Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5
Abstract
:1. Introduction
2. Results
2.1. Molecular Structures of 1b, 2, and 3
2.2. Intermolecular Contacts
2.2.1. Hydrogen Bonds
2.2.2. C-H…C and C…C Contacts
2.2.3. I…O and I…I Contacts
2.2.4. I…C Contacts
2.2.5. Packing Plots
2.3. Hirshfeld Analysis
2.3.1. Fingerprint Plots
2.3.2. Interaction Energies
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev. 2016, 116, 2478–2601. [Google Scholar] [CrossRef] [PubMed]
- Fourmigue, M. Halogen Bonding. Recent Advances. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36–45. [Google Scholar] [CrossRef]
- Scheiner, S. Characterization of Type I and II Interactions between Halogen Atoms. Cryst. Growth Des. 2022, 22, 2692–2702. [Google Scholar] [CrossRef]
- Mukherjee, A.; Tothadi, S.; Desiraju, G.R. Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. Acc. Chem. Res. 2014, 47, 2514–2524. [Google Scholar] [CrossRef]
- Shields, Z.P.; Murray, J.S.; Politzer, P. Directional Tendencies of Halogen and Hydrogen Bonds. Int. J. Quantum Chem. 2010, 110, 2823–2832. [Google Scholar] [CrossRef]
- Dance, I. Distance criteria for crystal packing analysis of supramolecular motifs. New J. Chem. 2003, 27, 22–27. [Google Scholar] [CrossRef]
- Grineva, O.V. Comparison of Intermolecular Halogen...Halogen Distances in Organic and Organometallic Crystals. Int. J. Mol. Sci. 2023, 24, 11911. [Google Scholar] [CrossRef]
- Decato, D.A.; Riel, A.M.S.; May, J.H.; Bryantsev, V.S.; Berryman, O.B. Theoretical, Solid-State, and Solution Quantification of the Hydrogen Bond-Enhanced Halogen Bond. Angew. Chem. Int. Ed. 2021, 60, 3685–3692. [Google Scholar] [CrossRef]
- Shimizu, K.; da Silva, J.F. Halogen and Hydrogen Bonding Interplay in the Crystal Packing of Halometallocenes. Molecules 2018, 23, 2959. [Google Scholar] [CrossRef]
- González, L.; Graus, S.; Tejedor, R.M.; Chanthapally, A.; Serrano, J.L.; Uriel, S. The combination of halogen and hydrogen bonding: A versatile tool in coordination chemistry. CrystEngComm 2020, 22, 6010–6018. [Google Scholar] [CrossRef]
- Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V.R.; Desiraju, G.R. Hydrogen Bonding in Organometallic Crystals. 2. C—H…O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. J. Am. Chem. Soc. 1995, 117, 3156–3166. [Google Scholar] [CrossRef]
- Brammer, L.; Minguez Espallargas, G.; Libri, S. Combining metals with halogen bonds. CrystEngComm 2008, 10, 1712–1727. [Google Scholar] [CrossRef]
- Romanov, A.S.; Mulroy, J.M.; Antipin, M.Y.; Timofeeva, T.V. Insight into the structures of [M(C5H4I)(CO)3] and [M2(C12H8)-(CO)6] (M = Mn and Re) containing strong I⋯O and π(CO)–π(CO) interactions. Acta Cryst. 2009, C65, m431–m435. [Google Scholar] [CrossRef]
