatic environments and characterized as novel contaminants that have attracted worldwide attention. This review summarizes the characteristics of MPs and ATs, analyzes the sources of MPs and ATs in aquatic environments, reviews the [...] Read more.
Microplastics (MPs) and antibiotics (ATs) have been detected in various aquatic environments and characterized as novel contaminants that have attracted worldwide attention. This review summarizes the characteristics of MPs and ATs, analyzes the sources of MPs and ATs in aquatic environments, reviews the concentration distribution of the two pollutants in China, and introduces the environmental effects of mixing MPs and ATs. Studies on single pollutants of MPs or ATs are well established, but the interactions between the two in aquatic environments are rarely mentioned. The physicochemical characteristics of MPs make them carriers of ATs, which greatly increase their risk of being potential hazards to the environment. Therefore, in this article, the interaction mechanisms between MPs and ATs are systematically sorted out, mainly including hydrophobic, electrostatic, intermolecular interactions, microporous filling, charge-assisted hydrogen bonding, cation-bonding, halogen bonding, and CH/π interactions. Also, factors affecting the interaction between ATs and MPs, such as the physicochemical properties of MPs and ATs and environmental factors, are also considered. Finally, this review identifies some new research topics and challenges for MPs and ATs, in order to gain deeper insight into their behavioral fate and toxic mechanisms. Full article
Show Figures

Graphical abstract

26 pages, 16372 KiB  
Article
Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist?
by Pradeep R. Varadwaj
Int. J. Mol. Sci. 2024, 25(9), 4587; https://doi.org/10.3390/ijms25094587 - 23 Apr 2024
Cited by 8 | Viewed by 2004
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which [...] Read more.
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Figure 1

24 pages, 8466 KiB  
Article
‘Charge Reverse’ Halogen Bonding Contacts in Metal-Organic Multi-Component Compounds: Antiproliferative Evaluation and Theoretical Studies
by Subham Banik, Trishnajyoti Baishya, Rosa M. Gomila, Antonio Frontera, Miquel Barcelo-Oliver, Akalesh K. Verma, Jumi Das and Manjit K. Bhattacharyya
Inorganics 2024, 12(4), 111; https://doi.org/10.3390/inorganics12040111 - 9 Apr 2024
Cited by 3 | Viewed by 2241
Abstract
Two new metal–organic multi-component compounds of Ni(II) and Co(II), viz. [Ni(3-CNpy)2(H2O)4]ADS·2.75H2O (1) and [Co(3-CNpy)2(H2O)4](4-ClbzSO3)2 (2) (3-CNpy = 3-cyanopyridine, ADS = anthraquinone-1,5-disulfonate, 4-ClbzSO [...] Read more.
Two new metal–organic multi-component compounds of Ni(II) and Co(II), viz. [Ni(3-CNpy)2(H2O)4]ADS·2.75H2O (1) and [Co(3-CNpy)2(H2O)4](4-ClbzSO3)2 (2) (3-CNpy = 3-cyanopyridine, ADS = anthraquinone-1,5-disulfonate, 4-ClbzSO3 = 4-chlorobenzenesulfonate), were synthesized and characterized using single crystal XRD, TGA, spectroscopic (IR, electronic) and elemental analyses. Both the compounds crystallize as multi-component compounds of Ni(II) and Co(II), with uncoordinated ADS and 4-ClbzSO3 moieties in the crystal lattice, respectively. Crystal structure analyses revealed the presence of antiparallel nitrile···nitrile and π-stacked assemblies involving alternate coordinated 3-CNpy and uncoordinated ADS and 4-ClbzSO3 moieties. Moreover, unconventional charge reverse Cl∙∙∙N halogen bonding contacts observed in compound 2 provide additional reinforcement to the crystal structure. Theoretical calculations confirm that the H-bonding interactions, along with anion–π(arene) and anion–π(CN) in 1 and π–π, antiparallel CN···CN and charge reverse Cl···N halogen bonds in 2, play crucial roles in the solid state stability of the compounds. In vitro anticancer activities observed through the trypan blue cell cytotoxicity assay reveal that the compounds induce significant concentration dependent cytotoxicity in Dalton’s lymphoma (DL) cancer cells, with nominal effects in normal healthy cells. Molecular docking studies reveal that the compounds can effectively bind with the active sites of anti-apoptotic proteins, which are actively involved in cancer progression. Full article
(This article belongs to the Special Issue Metal-Based Compounds: Relevance for the Biomedical Field)
Show Figures

