Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = grey water heat recovery unit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3101 KiB  
Review
Comprehensive Analysis of the State of Technology in the Field of Waste Heat Recovery from Grey Water
by Beata Piotrowska and Daniel Słyś
Energies 2023, 16(1), 137; https://doi.org/10.3390/en16010137 - 23 Dec 2022
Cited by 15 | Viewed by 3274
Abstract
The use of energy from waste can be a key means of reducing the consumption of fossil fuels and thus reduction of greenhouse gas emissions. Waste energy can be a worthy alternative to conventional energy sources in construction. This paper presents data on [...] Read more.
The use of energy from waste can be a key means of reducing the consumption of fossil fuels and thus reduction of greenhouse gas emissions. Waste energy can be a worthy alternative to conventional energy sources in construction. This paper presents data on energy consumption for the preparation of domestic hot water in residential buildings. A review of the literature sources and inventions in the area of waste energy recovery from grey water was carried out. It also presents the results of research on prototypes of devices used to receive energy deposited in wastewater, published in recent years. The benefits of using drain water heat recovery systems for preheating utility water in residential buildings are presented. An analysis of technical solutions for grey water energy collection units was made, revealing their advantages and disadvantages. Great importance was attached to the review of patent sources as well as devices available on the market. According to the authors, the results of the technical review may be useful for contractors and designers of heat recovery equipment and installations, researchers and potential users of these technologies. Full article
(This article belongs to the Topic Waste-to-Energy)
Show Figures

Figure 1

17 pages, 6967 KiB  
Article
Performance and Exergy Analyses of a Solar Assisted Heat Pump with Seasonal Heat Storage and Grey Water Heat Recovery Unit
by Primož Poredoš, Boris Vidrih and Alojz Poredoš
Entropy 2021, 23(1), 47; https://doi.org/10.3390/e23010047 - 30 Dec 2020
Cited by 7 | Viewed by 3112
Abstract
The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: [...] Read more.
The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water–water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air–, water–, and ground–water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively. Full article
(This article belongs to the Special Issue Thermodynamics of Heat Pump and Refrigeration Cycles)
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Financial Analysis of the Use of Two Horizontal Drain Water Heat Recovery Units
by Kamil Pochwat, Sabina Kordana-Obuch, Mariusz Starzec and Beata Piotrowska
Energies 2020, 13(16), 4113; https://doi.org/10.3390/en13164113 - 9 Aug 2020
Cited by 19 | Viewed by 3225
Abstract
The growing interest in the use of unconventional energy sources is a stimulus for the development of dedicated devices and technologies. Drain water heat recovery (DWHR) units can be an example of such devices. They allow the recovery of part of the heat [...] Read more.
The growing interest in the use of unconventional energy sources is a stimulus for the development of dedicated devices and technologies. Drain water heat recovery (DWHR) units can be an example of such devices. They allow the recovery of part of the heat energy deposited in grey water. This paper describes the results of research on the assessment of the financial profitability of the use of two horizontal heat exchanger solutions, taking into account the actual distribution of cold water temperature during the operating year in the plumbing and two operating regimes of the premises as the residential and service facilities. The analysis showed that the use of a horizontal heat exchanger with increased efficiency in a dwelling in a 15-year life cycle allowed for achieving more than twice as much savings (reaching up to EUR 1427) compared to a classic horizontal heat exchanger. At the same time, it was shown that the installation of this type of equipment was more profitable the greater the water consumption of the premises. The article also notes the impact of cold water temperature in the installation on the results of the analysis. It was featured that taking temperature on the basis of installation design recommendations led to significant distortions in the financial analysis. On the other hand, comparing the method of averaging the cold water temperature (daily, monthly and yearly), it was determined that averaging the temperature over the annual cycle was an acceptable simplification of the model. The research results presented in the paper have a practical aspect and may constitute guidelines for designers and potential investors. In addition, they can be an incentive to continue research on heat exchangers by other scientific centers, which on a global scale will increase the universality of their use. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

17 pages, 2516 KiB  
Article
Opportunities and Threats of Implementing Drain Water Heat Recovery Units in Poland
by Sabina Kordana, Kamil Pochwat, Daniel Słyś and Mariusz Starzec
Resources 2019, 8(2), 88; https://doi.org/10.3390/resources8020088 - 5 May 2019
Cited by 27 | Viewed by 7421
Abstract
In recent years an increase of interest in usage of renewable energy sources as a substitution of fossil fuels is being noticeable. However, the waste heat potential, which can be used as an additional source of energy for heating water in buildings, is [...] Read more.
In recent years an increase of interest in usage of renewable energy sources as a substitution of fossil fuels is being noticeable. However, the waste heat potential, which can be used as an additional source of energy for heating water in buildings, is being omitted. The sources of this heat can be grey water discharged from such sanitary facilities as showers or washing machines. In response to this issue, we took on the task to define and analyze key factors affecting the development of DWHR (Drain Water Heat Recovery) systems using PESTLE (political, economic, social, technological, legal and environmental) analysis. The strengths and weaknesses of these systems were also identified. The studies were based on CFD (computational fluid dynamics) modeling tools. In the Autodesk Simulation CFD software environment, a DWHR unit was made, which was then analyzed for heat exchange efficiency. The obtained results were the basis for preparing the strategy for the development of Drain Water Heat Recovery systems. It was made using the SWOT/TOWS (strengths, weaknesses, opportunities and threats/threats, opportunities, weaknesses and strengths) method, which precisely orders information and allows presenting the project characteristic in readable way for a recipient. The results of the conducted analysis indicated the lack of acceptance on the part of potential users and the resulting need to promote the use of Drain Water Heat Recovery systems at residential level. Full article
(This article belongs to the Special Issue Ecological Management: Natural Resources and Human Interaction)
Show Figures

Figure 1

Back to TopTop