Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = green reversed phase high-performance thin-layer chromatography (RP-HPTLC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 689 KiB  
Article
Ecofriendly Validated RP-HPTLC Method for Simultaneous Determination of the Bioactive Sesquiterpene Coumarins Feselol and Samarcandin in Five Ferula Species Using Green Solvents
by Maged S. Abdel-Kader, Mohammed H. Alqarni, Sura Baykan, Bintug Oztürk, Mohammad Ayman A. Salkini, Hasan S. Yusufoglu, Prawez Alam and Ahmed I. Foudah
Separations 2022, 9(8), 206; https://doi.org/10.3390/separations9080206 - 8 Aug 2022
Cited by 5 | Viewed by 2341
Abstract
An environmentally friendly unreported rapid and simple reverse-phase high-performance thin-layer chromatography (RP-HPTLC) has been designed for the simultaneous determination of bioactive sesquiterpene coumarins feselol and samarcandin in the methanol extract of five Ferula species. The method was developed using glass plates coated with [...] Read more.
An environmentally friendly unreported rapid and simple reverse-phase high-performance thin-layer chromatography (RP-HPTLC) has been designed for the simultaneous determination of bioactive sesquiterpene coumarins feselol and samarcandin in the methanol extract of five Ferula species. The method was developed using glass plates coated with RP-18 silica gel 60 F254S and a green solvent system of ethanol–water mixture (8:2 v/v) as mobile phase. After development, the plates were quantified densitometrically at 254 for feselol and samarcandin. Feselol and samarcandin peaks from methanol extract of five Ferula species were identified by comparing their single band at Rf = 0.43 ± 0.02 and Rf = 0.60 ± 0.01, respectively. Valid linear relationships between the peak areas and concentrations of feselol and samarcandin in the range of 1000–7000 ng/band respectively were obtained. The method was subjected to the validation criteria of the international conference on harmonization (ICH) for precision, accuracy, and robustness. The new method provides an analytical tool to enumerate the therapeutic doses of feselol and samarcandin in herbal formulations and/or crude drugs. The obtained results indicated that F. drudeana was the richest species in the more active samarcandin, with 0.573% w/w, while F. duranii had the largest quantity of the less active feselol, 0.813% w/w. F. drudeana was superior to the other species in the sum of the two active compounds, 1.4552% w/w, and was consequently expected to be the most active aphrodisiac among the five studied species. Full article
(This article belongs to the Special Issue Extraction and Analysis of Plant Active Ingredients)
Show Figures

Figure 1

14 pages, 3062 KiB  
Article
Rapid, Highly-Sensitive and Ecologically Greener Reversed-Phase/Normal-Phase HPTLC Technique with Univariate Calibration for the Determination of Trans-Resveratrol
by Prawez Alam, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Mohammed M. Ghoneim and Sultan Alshehri
Separations 2021, 8(10), 184; https://doi.org/10.3390/separations8100184 - 12 Oct 2021
Cited by 2 | Viewed by 2515
Abstract
The rapid, highly-sensitive and ecologically greener reversed-phase (RP)/normal-phase (NP) high-performance thin-layer chromatography (HPTLC) densitometric technique has been developed and validated for the determination of trans-resveratrol (TRV). The reversed-phase HPTLC-based analysis of TRV was performed using ethanol–water (65:35, v v−1) combination [...] Read more.
The rapid, highly-sensitive and ecologically greener reversed-phase (RP)/normal-phase (NP) high-performance thin-layer chromatography (HPTLC) densitometric technique has been developed and validated for the determination of trans-resveratrol (TRV). The reversed-phase HPTLC-based analysis of TRV was performed using ethanol–water (65:35, v v−1) combination as the greener mobile phase, while, the normal-phase HPTLC-based estimation of TRV was performed using chloroform–methanol (85:15, v v−1) combination as the routine mobile phase. The TRV detection was carried out at 302 nm for RP/NP densitometric assay. The linearity was recorded as 10–1200 and 30–400 ng band−1 for RP and NP HPTLC techniques, respectively. The RP densitometric assay was observed as highly-sensitive, accurate, precise and robust for TRV detection in comparison with the NP densitometric assay. The contents of TRV in commercial formulation were recorded as 101.21% utilizing the RP densitometric assay, while, the contents of TRV in commercial formulation were found to be 91.64% utilizing the NP densitometric assay. The greener profile of RP/NP technique was obtained using the analytical GREEnness (AGREE) approach. The AGREE scales for RP and NP densitometric assays were estimated 0.75 and 0.48, respectively. The recorded AGREE scale for the RP densitometric assay indicated that this technique was highly green/the ecologically greener compared to the NP densitometric assay. After successful optimization of analytical conditions, validation parameters, AGREE scale and chromatography performance, the RP densitometric assay with univariate calibration was found to be better than the NP densitometric assay for the analysis of TRV. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Figure 1