- Torubaev, Y.V.; Skabitskiy, I.V.; Rusina, R.; Pasynskii, A.A.; Rai, D.K.; Singh, A. Organometallic halogen bond acceptors: Directionality, hybrid cocrystal precipitation, and blueshifted CO ligand vibrational band. CrystEngComm 2018, 20, 2258–2266. [Google Scholar] [CrossRef]
- Kia, R.; Mahmoudi, S.; Raithby, P.R. New rhenium-tricarbonyl complexes bearing halogen-substituted bidentate ligands: Structural, computational and Hirshfeld surfaces studies. CrystEngComm 2019, 21, 77–93. [Google Scholar] [CrossRef]
- Kelly, A.W.; Holman, K.T. “Click”-Like η6-Metalation/Demetalation of Aryl Iodides as a Means of Turning “ON/OFF” Halogen Bond Donor Functionality. Angew. Chem. Int. Ed. 2022, 61, e202115556. [Google Scholar] [CrossRef] [PubMed]
- vans Evans, D.M.; Hughes, D.D.; Murphy, P.J.; Norton, P.N.; Coles, S.J.; Fabrizi de Biani, F.; Corsini, M.; Butler, I.R. Synthetic Route to 1,1′,2,2′-Tetraiodoferrocene That Avoids Isomerization and the Electrochemistry of Some Tetrahaloferrocenes. Organometallics 2021, 40, 2496–2503. [Google Scholar] [CrossRef]
- Torubaev, Y.V.; Lyssenko, K.A.; Barzilovich, P.Y.; Saratov, G.A.; Shaikh, M.M.; Singh, A.; Mathur, P. Self-assembly of conducting cocrystals via iodine⋯π(Cp) interactions. CrystEngComm 2017, 19, 5114–5121. [Google Scholar] [CrossRef]
- Klein-Heßling, C.; Blockhaus, T.; Sünkel, K. Synthesis and characterization of perhalogenated triphenylphosphine-cymantrenes [(C5X5)Mn(CO)2(PPh3)] (X = F, Cl, Br) and [(C5HI4)Mn(CO)2(PPh3). J. Organomet. Chem. 2021, 943, 121833. [Google Scholar] [CrossRef]
- Kur, S.A.; Heeg, M.J.; Winter, C.H. Pentamercuration of cyclopentadienylmanganese tricarbonyl and cyclopentadienylrhenium tricarbonyl. Crystal structure of (pentaiodocyclopentadienyl) manganese tricarbonyl. Organometallics 1994, 13, 1865–1869. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, S.; Kato, K.; Miyazaki, T.; Musashi, Y.; Ohkubo, K.; Ihara, H.; Hirayama, C. Structures and Binding Energies of Benzene-Methane and Benzene-Benzene Complexes. J. Chem. Soc. Faraday Trans. 1993, 89, 659–664. [Google Scholar] [CrossRef]
- Shishkin, O.V. Evaluation of true energy of halogen bonding in the crystals of halogen derivatives of trityl alcohol. Chem. Phys. Lett. 2008, 458, 96–100. [Google Scholar] [CrossRef]
- Swierczynski, D.; Luboradzki, R.; Dolgonos, G.; Lipkowski, J.; Schneider, H.-J. Non-Covalent Interactions of Organic Halogen Compounds with Aromatic Systems—Analyses of Crystal Structure Data. Eur. J. Org. Chem. 2005, 2005, 1172–1177. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Spackman, M.A. How Reliable Are Intermolecular Interaction Energies Estimated from Topological Analysis of Experimental Electron Densities? Cryst. Growth Des. 2015, 15, 5624–5628. [Google Scholar] [CrossRef]
