Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (226)

Search Parameters:
Keywords = green infrastructure investment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Viewed by 229
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

23 pages, 4960 KiB  
Article
Land Use Patterns and Small Investment Project Preferences in Participatory Budgeting: Insights from a City in Poland
by Katarzyna Groszek, Marek Furmankiewicz, Magdalena Kalisiak-Mędelska and Magdalena Błasik
Land 2025, 14(8), 1588; https://doi.org/10.3390/land14081588 - 3 Aug 2025
Viewed by 204
Abstract
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and [...] Read more.
This article presents a spatial analysis of projects selected by city residents and implemented in five successive editions (2015–2019) of the participatory budgeting in Częstochowa, Poland. The study examines the relationship between the type of hard projects (small investments in public infrastructure and landscaping) and the pre-existing characteristics of the land use of each district. Kernel density estimation and Spearman correlation analysis were used. The highest spatial density occurred in projects related to the modernization of roads and sidewalks, recreation, and greenery, indicating a relatively high number of proposals within or near residential areas. Key correlations included the following: (1) greenery projects were more common in districts lacking green areas; (2) recreational infrastructure was more frequently chosen in areas with significant water features; (3) street furniture projects were mostly selected in districts with sparse development, scattered buildings, and postindustrial sites; (4) educational infrastructure was often chosen in low-density, but developing districts. The selected projects often reflect local deficits in specific land use or public infrastructure, but also stress the predestination of the recreational use of waterside areas. Full article
(This article belongs to the Special Issue Participatory Land Planning: Theory, Methods, and Case Studies)
Show Figures

Figure 1

22 pages, 1929 KiB  
Article
Investigating Provincial Coupling Coordination Between Digital Infrastructure and Green Development in China
by Beibei Zhang, Zhenni Zhou, Juan Zheng, Zezhou Wu and Yan Liu
Buildings 2025, 15(15), 2724; https://doi.org/10.3390/buildings15152724 - 1 Aug 2025
Viewed by 213
Abstract
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index [...] Read more.
Digital technologies could facilitate green development by enhancing energy efficiency. However, existing research on coupling coordination between digital infrastructure and green development remains scarce. To fill this research gap, this study analyzes the spatio-temporal variations and barriers of coupling coordination. An evaluation index system is established and then the coupling relationship and the barrier factors between digital infrastructure and green development are analyzed. A provincial analysis is conducted by using data from China. The results in the study indicate (1) coupling coordination between digital infrastructure and green development exhibits a relatively low state, characterized by an overall upward trend; (2) noteworthy disparities are observed in the spatio-temporal pattern of the coupling coordination degree, reflecting the overall evolutionary trend from low to high coupling coordination, along with the characteristics of positive spatial correlation and high spatial concentration; and (3) obstacle factors are analyzed from the aspects of digital infrastructure and green development, emphasizing the construction of mobile phone base stations and investment in pollution control, among other aspects. This study contributes valuable insights for improvement paths for digital infrastructure and green development, offering recommendations for optimizing strategies to promote their coupled development. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
Show Figures

