Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (629)

Search Parameters:
Keywords = green concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5565 KiB  
Article
Green Mild Acid Treatment of Recycled Concrete Aggregates: Concentration Thresholds for Mortar Removal While Avoiding Degradation of Original Limestone Aggregate and Concrete
by Shunquan Zhang and Yifan Zhang
Materials 2025, 18(15), 3673; https://doi.org/10.3390/ma18153673 - 5 Aug 2025
Viewed by 104
Abstract
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on [...] Read more.
While acetic acid has proven effective as a mild acidic treatment for removing adhered mortar from recycled concrete aggregate (RCA) surfaces, its potential for dissolving damage to the surface of the original natural coarse aggregate (NCA) within the RCA and its impact on the resultant concrete properties require careful consideration. This investigation systematically evaluates the effects of varying concentrations of dilute acetic acid solutions, commonly used in RCA treatment protocols, through a multi-methodological approach that includes comprehensive physical characterization, stylus and 3D optical profilometry, scanning electron microscopy (SEM), and nanoindentation analysis. The results show that even dilute acid solutions have an upper concentration limit, as excessive acid concentration, specifically 0.4 M, induces significant textural dislocations on NCA surfaces, creating millimeter-scale erosion pits that increase aggregate water absorption by 18.5%. These morphological changes significantly impair concrete workability and reduce compressive strength performance. Furthermore, microstructural analysis reveals a 45.24% expansion in interfacial transition zone (ITZ) thickness, accompanied by notable reductions in elastic modulus and microhardness characteristics. In practical RCA treatment applications, for RCA containing limestone-based NCA, it is recommended to use acetic acid concentrations between 0.1 and 0.3 M to avoid substantial physical and microstructural degradation of aggregates and concrete. Full article
Show Figures

Graphical abstract

18 pages, 4883 KiB  
Article
Analytical Solution for Longitudinal Response of Tunnel Structures Under Strike-Slip Fault Dislocation Considering Tangential Soil–Tunnel Contact Effect and Fault Width
by Helin Zhao, Qingzi Wu, Yao Zeng, Liangkun Zhou and Yumin Wen
Buildings 2025, 15(15), 2748; https://doi.org/10.3390/buildings15152748 - 4 Aug 2025
Viewed by 160
Abstract
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and [...] Read more.
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and the axial deformation characteristics of the tunnel structure, tangential foundation springs were introduced and a theoretical model for the longitudinal response of the tunnel under fault dislocation was established. Firstly, the tunnel was simplified as a finite-length beam. The normal and tangential springs were taken to represent the interaction between the soil and the lining. The fault’s free-field displacement was applied at the end of the normal foundation spring to simulate fault dislocation, and the differential equation for the longitudinal response of the tunnel structure was obtained. The analytical solution of the structural response was obtained using the Green’s function method. Then, the three-dimensional finite difference method was used to verify the effectiveness of the analytical model in this paper. The results show that the tangential contact effect between the surrounding rock and the lining has a significant impact on the longitudinal response of the tunnel structure. Ignoring this effect leads to an error of up to 35.33% in the peak value of the structural bending moment. Finally, the influences of the width of the fault zone, the soil stiffness of the fault zone, and the stiffness of the tunnel lining on the longitudinal response of the tunnel were explored. As the fault width increases, the internal force of the tunnel structure decreases. Increasing the lining concrete grade leads to an increase in the internal force of the structure. The increase in the elastic modulus of the surrounding rock in the fault area reduces the bending moment and shear force of the structure and increases the axial force. The research results can provide a theoretical basis for the anti-dislocation design of tunnels crossing faults. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