12 pages, 983 KiB  
Article
Highly Sensitive and Ecologically Sustainable Reversed-Phase HPTLC Method for the Determination of Hydroquinone in Commercial Whitening Creams
by Mohammed H. Alqarni, Prawez Alam, Faiyaz Shakeel, Ahmed I. Foudah and Sultan Alshehri
Processes 2021, 9(9), 1631; https://doi.org/10.3390/pr9091631 - 9 Sep 2021
Cited by 8 | Viewed by 3114
Abstract
Hydroquinone (HDQ) is a natural depigmenting agent, which is commonly used in skin-toning preparations. The safety and greenness of analytical methods of HDQ quantification were not considered in previous literature. Therefore, a highly sensitive and ecologically greener reversed-phase high-performance thin-layer chromatography (RP-HPTLC)-based assay [...] Read more.
Hydroquinone (HDQ) is a natural depigmenting agent, which is commonly used in skin-toning preparations. The safety and greenness of analytical methods of HDQ quantification were not considered in previous literature. Therefore, a highly sensitive and ecologically greener reversed-phase high-performance thin-layer chromatography (RP-HPTLC)-based assay was established for HDQ estimation in four different commercial whitening creams (CWCs). The binary ethanol–water (60:40, v·v−1) mixture was utilized as the green solvent system. The estimation of HDQ was carried out at 291 nm. The present RP-HPTLC-based assay was linear in the 20–2400 ng band−1 range. The present analytical method was highly sensitive based on the detection and quantification data. The other validation parameters, such as accuracy, precision, and robustness, were also suitable for the determination of HDQ. Maximum HDQ quantities were obtained in CWC A (1.23% w·w−1) followed by CWC C (0.81% w·w−1), CWC D (0.43% w·w−1), and CWC B (0.37% w·w−1). The analytical GREEnness (AGREE) score for the present analytical method was estimated as 0.91, indicating the excellent greener characteristics of the present RP-HPTLC assay. These results suggest that the present analytical method is highly sensitive and ecologically sustainable for the quantitation of HDQ in its commercial formulations. Full article
(This article belongs to the Special Issue Applications of Chromatography in Drug Analysis and Development)
Show Figures