Figure 1

23 pages, 849 KiB  
Article
Assessment of the Impact of Solar Power Integration and AI Technologies on Sustainable Local Development: A Case Study from Serbia
by Aco Benović, Miroslav Miškić, Vladan Pantović, Slađana Vujičić, Dejan Vidojević, Mladen Opačić and Filip Jovanović
Sustainability 2025, 17(15), 6977; https://doi.org/10.3390/su17156977 - 31 Jul 2025
Viewed by 172
Abstract
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, [...] Read more.
As the global energy transition accelerates, the integration of solar power and artificial intelligence (AI) technologies offers new pathways for sustainable local development. This study examines four Serbian municipalities—Šabac, Sombor, Pirot, and Čačak—to assess how AI-enabled solar power systems can enhance energy resilience, reduce emissions, and support community-level sustainability goals. Using a mixed-method approach combining spatial analysis, predictive modeling, and stakeholder interviews, this research study evaluates the performance and institutional readiness of local governments in terms of implementing intelligent solar infrastructure. Key AI applications included solar potential mapping, demand-side management, and predictive maintenance of photovoltaic (PV) systems. Quantitative results show an improvement >60% in forecasting accuracy, a 64% reduction in system downtime, and a 9.7% increase in energy cost savings. These technical gains were accompanied by positive trends in SDG-aligned indicators, such as improved electricity access and local job creation in the green economy. Despite challenges related to data infrastructure, regulatory gaps, and limited AI literacy, this study finds that institutional coordination and leadership commitment are decisive for successful implementation. The proposed AI–Solar Integration for Local Sustainability (AISILS) framework offers a replicable model for emerging economies. Policy recommendations include investing in foundational digital infrastructure, promoting low-code AI platforms, and aligning AI–solar projects with SDG targets to attract EU and national funding. This study contributes new empirical evidence on the digital–renewable energy nexus in Southeast Europe and underscores the strategic role of AI in accelerating inclusive, data-driven energy transitions at the municipal level. Full article
22 pages, 6878 KiB  
Article
Separate Versus Unified Ecological Networks: Validating a Dual Framework for Biodiversity Conservation in Anthropogenically Disturbed Freshwater–Terrestrial Ecosystems
by Tianyi Cai, Qie Shi, Tianle Luo, Yuechun Zheng, Xiaoming Shen and Yuting Xie
Land 2025, 14(8), 1562; https://doi.org/10.3390/land14081562 - 30 Jul 2025
Viewed by 366
Abstract
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual [...] Read more.
Freshwater ecosystems—home to roughly 10% of known species—are losing biodiversity to river-morphology alteration, hydraulic infrastructure, and pollution, yet most ecological network (EN) studies focus on terrestrial systems and overlook hydrological connectivity under human disturbance. To address this, we devised and tested a dual EN framework in the Yangtze River Delta’s Ecological Green Integration Demonstration Zone, constructing freshwater and terrestrial networks independently before merging them. Using InVEST Habitat Quality, MSPA, the MCR model, and Linkage Mapper, we delineated sources and corridors: freshwater sources combined NDWI-InVEST indicators with a modified, sluice-weighted resistance surface, producing 78 patches (mean 348.7 ha) clustered around major lakes and 456.4 km of corridors (42.50% primary). Terrestrial sources used NDVI-InVEST with a conventional resistance surface, yielding 100 smaller patches (mean 121.6 ha) dispersed across woodlands and agricultural belts and 658.8 km of corridors (36.45% primary). Unified models typically favor large sources from dominant ecosystems while overlooking small, high-value patches in non-dominant systems, generating corridors that span both freshwater and terrestrial habitats and mismatch species migration patterns. Our dual framework better reflects species migration characteristics, accurately captures dispersal paths, and successfully integrates key agroforestry-complex patches that unified models miss, providing a practical tool for biodiversity protection in disturbed freshwater–terrestrial landscapes. Full article
Show Figures

Figure 1

21 pages, 1296 KiB  
Article
Integrating the IoT and New Energy to Promote a Sustainable Low-Carbon Economy
by Yan Chen, Yuqi Hou and Jiayi Lyu
Sustainability 2025, 17(15), 6755; https://doi.org/10.3390/su17156755 - 24 Jul 2025
Viewed by 361
Abstract
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic [...] Read more.
This study explores the complex interaction between the Internet of Things (IoT) and the new energy sector and analyzes how their integration can catalyze a transition toward a sustainable low-carbon economy. Through the full-sample and rolling sub-sample methods, we empirically examine the dynamic interrelationship between China’s IoT index (IoT) and the New Energy Index (NEI). Quantitative analysis reveals significant time-varying characteristics and bidirectional causal complexity in the interaction between the IoT and new energy. The IoT has a dual-edged impact on the development of new sources of energy. In the long run, the IoT plays a dominant role in incentivizing new energy, helping to enhance its stability and economic value. However, during stages characterized by technological bottlenecks or resource competition, the high energy consumption of IoT infrastructure may suppress the investment returns of new energy. Simultaneously, new energy has both positive and negative impacts on the IoT. On the one hand, new energy provides low-cost, sustainable power to support the IoT, driving the construction of the IoT ecosystem. On the other hand, it may threaten the continuity of IoT power supply, and the complexity of standardization and regulation in the sector may constrain the development of the IoT. This study provides a fresh perspective on promoting the integration of digital technology and green energy, uncovering nonlinear trade-offs between innovation-driven growth and carbon reduction goals, and offering policy insights for cross-sectoral collaboration to achieve sustainability. Full article
(This article belongs to the Special Issue Advances in Low-Carbon Economy Towards Sustainability)
Show Figures