Figure 1

9 pages, 2172 KiB  
Article
Preference in the Type of Halogen Bonding Interactions within Co-Crystals of Anthraquinone with a Pair of Isosteric Perhalobenzenes
by Eric Bosch, Daniel K. Unruh, Richard K. Brooks, Herman R. Krueger and Ryan H. Groeneman
Crystals 2024, 14(4), 325; https://doi.org/10.3390/cryst14040325 - 30 Mar 2024
Viewed by 1261
Abstract
The preference in the type of halogen bond accepted by anthraquinone (C14H8O2) from two isosteric donors, namely 1,4-diiodoperfluorobenzene (C6I2F4) and 1,4-diiodoperchlorobenzene (C6I2Cl4), is reported. The [...] Read more.
The preference in the type of halogen bond accepted by anthraquinone (C14H8O2) from two isosteric donors, namely 1,4-diiodoperfluorobenzene (C6I2F4) and 1,4-diiodoperchlorobenzene (C6I2Cl4), is reported. The two co-crystals, (C6I2F4)·(C14H8O2) and (C6I2Cl4)·(C14H8O2), are sustained primarily by I···O rather than π-type halogen bonds to form these multicomponent solids. The ability for each component to engage in two divergent halogen-bonding interactions generates a one-dimensional chain structure for each co-crystal. The bias in the halogen-bonding type is due to the difference in electrostatic potential between the carbonyl oxygen and the aromatic surface on the anthraquinone. To support this observed preference, the binding energies of the I···O halogen bond were quantified for both co-crystals by using density functional theory calculations and then compared to the interaction energy for related π-type halogen bond from previously reported structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

13 pages, 5340 KiB  
Communication
Hybrid 2D Supramolecular Organic Frameworks (SOFs) Assembled by the Cooperative Action of Hydrogen and Halogen Bonding and π⋯π Stacking Interactions
by Sergey V. Baykov, Artem V. Semenov, Sofia I. Presnukhina, Marina V. Tarasenko, Anton A. Shetnev, Antonio Frontera, Vadim P. Boyarskiy and Vadim Yu. Kukushkin
Int. J. Mol. Sci. 2024, 25(4), 2062; https://doi.org/10.3390/ijms25042062 - 8 Feb 2024
Cited by 2 | Viewed by 2049
Abstract
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N′-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A [...] Read more.
The cis- and trans-isomers of 6-(3-(3,4-dichlorophenyl)-1,2,4-oxadiazol-5-yl)cyclohex-3-ene-1-carboxylic acid (cis-A and trans-A) were obtained by the reaction of 3,4-dichloro-N′-hydroxybenzimidamide and cis-1,2,3,6-tetrahydrophthalic anhydride. Cocrystals of cis-A with appropriate solvents (cis-A‧½(1,2-DCE), cis-A‧½(1,2-DBE), and cis-A‧½C6H14) were grown from 1,2-dichloroethane (1,2-DCE), 1,2-dibromoethane (1,2-DBE), and a n-hexane/CHCl3 mixture and then characterized by X-ray crystallography. In their structures, cis-A is self-assembled to give a hybrid 2D supramolecular organic framework (SOF) formed by the cooperative action of O–H⋯O hydrogen bonding, Cl⋯O halogen bonding, and π⋯π stacking. The self-assembled cis-A divides the space between the 2D SOF layers into infinite hollow tunnels incorporating solvent molecules. The energy contribution of each noncovalent interaction to the occurrence of the 2D SOF was verified by several theoretical approaches, including MEP and combined QTAIM and NCIplot analyses. The consideration of the theoretical data proved that hydrogen bonding (approx. −15.2 kcal/mol) is the most important interaction, followed by π⋯π stacking (approx. −11.1 kcal/mol); meanwhile, the contribution of halogen bonding (approx. −3.6 kcal/mol) is the smallest among these interactions. The structure of the isomeric compound trans-A does not exhibit a 2D SOF architecture. It is assembled by the combined action of hydrogen bonding and π⋯π stacking, without the involvement of halogen bonds. A comparison of the cis-A structures with that of trans-A indicated that halogen bonding, although it has the lowest energy in cis-A-based cocrystals, plays a significant role in the crystal design of the hybrid 2D SOF. The majority of the reported porous halogen-bonded organic frameworks were assembled via iodine and bromine-based contacts, while chlorine-based systems—which, in our case, are structure-directing—were unknown before this study. Full article
(This article belongs to the Special Issue Bonding in Supramolecular Organic Assemblies)
Show Figures