Figure 1

14 pages, 2204 KiB  
Article
A Sustainable Reversed-Phase HPTLC Method for the Quantitative Estimation of Hesperidin in Traditional and Ultrasound-Assisted Extracts of Different Varieties of Citrus Fruit Peels and Commercial Tablets
by Ahmed I. Foudah, Faiyaz Shakeel, Prawez Alam, Mohammed H. Alqarni, Maged S. Abdel-Kader and Sultan Alshehri
Agronomy 2021, 11(9), 1744; https://doi.org/10.3390/agronomy11091744 - 30 Aug 2021
Cited by 6 | Viewed by 3478
Abstract
Hesperidin (HSP) is a bioactive flavanone glycoside, present abundantly in the variety of citrus fruits. The environmental safety and sustainability of the reported analytical assays of HSP analysis have not been considered in the literature. Hence, a sensitive and sustainable “reversed-phase high-performance thin-layer [...] Read more.
Hesperidin (HSP) is a bioactive flavanone glycoside, present abundantly in the variety of citrus fruits. The environmental safety and sustainability of the reported analytical assays of HSP analysis have not been considered in the literature. Hence, a sensitive and sustainable “reversed-phase high-performance thin-layer chromatography (RP-HPTLC)” method has been developed and validated for HSP analysis in traditional (TE) and ultrasound-based (UBE) extracts of four different varieties of citrus fruit peels and its commercial tablet dosage forms. The binary combination of green solvents such as ethanol-water (50:50, v v−1) was used as the mobile phase. The detection of HSP was performed at 287 nm. The sustainable RP-HPTLC method was linear in 20–2000 ng band−1 range. The studied validation parameters, including accuracy, precision, robustness, sensitivity were acceptable for HSP analysis. The content of HSP in TE of four different varieties of citrus fruits including grapefruit peels (Citrus paradisi), mosambi peels (Citrus limetta), lemon peels (Citrus lemon), and orange peels (Citrus sinensis) was detected as 8.26, 6.94, 5.90, and 6.81% w w−1, respectively. The content of HSP in TE of commercial formulations A and B was detected as 5.31 and 5.55% w w−1, respectively. However, the content of HSP in UBE of grapefruit peels, mosambi peels, lemon peels, and orange peels was detected as 11.41, 8.86, 7.98, and 8.64% w w−1, respectively. The content of HSP in UBE of commercial formulations A and B was detected as 6.72 and 6.92% w w−1, respectively. The greenness score of the sustainable RP-HPTLC method was predicted as 0.83 using analytical GREEnness (AGREE) metric approach, indicated the excellent greenness profile of the RP-HPTLC method. UBE procedure for HSP was superior over its TE procedure. These observations and results suggested that the present RP-HPTLC method can be successfully used for the quantitative estimation of HSP in the variety of citrus fruit peels and its commercial formulations. In addition, this method is simple, rapid, precise, accurate, and economical compared to the reported analytical methods of HSP analysis. It is also safe and sustainable method due to the use of ethanol-water solvents systems, as both the solvents are green solvents compared to the solvents used in reported analytical methods of HSP analysis. Full article
(This article belongs to the Special Issue Extraction and Analysis of Bioactive Compounds in Crops)
Show Figures

Figure 1

15 pages, 1035 KiB  
Article
Rapid, Sensitive, and Sustainable Reversed-Phase HPTLC Method in Comparison to the Normal-Phase HPTLC for the Determination of Pterostilbene in Capsule Dosage Form
by Prawez Alam, Faiyaz Shakeel, Mohammed H. Alqarni, Ahmed I. Foudah, Md. Faiyazuddin and Sultan Alshehri
Processes 2021, 9(8), 1305; https://doi.org/10.3390/pr9081305 - 28 Jul 2021
Cited by 15 | Viewed by 3318
Abstract
The greenness evaluation of literature analytical methods for pterostilbene (PT) analysis was not performed. Accordingly, the rapid, sensitive, and green/sustainable reversed-phase high-performance thin-layer chromatography (RP-HPTLC) method was developed and compared to the normal-phase (NP)-HPTLC (NP-HPTLC) for the estimation of PT with a classical [...] Read more.
The greenness evaluation of literature analytical methods for pterostilbene (PT) analysis was not performed. Accordingly, the rapid, sensitive, and green/sustainable reversed-phase high-performance thin-layer chromatography (RP-HPTLC) method was developed and compared to the normal-phase (NP)-HPTLC (NP-HPTLC) for the estimation of PT with a classical univariate calibration. The RP quantification of PT was performed using green solvent systems; however, the NP analysis of PT was performed using routine solvent systems. The PT was detected at 302 nm for both of the methods. The greenness scores for the current analytical assays were evaluated by the analytical GREEnness (AGREE) metric approach. The classical univariate calibration for RP and NP methods indicated the linearity range as 10–1600 and 30–400 ng band−1, respectively. The RP method was more reliable for PT analysis compared to the NP method. The PT contents in commercial capsule dosage form were found to be 100.84% using the RP method; however, the PT contents in commercial capsule dosage form were determined as 92.59% using the NP method. The AGREE scores for RP and NP methods were 0.78 and 0.46, respectively. The sustainable RP-HPTLC assay was able to detect PT in the presence of its degradation products, and hence it can be considered as a selective and stability-indicating method. Accordingly, the RP-HPTLC method with univariate calibration has been considered as a superior method over the NP-HPTLC method for PT analysis. Full article
(This article belongs to the Special Issue Pharmaceutical and Biomedical Analysis)
Show Figures