Figure 1

24 pages, 3062 KiB  
Article
Green Hydrogen in Jordan: Stakeholder Perspectives on Technological, Infrastructure, and Economic Barriers
by Hussam J. Khasawneh, Rawan A. Maaitah and Ahmad AlShdaifat
Energies 2025, 18(15), 3929; https://doi.org/10.3390/en18153929 - 23 Jul 2025
Viewed by 332
Abstract
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured [...] Read more.
Green hydrogen, produced via renewable-powered electrolysis, offers a promising path toward deep decarbonisation in energy systems. This study investigates the major technological, infrastructural, and economic challenges facing green hydrogen production in Jordan—a resource-constrained yet renewable-rich country. Key barriers were identified through a structured survey of 52 national stakeholders, including water scarcity, low electrolysis efficiency, limited grid compatibility, and underdeveloped transport infrastructure. Respondents emphasised that overcoming these challenges requires investment in smart grid technologies, seawater desalination, advanced electrolysers, and policy instruments such as subsidies and public–private partnerships. These findings are consistent with global assessments, which recognise similar structural and financial obstacles in scaling up green hydrogen across emerging economies. Despite the constraints, over 50% of surveyed stakeholders expressed optimism about Jordan’s potential to develop a competitive green hydrogen sector, especially for industrial and power generation uses. This paper provides empirical, context-specific insights into the conditions required to scale green hydrogen in developing economies. It proposes an integrated roadmap focusing on infrastructure modernisation, targeted financial mechanisms, and enabling policy frameworks. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

24 pages, 2586 KiB  
Article
Bridging the Gap: Spatial Disparities in Coordinating New Infrastructure Construction and Inclusive Green Growth in China
by Yujun Gao, Nan Chen and Xueying Chen
Sustainability 2025, 17(14), 6575; https://doi.org/10.3390/su17146575 - 18 Jul 2025
Viewed by 340
Abstract
New infrastructure construction (NIC) is pivotal for advancing China’s sustainable development, yet the spatial interdependencies between NIC and inclusive green growth (IGG) remain critically underexplored. This study quantifies provincial-level NIC–IGG coordination dynamics across China (2011–2023) using a novel coupling coordination model. We further [...] Read more.
New infrastructure construction (NIC) is pivotal for advancing China’s sustainable development, yet the spatial interdependencies between NIC and inclusive green growth (IGG) remain critically underexplored. This study quantifies provincial-level NIC–IGG coordination dynamics across China (2011–2023) using a novel coupling coordination model. We further dissect regional disparities through Dagum Gini decomposition and identify causal drivers via QAP regression analysis. Key findings reveal: (1) Despite a gradual upward trend, overall NIC–IGG coordination remains suboptimal, hindering sustainable transition; (2) Regional disparities follow a “U-shaped” trajectory, primarily driven by inter-regional imbalances; (3) Uneven marketization is the dominant factor fragmenting spatial coordination. Our results expose systemic barriers to regionally integrated sustainable development and provide actionable pathways for place-based policies that synchronize NIC investment with IGG objectives. Full article
Show Figures