Graphical abstract

29 pages, 12923 KiB  
Article
1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf
by Boris P. Gladkikh, Dmitry V. Danilov, Vladimir S. D’yachenko and Gennady M. Butov
Int. J. Mol. Sci. 2024, 25(1), 338; https://doi.org/10.3390/ijms25010338 - 26 Dec 2023
Cited by 2 | Viewed by 1730
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of bioactive lipid signaling molecules. sEH converts epoxyeicosatrienoic acids (EET) to virtually inactive dihydroxyeicosatrienoic acids (DHET). The first acids are “medicinal” molecules, the second increase the inflammatory infiltration of cells. Mitogen-activated protein [...] Read more.
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of bioactive lipid signaling molecules. sEH converts epoxyeicosatrienoic acids (EET) to virtually inactive dihydroxyeicosatrienoic acids (DHET). The first acids are “medicinal” molecules, the second increase the inflammatory infiltration of cells. Mitogen-activated protein kinases (p38 MAPKs) are key protein kinases involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an important role in the regulation of cellular processes, especially inflammation. The proto-oncogenic serine/threonine protein kinase Raf (c-Raf) is a major component of the mitogen-activated protein kinase (MAPK) pathway: ERK1/2 signaling. Normal cellular Raf genes can also mutate and become oncogenes, overloading the activity of MEK1/2 and ERK1/2. The development of multitarget inhibitors is a promising strategy for the treatment of socially dangerous diseases. We synthesized 1,3-disubstituted ureas and diureas containing a dichloroadamantyl moiety. The results of computational methods show that soluble epoxide hydrolase inhibitors can act on two more targets in different signaling pathways of mitogen-activated protein kinases p38 MAPK and c-Raf. The two chlorine atoms in the adamantyl moiety may provide additional Cl-π interactions in the active site of human sEH. Molecular dynamics studies have shown that the stability of ligand–protein complexes largely depends on the “spacer effect.” The compound containing a bridge between the chloroadamantyl fragment and the ureide group forms more stable ligand–protein complexes with sEH and p38 MAPK, which indicates a better conformational ability of the molecule in the active sites of these targets. In turn, a compound containing two chlorine atoms forms a more stable complex with c-Raf, probably due to the presence of additional halogen bonds of chlorine atoms with amino acid residues. Full article
Show Figures

Figure 1

20 pages, 8121 KiB  
Article
Synthesis, Crystal Structure, Hirshfeld Surface Analysis, Energy Framework Calculations, and Halogen Bonding Investigation of Benzene-1,3,5-triyltris((4-chlorophenyl)methanone)
by Hawazen M. Hassanain, Samah Al-Sharif, Huda A. Al-Ghamdi, Layla M. Nahari, Ahlam I. Al-Sulami, Sameera M. Mousally and Khadijah M. Al-Zaydi
Crystals 2024, 14(1), 17; https://doi.org/10.3390/cryst14010017 - 24 Dec 2023
Cited by 3 | Viewed by 2500
Abstract
We synthesized 1,3,5-triyltris((4-chlorophenyl)methanone) by a condensation reaction in glacial acetic acid and studied utilizing spectroscopic and analytical techniques such as ultraviolet, infrared, mass, elemental, and nuclear magnetic resonance (NMR) spectroscopy, as well as X-ray crystallography. The effect of chlorine substitution in the 1,3,5-triaroylbenzene [...] Read more.
We synthesized 1,3,5-triyltris((4-chlorophenyl)methanone) by a condensation reaction in glacial acetic acid and studied utilizing spectroscopic and analytical techniques such as ultraviolet, infrared, mass, elemental, and nuclear magnetic resonance (NMR) spectroscopy, as well as X-ray crystallography. The effect of chlorine substitution in the 1,3,5-triaroylbenzene compound in solid-state arrangements was studied. Halogen bonds are detected in the solid-state structures of the titled compound. A dimeric structure is formed due to the presence of two C-Cl···Cl Type I halogen interactions. Additionally, a delocalized Type III C-Cl···π interaction were reported. C-Cl···H hydrogen bonding and π···π interaction were also reported. Hirshfeld surface analysis, 3D fingerprint, the energy framework, and the electro-optic potential were used to evaluate such interactions. Full article
Show Figures

Figure 1

Back to TopTop