27 pages, 4880 KiB  
Article
Multi-Objective Optimization of Steel Slag–Ceramsite Foam Concrete via Integrated Orthogonal Experimentation and Multivariate Analytics: A Synergistic Approach Combining Range–Variance Analyses with Partial Least Squares Regression
by Alipujiang Jierula, Haodong Li, Tae-Min Oh, Xiaolong Li, Jin Wu, Shiyi Zhao and Yang Chen
Appl. Sci. 2025, 15(15), 8591; https://doi.org/10.3390/app15158591 - 2 Aug 2025
Viewed by 195
Abstract
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal [...] Read more.
This study aims to enhance the performance of an innovative steel slag–ceramsite foam concrete (SSCFC) to advance sustainable green building materials. An eco-friendly composite construction material was developed by integrating industrial by-product steel slag (SS) with lightweight ceramsite. Employing a three-factor, three-level orthogonal experimental design at a fixed density of 800 kg/m3, 12 mix proportions (including a control group) were investigated with the variables of water-to-cement (W/C) ratio, steel slag replacement ratio, and ceramsite replacement ratio. The governing mechanisms of the W/C ratio, steel slag replacement level, and ceramsite replacement proportion on the SSCFC’s fluidity and compressive strength (CS) were elucidated. The synergistic application of range analysis and analysis of variance (ANOVA) quantified the significance of factors on target properties, and partial least squares regression (PLSR)-based prediction models were established. The test results indicated the following significance hierarchy: steel slag replacement > W/C ratio > ceramsite replacement for fluidity. In contrast, W/C ratio > ceramsite replacement > steel slag replacement governed the compressive strength. Verification showed R2 values exceeding 65% for both fluidity and CS predictions versus experimental data, confirming model reliability. Multi-criteria optimization yielded optimal compressive performance and suitable fluidity at a W/C ratio of 0.4, 10% steel slag replacement, and 25% ceramsite replacement. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

29 pages, 5505 KiB  
Article
Triaxial Response and Elastoplastic Constitutive Model for Artificially Cemented Granular Materials
by Xiaochun Yu, Yuchen Ye, Anyu Yang and Jie Yang
Buildings 2025, 15(15), 2721; https://doi.org/10.3390/buildings15152721 - 1 Aug 2025
Viewed by 159
Abstract
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton [...] Read more.
Because artificially cemented granular (ACG) materials employ diverse combinations of aggregates and binders—including cemented soil, low-cement-content cemented sand and gravel (LCSG), and concrete—their stress–strain responses vary widely. In LCSG, the binder dosage is typically limited to 40–80 kg/m3 and the sand–gravel skeleton is often obtained directly from on-site or nearby excavation spoil, endowing the material with a markedly lower embodied carbon footprint and strong alignment with current low-carbon, green-construction objectives. Yet, such heterogeneity makes a single material-specific constitutive model inadequate for predicting the mechanical behavior of other ACG variants, thereby constraining broader applications in dam construction and foundation reinforcement. This study systematically summarizes and analyzes the stress–strain and volumetric strain–axial strain characteristics of ACG materials under conventional triaxial conditions. Generalized hyperbolic and parabolic equations are employed to describe these two families of curves, and closed-form expressions are proposed for key mechanical indices—peak strength, elastic modulus, and shear dilation behavior. Building on generalized plasticity theory, we derive the plastic flow direction vector, loading direction vector, and plastic modulus, and develop a concise, transferable elastoplastic model suitable for the full spectrum of ACG materials. Validation against triaxial data for rock-fill materials, LCSG, and cemented coal–gangue backfill shows that the model reproduces the stress and deformation paths of each material class with high accuracy. Quantitative evaluation of the peak values indicates that the proposed constitutive model predicts peak deviatoric stress with an error of 1.36% and peak volumetric strain with an error of 3.78%. The corresponding coefficients of determination R2 between the predicted and measured values are 0.997 for peak stress and 0.987 for peak volumetric strain, demonstrating the excellent engineering accuracy of the proposed model. The results provide a unified theoretical basis for deploying ACG—particularly its low-cement, locally sourced variants—in low-carbon dam construction, foundation rehabilitation, and other sustainable civil engineering projects. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