Figure 1

24 pages, 270 KiB  
Article
Exploring Digital Economy, Industrial Structure Upgrading, and Regional Green Development in the Five Provinces of Northwest China
by Keyue Chen, Zhengwei Ma, Yuejie Hong and Zirui Zhu
Sustainability 2025, 17(14), 6338; https://doi.org/10.3390/su17146338 - 10 Jul 2025
Viewed by 503
Abstract
This paper takes the five northwestern provinces of China as research objects to explore the intrinsic mechanisms of the digital economy, industrial structure upgrading, and regional green development through empirical analysis. This study reveals that the digital economy plays an indispensable role in [...] Read more.
This paper takes the five northwestern provinces of China as research objects to explore the intrinsic mechanisms of the digital economy, industrial structure upgrading, and regional green development through empirical analysis. This study reveals that the digital economy plays an indispensable role in the green and high-quality development of the five northwestern provinces. (1) This study investigates the influence of the digital economy on green high-quality development in China’s five northwestern provinces, focusing on the mediating effect of industrial structure upgrading. Using panel data and multiple regression analysis, it demonstrates that the digital economy significantly promotes green development, even when controlling for infrastructure, human capital, and openness. (2) Industrial structure upgrading serves as a critical mediator, transmitting part of this positive effect. Heterogeneity analysis shows that the digital economy’s impact is more pronounced in high-GDP regions, while low-GDP regions remain dependent on conventional drivers like infrastructure. Additionally, human capital and tax burdens exhibit positive effects on green development, whereas R&D intensity has a negligible short-term influence. (3) These findings highlight the importance of region-specific policies integrating digital infrastructure, industrial upgrading, and human capital investment to foster sustainable regional development. This study provides a theoretical basis for deepening digital economic development and promoting green industrial upgrading in northwest China. It suggests that policymakers should account for regional economic disparities and coordinate the deployment of digital infrastructure, industrial transformation, and human capital investment to achieve long-term, coordinated green and high-quality development in the region. Full article
26 pages, 2151 KiB  
Article
Belt and Road Initiative and Sustainable Development: Evidence from Bangladesh
by Syeda Nasrin Akter, Shuoben Bi, Mohammad Shoyeb, Muhammad Salah Uddin and Md. Mozammel Haque
Sustainability 2025, 17(14), 6234; https://doi.org/10.3390/su17146234 - 8 Jul 2025
Viewed by 711
Abstract
The Belt and Road Initiative (BRI) prioritizes infrastructure investment to enhance regional connectivity and foster sustainable economic development. Therefore, this empirical study aims to examine the impact of the BRI, specifically through Chinese foreign direct investment (CFDI) on sustainable growth in Bangladesh. The [...] Read more.
The Belt and Road Initiative (BRI) prioritizes infrastructure investment to enhance regional connectivity and foster sustainable economic development. Therefore, this empirical study aims to examine the impact of the BRI, specifically through Chinese foreign direct investment (CFDI) on sustainable growth in Bangladesh. The study employs the Mann–Kendall trend analysis and the generalized method of moments (GMM). For the Mann–Kendall trend analysis, sectoral FDI and output data from four major industrial sectors, obtained from Bangladesh Bank and CEIC for the period 1996–2020, are used to analyze trends in industrial development. Additionally, to assess the BRI’s role in sustainable development, this study compares green gross domestic product (GGDP) and gross domestic product (GDP) using a GMM analysis of CFDI inflows across 16 industrial sectors from 2013 to 2022, sourced from various databases. Findings reveal that CFDI significantly contributes to domestic industrial growth, particularly in the manufacturing and construction sectors. Although Bangladesh joined the BRI in 2016, a notable surge in CFDI appears from 2011–2012, partially driven by Bangladesh’s economic liberalization policies, and reflects early strategic investment consistent with China’s expanding economic diplomacy, which was later formalized under the BRI framework. The two-step system GMM results demonstrate that CFDI has a stronger impact on GGDP (0.0350) than on GDP (0.0146), with GGDP showing faster convergence (0.6027 vs. 0.1800), highlighting more robust and rapid sustainable growth outcomes. This underscores the significant Chinese investment in green sectors in Bangladesh. The study also demonstrates that the BRI supports the achievement of Sustainable Development Goals (SDGs) 7 (green energy) and 9 (sustainable infrastructure). These insights offer valuable direction for future research and policy, suggesting that Bangladesh should prioritize attracting green-oriented CFDI in sectors like energy, manufacturing, and construction, while also strengthen. Full article
Show Figures

Figure 1

27 pages, 1431 KiB  
Article
Environmental and Behavioral Dimensions of Private Autonomous Vehicles in Sustainable Urban Mobility
by Iulia Ioana Mircea, Eugen Rosca, Ciprian Sorin Vlad and Larisa Ivascu
Clean Technol. 2025, 7(3), 56; https://doi.org/10.3390/cleantechnol7030056 - 7 Jul 2025
Viewed by 461
Abstract
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of [...] Read more.
In the current context, where environmental concerns are gaining increased attention, the transition toward sustainable urban mobility stands out as a necessary and responsible step. Technological advancements over the past decade have brought private autonomous vehicles, particularly those defined by the Society of Automotive Engineers Levels 4 and 5, into focus as promising solutions for mitigating road congestion and reducing greenhouse gas emissions. However, the extent to which Autonomous Vehicles can fulfill this potential depends largely on user acceptance, patterns of use, and their integration within broader green energy and sustainability policies. The present paper aims to develop an integrated conceptual model that links behavioral determinants to environmental outcomes, assessing how individuals’ intention to adopt private autonomous vehicles can contribute to sustainable urban mobility. The model integrates five psychosocial determinants—perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control—with contextual variables such as energy source, infrastructure availability, and public policy. These components interact to predict users’ intention to adopt AVs and their perceived contribution to urban sustainability. Methodologically, the study builds on a narrative synthesis of the literature and proposes a framework applicable to empirical validation through structural equation modeling (SEM). The model draws on established frameworks such as Technology Acceptance Model (TAM), Theory of Planned Behavior, and Unified Theory of Acceptance and Use of Technology, incorporating constructs including perceived usefulness, trust in technology, social influence, environmental concern, and perceived behavioral control, constructs later to be examined in relation to key contextual variables, including the energy source powering Autonomous Vehicles—such as electricity from mixed or renewable grids, hydrogen, or hybrid systems—and the broader policy environment (regulatory frameworks, infrastructure investment, fiscal incentives, and alignment with climate and mobility strategies and others). The research provides relevant directions for public policy and behavioral interventions in support of the development of clean and smart urban transport in the age of automation. Full article
Show Figures