- Turner, M.J.; Grabowsky, S.; Jayatilaka, D.; Spackman, M.A. Accurate and Efficient Model Energies for Exploring Intermolecular Interactions in Molecular Crystals. Phys. Chem. Lett. 2014, 5, 4249–4255. [Google Scholar] [CrossRef]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer model energies and energy frameworks: Extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Tan, S.L.; Jotani, M.M.; Tiekink, E.R.T. Utilizing Hirshfeld Surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Cryst. 2019, E75, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography. In Computational Science—ICCS 2003, Proceedings of the ICCS 2003, Lecture Notes in Computer Science, St. Petersburg, Russia, 2–4 June 2003; Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2660. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18. [Google Scholar]
Length [Å] or Angle [°] | 1b | 2/Mol. A | 2/Mol. B | 3 |
---|---|---|---|---|
Mn–P | 2.2352 (11) | 2.248 (4) | 2.240 (4) | 2.260 (2) |
C–I | 2.076 (5) | 2.073 (15) 2.079 (16) | 2.05 (2) 2.08 (2) | 2.081 (10) 2.074 (8) 2.069 (11) |
Mn–CT 1 | 1.777 (2) | 1.788 (7) | 1.769 (9) | 1.788 (4) |
I-CT-Mn-P | 162.0 | 163 91 | 166 94 | 162.7 91.3 18.9 |
Comp | H-H | C-C | H-C | H-O | H-I | I-O | I…I | I…C |
---|---|---|---|---|---|---|---|---|
1a | 3.2 | 1.0 | 12.3 | 44.5 | 9.4 | 12.0 | 0 | 8.6 |
1b | 43.8 | 0.5 | 19.6 | 17.7 | 13.2 | 1.4 | 0 | 3.0 |
3 | 31.9 | 1.9 | 18.8 | 13.9 | 21.1 | 4.1 | 7.0 | 0.9 |
4 | 23.1 | 2.6 | 16.5 | 9.7 | 31.5 | 4.4 | 5.3 | 4.8 |
5 | – | 0.5 | – | – | – | 23.4 | 42.0 | 15.8 |
Comp | Type | Symm.op. | R [Å] | Eele | Epol | Edis | Erep | Etot | Contribution |
---|---|---|---|---|---|---|---|---|---|
1a (1) | A | 1.5 − x, −y, z + ½ | 6.97 | −11.8 | −1.9 | −18.4 | 15.5 | −20.4 | H…π(CO), I…O |
B | x ± ½, ½ − y, 1 − z | 7.60 | −7.9 | −1.6 | −21.1 | 15.9 | −18.2 | H…π(CO), H…π(Cp), I…π(CO) | |
C | x ± 1, y, z | 7.27 | −13.1 | −0.5 | −20.5 | 24.5 | −16.9 | I…π(CO) | |
D | 2 − x, -y − ½, 1.5 − z | 6.60 | −14.4 | −1.8 | −15.6 | 22.6 | −16.2 | H…I, H…π(CO). I…π(CO) | |
E | x − ½, −y – ½, 1 − z | 6.18 | −6.0 | −0.8 | −17.2 | 14.9 | −12.7 | H…π(CO), I…O | |
1b (2) | A | 1 − x, 1 − y, 1 − z | 10.18 | −22.0 | −1.7 | −65.1 | 47.0 | −52.1 | C-H…π(Ph), π(Ph)…π(Ph) |
B | 1 − x, −y, 1 − z | 8.00 | −11.0 | −5.6 | −51.6 | 31.8 | −41.1 | H…H, H…C | |
C | 2 − x, 1 − y, 2 − z | 7.31 | −37.9 | −4.8 | −49.3 | 82.3 | −35.8 | I…π(CC). I…O, H…π(CO), H…I | |
D | 1 − x, −y, 2 − z | 8.36 | −15.3 | −1.4 | −35.3 | 31.9 | −28.3 | CH…π(Cp), H…I | |
E | 2 − x, 1 − y, 1 − z | 9.49 | −10.8 | −2.0 | −27.9 | 15.8 | −27.5 | H…H, H…π(Ph), H…O | |
F | 1 − x, 1 − y, 2 − z | 8.43 | −1.4 | −0.8 | −22.3 | 4.8 | −18.6 | CH…π, H…H | |
G | x, y − 1, z | 10.60 | −9.80 | −1.3 | −20.4 | 19.4 | −17.1 | H…H, H…O, H…I, H…π(CO), CH…π | |
H | x − 1, y, z | 10.34 | −7.9 | −1.6 | −15.3 | 11.1 | −16.0 | H…H, H…π(CO) | |
3 (3) | A | 1 − x, 1 − y, 1 − z | 11.05 | −23.3 | −2.0 | −66.3 | 51.7 | −51.9 | C-H…π(Ph), H…H |