Figure 1

13 pages, 1895 KiB  
Article
Determination of Trans-Anethole in Essential Oil, Methanolic Extract and Commercial Formulations of Foeniculum vulgare Mill Using a Green RP-HPTLC-Densitometry Method
by Ahmed I. Foudah, Faiyaz Shakeel, Mohammad H. Alqarni, Hasan. S. Yusufoglu, Mohammad A. Salkini and Prawez Alam
Separations 2020, 7(4), 51; https://doi.org/10.3390/separations7040051 - 29 Sep 2020
Cited by 8 | Viewed by 5137
Abstract
Due to the lack of ecofriendly/green reversed-phase high-performance thin-layer chromatography (RP-HPTLC) methods for trans-anethole (TAL) and its simplicity over routine analytical techniques, there was a necessity to establish a suitable HPTLC methodology for the quantitative analysis of TAL. Therefore, the first objective of [...] Read more.
Due to the lack of ecofriendly/green reversed-phase high-performance thin-layer chromatography (RP-HPTLC) methods for trans-anethole (TAL) and its simplicity over routine analytical techniques, there was a necessity to establish a suitable HPTLC methodology for the quantitative analysis of TAL. Therefore, the first objective of this research was to develop an accurate, rapid and green RP-HPTLC densitometry methodology for the quantitative analysis of TAL in essential oil, traditional and ultrasound-assisted extracts of Foeniculum vulgare Mill and commercial formulations. The second objective was to compare the traditional method of extraction of TAL with its ultrasound-assisted method of extraction. The chromatogram of TAL from essential oil and traditional and ultrasound-assisted extracts of fennel and commercial formulations was verified by recoding its single spectra at Rf = 0.31 ± 0.01 in comparison to standard TAL. The proposed analytical methodology has been found to be superior in terms of linearity, accuracy and precision compared to most of the reported analytical methods for TAL analysis. The amount of TAL in the essential oil of fennel was recorded as 8.82 mg per g of oil. The content of TAL in traditional extracts of fennel, formulation 1 (dietary supplement 1) and formulation 2 (dietary supplement 2), was recorded as 6.44, 4.88 and 4.48 mg per g, respectively. The amount of TAL in ultrasound-assisted extracts of fennel, formulation 1 and formulation 2, was recorded as 8.34, 6.46 and 5.81 mg per g, respectively. The ultrasound method of extraction of TAL was found to be better than the traditional method of extraction. The results of validation studies and phytochemical analysis showed that the proposed methodology could be efficiently utilized for the quantification of TAL in the wide range of products having TAL as a component. Full article
(This article belongs to the Special Issue Current Trends in Chromatography for Bioanalytical Applications)
Show Figures