22 pages, 3056 KiB  
Article
Recycled Glass and Plastic Waste in Sustainable Geopolymer Systems for Affordable Housing Solutions
by Zhao Qing Tang, Yat Choy Wong, Yali Li and Eryadi Kordi Masli
Recycling 2025, 10(4), 147; https://doi.org/10.3390/recycling10040147 - 27 Jul 2025
Viewed by 365
Abstract
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, [...] Read more.
The increasing demand for sustainable construction materials has driven research into low-carbon geopolymers that mitigate both cement-related emissions and plastic and glass waste accumulation. This study explores the development of geopolymer concrete incorporating fly ash (FA), slag (S), and FA + S blends, with 10% recycled crushed glass (RCG) and recycled plastic waste (RPW) as partial coarse aggregate replacements. Compressive strength testing revealed that FA + S-based geopolymers (25FA + S) with 100% ordinary Portland cement (OPC) replacement achieved a 7-day strength of 24.6 MPa, representing a 98% improvement over control specimens. Slag-based geopolymers demonstrated water absorption properties comparable to OPC, indicating enhanced durability. Microstructural analyses using SEM, XRD, and EDS confirmed the formation of a dense aluminosilicate matrix, with slag promoting FA reactivity and reinforcing interfacial transition zone (ITZ). These effects contributed to superior mechanical performance and water resistance. Despite minor shrinkage-induced cracking, full OPC replacement with S or FA + S geopolymers outperformed control specimens, consistently exceeding the target strength of 15 MPa required for low-impact, single-story housing applications within seven days. These findings underscore the potential of geopolymer systems for rapid and sustainable construction, offering an effective solution for reducing carbon footprints and repurposing industrial waste. Full article
Show Figures

Figure 1

41 pages, 1835 KiB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 153
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

20 pages, 6095 KiB  
Article
Effect of Pre-Curing Time and Residual Water–Cement Ratio on CO2 Curing of Recycled Concrete
by Qiyi Lai, Cheng Wang, Yu Liu, Xuejin Ying, Zixin He, Jianjun Zhao and Xiao Zhao
Sustainability 2025, 17(15), 6769; https://doi.org/10.3390/su17156769 - 25 Jul 2025
Viewed by 394
Abstract
Using recycled concrete (RC) created from building debris to capture, utilize, and sequester CO2 is a green and sustainable development strategy. Before CO2 curing, pretreatment can provide a suitable environment for the carbonation reaction of the RC, accelerate the carbonation rate [...] Read more.
Using recycled concrete (RC) created from building debris to capture, utilize, and sequester CO2 is a green and sustainable development strategy. Before CO2 curing, pretreatment can provide a suitable environment for the carbonation reaction of the RC, accelerate the carbonation rate of the RC, and enhance its performance. The effects of the pre-curing time and residual water–cement ratio (Re) on the carbon sequestration rate, carbon sequestration, carbonation depth, and mechanical strength of RC were investigated and validated through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The study demonstrated optimal carbon sequestration properties at a pre-curing time of 5 days. The corresponding carbon sequestration rate, unit carbon sequestration, carbonation depth, and compressive strength were 23.17%, 19.88 g/kg, 15.79 mm, and 28.7 MPa, respectively. Optimal carbon sequestration performance occurred at a Re of 0.26. The measured values were 20.15% (carbon sequestration rate), 17.38 g/kg (unit carbon sequestration), 12.55 mm (carbonation depth), and 31.1 MPa (compressive strength). According to the XRD and SEM results, the effects of pre-curing time and Re were mainly seen in the conversion rate of CaCO3 and a denser microstructure. This implies that improving the CO2 curing effect by controlling the pre-curing time and Re can both alleviate the pressure of greenhouse gas emissions and increase the utilization efficiency of RC. Full article
Show Figures

Figure 1

20 pages, 2239 KiB  
Article
Synthesis of Biomass Polycarboxylate Superplasticizer and Its Performance on Cement-Based Materials
by Zefeng Kou, Kaijian Huang, Muhua Chen, Hongyan Chu, Linye Zhou and Tianqi Yin
Materials 2025, 18(14), 3416; https://doi.org/10.3390/ma18143416 - 21 Jul 2025
Viewed by 380
Abstract
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the [...] Read more.
Polycarboxylate superplasticizer (PCE) is an important part of improving the overall performance of concrete. However, its synthetic raw materials are overly dependent on petrochemical products, and it also causes problems such as environmental pollution. With the development of the building material industry, the demand for petrochemical resources required for synthetic water-reducing agents will increase rapidly. Therefore, there is an urgent need to transition the synthetic raw materials of PCE from petrochemicals to biomass materials to reduce the consumption of nonrenewable resources as well as the burden on the environment. Biomass materials are inexpensive, readily available and renewable. Utilizing biomass resources to develop good-performing water-reducing agents can reduce the consumption of fossil resources. This is conducive to carbon emission reduction in the concrete material industry. In addition, it promotes the high-value utilization of biomass resources. Therefore, in this study, a biomass polyether monomer, acryloyl hydroxyethyl cellulose (AHEC), was synthesized from cellulose via the reaction route of ethylene oxide (EO) etherification and acrylic acid (AA) esterification. Biomass polycarboxylate superplasticizers (PCE-Cs) were synthesized through free radical polymerization by substituting AHEC for a portion of the frequently utilized polyether monomer isopentenyl polyoxyethylene ether (TPEG). This study primarily focused on the properties of PCE-Cs in relation to cement. The findings of this study indicated that the synthesized PCE-C5 at a dosing of 0.4% (expressed as mass fraction of cement) when the AHEC substitution ratio was 5% achieved good water reduction properties and significant delays. With the same fluidity, PCE-C5 could enhance the mechanical strength of cement mortar by 30% to 40%. This study utilized green and low-carbon biomass resources to develop synthetic raw materials for water-reducing agents, which exhibited effective water-reducing performance and enhanced the utilization rate of biomass resources, demonstrating significant application value. Full article
Show Figures