Figure 1

24 pages, 2493 KiB  
Article
Green Transportation-Enabled High-Quality Economic Development in the Yangtze River Economic Belt: Regional Disparities and Dynamic Characteristics
by Cheng Li, Shiguo Deng, Yangzhou Li and Liping Zhu
Sustainability 2025, 17(13), 6018; https://doi.org/10.3390/su17136018 - 30 Jun 2025
Viewed by 404
Abstract
The Yangtze River Economic Belt (YEB), serving as a pivotal transportation corridor connecting eastern and western China and a national strategic development hub, plays a central role in driving high-quality economic development (HQAED) across the country. Based on the new development paradigm with [...] Read more.
The Yangtze River Economic Belt (YEB), serving as a pivotal transportation corridor connecting eastern and western China and a national strategic development hub, plays a central role in driving high-quality economic development (HQAED) across the country. Based on the new development paradigm with emphasis on green transformation and transportation integration, this study proposes a comprehensive evaluation framework for an HQAED index (HQAED) across five core dimensions. Employing the entropy-weighted CRITIC method to quantify provincial HQAED values, combined with Dagum–Gini coefficient analysis to examine regional inequality patterns and determinants, and complemented by kernel density estimation (KDE) for temporal dynamics analysis, this research reveals four key findings: (1) There are significant disparities in HQEDI levels across the YEB, with a clear east–west gradient: the lower reaches > middle reaches > upper reaches. (2) While the dimensions of green development and shared development have shown steady growth despite initial disadvantages, the openness dimension faces structural challenges that require particular attention. (3) The overall Gini coefficient fluctuates between 0.068 and 0.094, indicating moderate regional disparities with relatively limited inequality. (4) The rightward shift in the HQEDI kernel density curves confirms overall progress, but also highlights widening disparities in the upstream regions and growth stagnation in the midstream areas. Practically, the entropy–CRITIC fusion methodology offers a transferable framework for emerging economies measuring sustainability-transition progress, while the quantified “green transportation empowerment” effects provide actionable levers for policymakers to optimize ecological compensation mechanisms and cross-regional infrastructure investments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

44 pages, 1309 KiB  
Article
How Does Green-Infrastructure Investment Empower Urban Sustainable Development?—Mechanisms and Empirical Tests
by Shang Chen, Ziyi Wang, Danica Du and Qiang Kong
Sustainability 2025, 17(13), 5751; https://doi.org/10.3390/su17135751 - 23 Jun 2025
Viewed by 560
Abstract
Amidst the intensifying impacts of global economic turbulence and external instabilities, the urgency to enhance urban sustainable development capabilities has become increasingly pronounced. Urban green-infrastructure investment, as a pivotal investment direction, plays a significant role in strengthening urban sustainable development capabilities. Based on [...] Read more.
Amidst the intensifying impacts of global economic turbulence and external instabilities, the urgency to enhance urban sustainable development capabilities has become increasingly pronounced. Urban green-infrastructure investment, as a pivotal investment direction, plays a significant role in strengthening urban sustainable development capabilities. Based on panel data from 281 prefecture-level cities in China from 2010 to 2022, this study employs an empirical model to thoroughly investigate the impact of urban green-infrastructure investment on urban sustainable development and its underlying mechanisms. The research findings indicate the following: ① Urban green-infrastructure investment significantly promotes the enhancement of urban sustainable development levels, a conclusion that remains robust after undergoing robustness tests. ② The mechanism tests reveal that the enhancement of industrial chain resilience, ecological environment resilience, and talent agglomeration are crucial pathways through which urban green-infrastructure investment drives sustainable urban economic development. ③ Heterogeneity analysis finds that cities in the central and western regions, resource-based cities, cities with lower levels of urbanization, and cities with higher degrees of openness are more sensitive to the sustainable development-enhancing effects of green-infrastructure investment. ④ Spatial effect tests show that urban green-infrastructure investment has a positive spatial spillover effect on enhancing urban sustainable development levels. Based on these findings, it is recommended that cities increase investment in green infrastructure, optimize investment structures, promote the enhancement of industrial chain and ecological environment resilience, strengthen talent agglomeration effects, and leverage regional comparative advantages to invest in green infrastructure in a location-specific manner. This study not only validates the positive impact of urban green-infrastructure investment on urban sustainable development but also provides multi-perspective insights and references for analyzing the effects of urban green-infrastructure investment, offering policy support for achieving urban sustainable development. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