Figure 1

15 pages, 1154 KiB  
Article
Simultaneous Determination of 6-Shogaol and 6-Gingerol in Various Ginger (Zingiber officinale Roscoe) Extracts and Commercial Formulations Using a Green RP-HPTLC-Densitometry Method
by Ahmed I. Foudah, Faiyaz Shakeel, Hasan S. Yusufoglu, Samir A. Ross and Prawez Alam
Foods 2020, 9(8), 1136; https://doi.org/10.3390/foods9081136 - 18 Aug 2020
Cited by 33 | Viewed by 6599
Abstract
Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in [...] Read more.
Various analytical methodologies have been reported for the determination of 6-shogaol (6-SHO) and 6-gingerol (6-GIN) in ginger extracts and commercial formulations. However, green analytical methods for the determination of 6-SHO and 6-GIN, either alone or in combination, have not yet been reported in literature. Hence, the present study was aimed to develop a rapid, simple, and cheaper green reversed phase high-performance thin-layer chromatography (RP-HPTLC) densitometry method for the simultaneous determination of 6-SHO and 6-GIN in the traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The simultaneous analysis of 6-SHO and 6-GIN was carried out via RP-18 silica gel 60 F254S HPTLC plates. The mixture of green solvents, i.e., ethanol:water (6.5:3.5 v/v) was utilized as a mobile phase for the simultaneous analysis of 6-SHO and 6-GIN. The analysis of 6-SHO and 6-GIN was performed at λmax = 200 nm for 6-SHO and 6-GIN. The densitograms of 6-SHO and 6-GIN from traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were verified by obtaining their single band at Rf = 0.36 ± 0.01 for 6-SHO and Rf = 0.53 ± 0.01 for 6-GIN, compared to standard 6-SHO and 6-GIN. The green RP-HPTLC method was found to be linear, in the range of 100–700 ng/band with R2 = 0.9988 for 6-SHO and 50–600 ng/band with R2 = 0.9995 for 6-GIN. In addition, the method was recorded as “accurate, precise, robust and sensitive” for the simultaneous quantification of 6-SHO and 6-GIN in traditional and ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas. The amount of 6-SHO in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas was obtained as 12.1, 17.9, 10.5, and 9.6 mg/g of extract, respectively. However, the amount of 6-SHO in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 14.6, 19.7, 11.6, and 10.7 mg/g of extract, respectively. The amount of 6-GIN in traditional extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were found as 10.2, 15.1, 7.3, and 6.9 mg/g of extract, respectively. However, the amount of 6-GIN in ultrasonication-assisted extracts of ginger rhizome, commercial ginger powder, commercial capsules, and commercial ginger teas were obtained as 12.7, 17.8, 8.8, and 7.9 mg/g of extract, respectively. Overall, the results of this study indicated that the proposed analytical technique could be effectively used for the simultaneous quantification of 6-SHO and 6-GIN in a wide range of plant extracts and commercial formulations. Full article
Show Figures

Figure 1

12 pages, 1055 KiB  
Article
A Green RP-HPTLC-Densitometry Method for the Determination of Diosmin in Pharmaceutical Formulations
by Ahmed I. Foudah, Prawez Alam, Md. Khalid Anwer, Hasan S. Yusufoglu, Maged S. Abdel-Kader and Faiyaz Shakeel
Processes 2020, 8(7), 817; https://doi.org/10.3390/pr8070817 - 11 Jul 2020
Cited by 18 | Viewed by 4509
Abstract
Green analytical technologies for the determination of a bioactive compound diosmin (DIOM) in the real samples of pharmaceutical formulations and biological fluids are scarce in literature. Therefore, the present investigation was carried out to develop a novel, rapid, simple, and economical green “reversed [...] Read more.
Green analytical technologies for the determination of a bioactive compound diosmin (DIOM) in the real samples of pharmaceutical formulations and biological fluids are scarce in literature. Therefore, the present investigation was carried out to develop a novel, rapid, simple, and economical green “reversed phase high-performance thin-layer chromatography (RP-HPTLC)” method for the determination of DIOM in commercial tablets and in-house developed spray-dried microparticles (MPs). The quantification of DIOM was conducted via “RP-18 silica gel 60 F254S HPTLC plates”. The binary combination of green solvents, i.e., ethanol:water (5.5:4.5 v/v) was proposed as a green mobile phase. The analysis of DIOM was conducted in absorbance/reflectance mode of densitometry at λmax = 348 nm. The densitograms of DIOM from the commercial tablets and in-house developed spray-dried MPs were verified by recording their single band at Rf = 0.80 ± 0.02 compared to standard DIOM. Green RP-HPTLC method was observed as linear in the range of 100–700 ng/band with R2 = 0.9995. The proposed method was found as “accurate, precise, robust, and sensitive” for the determination of DIOM in the real samples of commercial tablets and in-house developed spray-dried MPs. The % content of DIOM in the real samples of commercial tablets and in-house developed spray-dried MPs was obtained as 99.06 and 101.30%, respectively. The recorded results of this research suggested that the green RP-HPTLC method can be effectively used for the routine analysis of DIOM in pharmaceutical products. Full article
Show Figures

Figure 1

Back to TopTop