Figure 1

26 pages, 6009 KiB  
Article
Integrated Mechanical and Eco-Economical Assessments of Fly Ash-Based Geopolymer Concrete
by Qasim Shaukat Khan, Raja Hilal Ahmad, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir and Muhammad Hassan Javed
Buildings 2025, 15(14), 2555; https://doi.org/10.3390/buildings15142555 - 20 Jul 2025
Viewed by 281
Abstract
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes [...] Read more.
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes were tested under both ambient and heat curing conditions, varying the molarities of sodium hydroxide (NaOH) solution (10-M, 12-M 14-M and 16-M), sodium silicate to sodium hydroxide (Na2SiO3/NaOH) ratios (1.5, 2.0, and 2.5), and alkaline activator solution to fly ash (AAS/FA) ratios (0.5 and 0.6). The test results demonstrated that increasing NaOH molarity enhances the compressive strength (CS.) by 145% under ambient curing, with a peak CS. of 32.8 MPa at 16-M NaOH, and similarly, flexural strength (FS.) increases by 90% with a maximum FS. of 6.5 MPa at 14-M NaOH. Conversely, increasing the Na2SiO3/NaOH ratio to 2.5 reduced the CS. and FS. of ambient-cured specimens by 12.5% and 10.5%, respectively. Microstructural analysis revealed that higher NaOH molarity produced a denser, more homogeneous matrix, supported by increased Si–O–Al bond formation observed through energy-dispersive X-ray spectrometry. Environmentally, FAGPC demonstrated a 35–40% reduction in embodied CO2 emissions compared to OPC, although the production costs of FAGPC were 30–35% higher, largely due to the expense of alkaline activators. These findings highlight the potential of FAGPC as a low-carbon alternative to OPC concrete, balancing enhanced mechanical performance with sustainability. New, green, and cheap activation solutions are sought for a new generation of more sustainable and affordable FAGPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

51 pages, 8938 KiB  
Review
Sustainability of Recycling Waste Ceramic Tiles in the Green Concrete Industry: A Comprehensive Review
by Ghasan Fahim Huseien, Zahraa Hussein Joudah, Mohammad Hajmohammadian Baghban, Nur Hafizah A. Khalid, Iman Faridmehr, Kaijun Dong, Yuping Li and Xiaobin Gu
Buildings 2025, 15(14), 2406; https://doi.org/10.3390/buildings15142406 - 9 Jul 2025
Viewed by 687
Abstract
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition [...] Read more.
Ceramic tiles classified as non-biodegradable are made from fired clay, silica, and other natural materials for several construction applications. Waste ceramic tiles (WCTs) are produced from several sources, including manufacturing defects; surplus, broken, or damaged tiles resulting from handling; and construction and demolition debris. WCTs do not decompose easily, leading to long-term accumulation in landfills and occupying a significant amount of landfill space, which has substantial environmental impacts. Recycling WCTs offers several critical ecological benefits, including reducing landfill waste and pollution, conserving natural resources, lowering energy consumption, and supporting the circular economy, which in turn contributes to sustainable construction and waste management practices. In green concrete manufacturing, WCTs are widely utilized as replacements for cement, fine, and coarse aggregates, and the recycling level in the concrete industry is an increasingly explored practice aimed at promoting sustainability and reducing construction waste. From this view, this paper reports the innovative technologies, advancements in green concrete performance, and development trends in the reuse of WCTs in the production of systems. The effects of WCTs on fresh, engineering, microstructural, and durable properties, as well as their environmental performance, are reviewed. In conclusion, the use of technologies for recycling WCTs has demonstrated potential in promoting sustainability and supporting the transition toward a more environmentally friendly construction industry. This approach offers a practical contribution to sustainable development and represents significant progress in closing the recycling loop within the construction sector. Full article
Show Figures