B | 1 − x, −y, −z | 7.28 | −25.4 | −1.6 | −63.4 | 58.6 | −47.1 | π(Cp)…π(Cp), H…I | |
C | 1 − x, −y, 1 − z | 9.84 | −12.3 | −5.6 | −57.1 | 36.7 | −44.2 | C-H…π(Ph), H…H, H…O | |
D | −x, 1 − y, 1 − z | 10.85 | −16.2 | −2.0 | −40.6 | 30.6 | −35.0 | CH…π, H…H, O…C | |
E | 1 − x, 1 − y, −z | 7.85 | −19.3 | −1.3 | −46.1 | 50.5 | −30.3 | H…I | |
F | −x, 1 − y, −z | 7.92 | −19.7 | −3.1 | −38.7 | 49.8 | −26.0 | H…I, I…O | |
G | x − 1, y, z | 10.09 | −8.0 | −1.6 | −24.4 | 16.2 | −20.8 | CH…π(CO), H…H, CH…π(Cp) | |
H | x, y − 1, z | 10.57 | −8.9 | −1.1 | −19.5 | 16.4 | −17.1 | H…H, H…I, H…π(CO), H…O, O…π(CC) | |
I | x, y, z + 1 | 13.14 | −1.4 | −0.4 | −9.7 | 0.0 | −10.2 | H…I | |
4 (4) | A | 1 − x, −y, 1 − z | 8.57 | −22.4 | −4.2 | −70.0 | 71.5 | −43.7 | H…H, H…π(CO), H…π(Cp), H…I |
B | 1 − x, 1 − y, 1−z | 11.08 | −11−6 | −2.6 | −75.7 | 64.6 | −40.2 | H…H, π(Ph)…π(Ph) | |
C | Mol.B: x, y, z | 11.59 | −46.6 | −2.9 | −48.0 | 92.2 | −36.2 | H…H, H…π(Ph), H…I, I…π(Ph) | |
D | ½ − x, y ± ½, ½ − z | 8.32 | −46.6 | −2.9 | −48.0 | 92.2 | −36.2 | H…I, I…I | |
E | Mol. B: x, y − 1, z | 11.16 | −46.6 | −2.9 | −48.0 | 92.2 | −36.2 | H…π(CO) | |
F | x ± ½, ½ − y, z ± ½ | 11.62 | −2.9 | −0.8 | −20.3 | 7.7 | −16.5 | H…H, H…π(Cp), H…I | |
G | Mol.B: 1 − x, 1 − y, 1 − z | 12.51 | −2.9 | −0.8 | −20.3 | 7.7 | −16.5 | H…H, H…π(Ph) |
Comp | I Atom | H…I | I…I | I…O | I…C |
---|---|---|---|---|---|
1a | I1 | + | + | ||
1b | I1 | + | + | + | |
2 | I11 | + | + | + | + |
I12 | + | + | + | ||
I21 | + | + | + | ||
I22 | + | + | + | ||
3 | I1 | + | + | + | |
I2 | + | + | + | ||
I3 | + | + | + | ||
4 | I11 | + | + | ||
I12 | + | + | |||
I13 | + | + | + | ||
I14 | + | + | + | ||
I21 | + | + | |||
I22 | + | + | + | ||
I23 | + | + | |||
I24 | + | + | + | + | |
5 | I1 | + | + | ||
I2 | + | + | |||
I3 | |||||
I4 | + | + | |||
I5 | + | ||||
I6 | |||||
I7 | + | ||||
I8 | + | ||||
I9 | + | + | |||
I10 | + | + | + | ||
I11 | + | ||||
I12 | + | ||||
I13 | + | + | |||
I14 | |||||
I15 | + | + | + | ||
I16 | + | ||||
I17 | |||||
I18 | + | ||||
I19 | + | ||||
I20 | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein-Heßling, C.; Sünkel, K. Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5. Inorganics 2024, 12, 305. https://doi.org/10.3390/inorganics12120305
Klein-Heßling C, Sünkel K. Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5. Inorganics. 2024; 12(12):305. https://doi.org/10.3390/inorganics12120305
Chicago/Turabian StyleKlein-Heßling, Christian, and Karlheinz Sünkel. 2024. "Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5" Inorganics 12, no. 12: 305. https://doi.org/10.3390/inorganics12120305
APA StyleKlein-Heßling, C., & Sünkel, K. (2024). Hydrogen Bonds, Halogen Bonds, and Other Non-Covalent Interactions in a Series of Iodocymantrenes [Mn(C5InH5−n)(CO)2L], L = CO, PPh3, and n = 1–5. Inorganics, 12(12), 305. https://doi.org/10.3390/inorganics12120305