21 pages, 882 KiB  
Article
Driving Green Transformation Through the National Digital Economy Innovation Pilot: A Quasi-Experimental Study on Reducing Urban Energy Intensity in 282 Chinese Cities
by Shoufu Lin, Quan Lin, Qian Wang, Chenyong Shi and Marcel Ausloos
Sustainability 2025, 17(13), 5687; https://doi.org/10.3390/su17135687 - 20 Jun 2025
Viewed by 390
Abstract
Drawing upon a quasi-natural experiment, this research investigates the influence of China’s National Digital Economy Innovation Development Pilot Policy on urban energy intensity. By examining a sample of 282 Chinese cities with the difference in differences (DID) approach, the findings provide robust empirical [...] Read more.
Drawing upon a quasi-natural experiment, this research investigates the influence of China’s National Digital Economy Innovation Development Pilot Policy on urban energy intensity. By examining a sample of 282 Chinese cities with the difference in differences (DID) approach, the findings provide robust empirical support for the proposition that digital economy pilot policies substantially reduce urban energy intensity. Furthermore, the policy’s effectiveness in lowering urban energy intensity differs across cities with varying administrative levels and population scales. The results suggest that the policy’s impact is more pronounced in ordinary cities (non-provincial capitals/municipalities) and in those with smaller populations. An examination of the underlying mechanisms reveals three principal pathways through which the policy affects energy consumption: (1) digital economic development, which promotes optimal resource allocation and enhanced energy intensity; (2) technological innovation, driving advances in green technologies and supporting sustainable industrial upgrades; and (3) economic agglomeration, which leverages economies of scale and industrial clustering to bolster energy efficiency. The conclusions underscore the necessity of expanding digital economy pilot zones, strengthening investments in digital infrastructure, and fostering greater technological innovation to sustain improvements in energy efficiency and environmental performance. Full article
Show Figures

Figure 1

21 pages, 773 KiB  
Article
FinTech Adoption and Its Influence on Sustainable Mineral Resource Management in the United States
by Asif Raihan, Syed Masiur Rahman, Mohammad Ridwan and Tapan Sarker
Resources 2025, 14(6), 101; https://doi.org/10.3390/resources14060101 - 16 Jun 2025
Viewed by 954
Abstract
Sustainable mineral resource management is critical amid escalating environmental concerns and growing demand for minerals in digital and clean energy technologies. While financial technology (FinTech) has been widely recognized for enhancing financial inclusion and economic efficiency, its role in environmental governance—particularly in the [...] Read more.
Sustainable mineral resource management is critical amid escalating environmental concerns and growing demand for minerals in digital and clean energy technologies. While financial technology (FinTech) has been widely recognized for enhancing financial inclusion and economic efficiency, its role in environmental governance—particularly in the mining sector—remains underexplored, especially within developed economies like the United States. This study addresses this gap by examining how FinTech adoption influences mineral sustainability, using time series data from 1998 to 2023. Four FinTech proxies—mobile cellular subscriptions, Internet usage, fixed broadband access, and financial inclusion—were analyzed alongside environmental compliance and investment in sustainable mining technologies. Using the Autoregressive Distributed Lag (ARDL) model and Frequency Domain Causality (FDC) analysis, the results show that greater FinTech adoption significantly reduces mineral depletion rates, indicating improved sustainability. Internet and broadband access exhibit strong long-term impacts, while mobile connectivity and credit access show notable short- and medium-term effects. Investment in sustainable mining technologies further enhances these outcomes. Our findings suggest that FinTech serves as a multidimensional enabler of sustainability through digital inclusion, transparency, and access to green financing. This study provides empirical evidence to guide policymakers in integrating digital financial infrastructure into strategies for sustainable mineral resource governance. Full article
Show Figures

Figure 1

Back to TopTop