Figure 1

26 pages, 6801 KiB  
Article
Analysis of the Mechanical Behavior of a New Stainless Steel Formwork
by Fankui Zeng, Shuxin Yang, Kaiqi Gao and Qi Xiao
Buildings 2025, 15(14), 2394; https://doi.org/10.3390/buildings15142394 - 8 Jul 2025
Viewed by 292
Abstract
To support national goals of carbon peaking and neutrality, and to promote green, low-carbon development, this study examines the mechanical behavior and deformation characteristics of a novel stainless steel wall formwork under real-world concrete casting conditions. Field experiments were conducted on an active [...] Read more.
To support national goals of carbon peaking and neutrality, and to promote green, low-carbon development, this study examines the mechanical behavior and deformation characteristics of a novel stainless steel wall formwork under real-world concrete casting conditions. Field experiments were conducted on an active construction site to monitor stress distribution and displacement during concrete placement. A finite element model was established to simulate the mechanical response and validated against field data and theoretical calculations. The results show that the maximum stress and displacement occur mainly in the mid-to-lower regions of the formwork panel. The differences among numerical simulation, theoretical analysis, and field measurements were within 8%, confirming the model’s reliability. Further parametric analysis investigated the effects of varying panel thickness and rib dimensions on mechanical performance. The optimal configuration—panel thickness of 1.25 mm, horizontal ribs measuring 15 mm × 35 mm, and vertical ribs 25 mm × 9 mm—achieved a 10.32% reduction in steel usage compared to the original design, without compromising structural integrity. These findings provide a technical basis for optimizing formwork systems and contribute to resource-efficient and sustainable construction practices. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 3040 KiB  
Article
Study on the Properties of Basalt Fiber-Modified Phosphogypsum Planting Concrete
by Weihao Zhang, Xiaoyan Zhou, Menglu Liu, Peng Yuan, Zhao Liu, Chen Shen, Mingwang Hao, Fengchen Zhang and Hongqiang Chu
Materials 2025, 18(14), 3209; https://doi.org/10.3390/ma18143209 - 8 Jul 2025
Viewed by 312
Abstract
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting [...] Read more.
Planting concrete exhibits notable advantages, including effective reduction of waterborne pollutants, significant ecological restoration capacity, and alignment with principles of green and sustainable development. As a result, it has been increasingly utilized in slope protection and infrastructure construction. In this study, phosphogypsum-based planting concrete was modified using basalt fibers to enhance its mechanical and permeability-related properties. A series of laboratory tests was conducted to evaluate compressive strength, porosity, and sand permeability. The results indicated that the incorporation of basalt fibers effectively improved the compressive strength of the phosphogypsum planting concrete, with longer fibers (18 mm) contributing to a more pronounced enhancement than shorter fibers (6 mm). Moreover, an increase in fiber content led to a gradual decrease in porosity. The addition of basalt fibers also reduced both sand permeability and the water permeability coefficient. Meanwhile, specimens containing 6 mm fibers exhibited a greater reduction in permeability than those with 18 mm fibers. Furthermore, higher fiber content was found to significantly enhance the water retention capacity of the concrete. These findings provide a theoretical basis for the design and optimization of fiber-reinforced planting concrete for ecological engineering applications. Full article
Show Figures

Figure 1

18 pages, 4549 KiB  
Article
Efficiency Determination of Water Lily (Eichhornia crassipes) Fiber Delignification by Electrohydrolysis Using Different Electrolytes
by R. Sanchez-Torres, E. Onofre Bustamante, T. Pérez López and A. C. Espindola-Flores
Recycling 2025, 10(4), 130; https://doi.org/10.3390/recycling10040130 - 1 Jul 2025
Viewed by 296
Abstract
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results [...] Read more.
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results obtained using different delignification methods (physical and chemical) on water lily ((Eichhornia crassipes) fiber lignocellulosic biomass including a seldom exploited method, known as “electrohydrolysis” in order to determinate the removal efficiency of lignin and hemicellulose. The characterization of the physicochemical and morphological properties of the water lily (Eichhornia crassipes) fiber before and after the pretreatments were applied were by means of Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and optical microscopy (OM). The results of FT-IR show a significant decrease in the bands associated with lignin and hemicellulose. By XRD, it was determined that the crystallinity of the cellulose increased by 60% for the treated samples with respect to the reference, and an increase in the surface roughness of the samples was observed by OM. In conclusion, it was determined that electrochemistry delignification is an efficient, environmentally friendly methodology to remove the soluble sugars, opening the possibility to use the water lily (Eichhornia crassipes) fiber to produce a green concrete. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

22 pages, 2576 KiB  
Article
Multi-Indicator Environmental Impact Assessment of Recycled Aggregate Concrete Based on Life Cycle Analysis
by Heng Zhang, Xiaochu Wang, Peng Ren and Linlin Yang
Buildings 2025, 15(13), 2301; https://doi.org/10.3390/buildings15132301 - 30 Jun 2025
Viewed by 374
Abstract
With the ongoing acceleration in urban development, the volume of construction and demolition waste continues to rise, while the availability of natural aggregates is steadily declining. Utilizing recycled aggregates in concrete has become a vital approach to fostering sustainability within the construction sector. [...] Read more.
With the ongoing acceleration in urban development, the volume of construction and demolition waste continues to rise, while the availability of natural aggregates is steadily declining. Utilizing recycled aggregates in concrete has become a vital approach to fostering sustainability within the construction sector. This research develops a life cycle-based environmental impact evaluation model for recycled aggregate concrete, applying the Life Cycle Assessment (LCA) framework. Through the eFootprint platform, a quantitative evaluation is carried out for C30-grade concrete containing varying levels of recycled aggregate replacement. Four replacement ratios of recycled coarse aggregate (30%, 50%, 70%, and 100%) were evaluated. The assessment includes six key environmental indicators: Global Warming Potential (GWP), Primary Energy Demand (PED), Abiotic Depletion Potential (ADP), Acidification Potential (AP), Eutrophication Potential (EP), and Respiratory Inorganics (RI). The findings reveal that higher substitution rates of recycled aggregate lead to noticeable reductions in RI, EP, and AP, indicating improved environmental performance. Conversely, slight increases are observed in GWP and PED, especially under long transport distances. Analysis of contributing factors and sensitivity indicates that cement manufacturing is the principal driver of these increases, contributing over 80% of the total GWP, PED, and ADP impacts, with aggregate transport as the next major contributor. This study offers methodological insights into the environmental evaluation of recycled aggregate concrete and supports the green design and development of low-carbon strategies in construction. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 2151 KiB  
Article
Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy
by A H M Rashedunnabi, Norio Tanaka and Md Abedur Rahman
Geosciences 2025, 15(7), 243; https://doi.org/10.3390/geosciences15070243 - 29 Jun 2025
Viewed by 285
Abstract
Standalone tsunami defense structures have demonstrated limitations in mitigating wave energy during the 2011 Japan tsunami. In order to mitigate future tsunamis in Japan, multi-layered protective mechanisms have been suggested or implemented after the incident. These include heightening the destroyed or existing embankment [...] Read more.
Standalone tsunami defense structures have demonstrated limitations in mitigating wave energy during the 2011 Japan tsunami. In order to mitigate future tsunamis in Japan, multi-layered protective mechanisms have been suggested or implemented after the incident. These include heightening the destroyed or existing embankment with concrete or stones, protecting embankments with concrete blocks, compacting the landward soil, elevating the ground following the coastal embankment, and incorporating green belts. Despite extensive research on the mitigation effects of such multiple countermeasures, the optimal structural configuration remains uncertain. In this study, we evaluated the performance of a multiple mitigation system consisting of a landward forest (F) on an elevated mound (M) following a seaward embankment (E) under a range of supercritical flow conditions using a flume experiment. Several mound heights and lengths were selected to determine the optimum mound for installing the forest. The combination of E and F of 12 rows of trees on M with a minimum height of 1.8 cm (Case EMFR12) created the greatest water cushion depth between E and M. When M was positioned without F, the water cushion between E and M was created by raising the height of the mound rather than its length. Conversely, a mound with a minimum height and length with a forest was found to be effective in creating the largest water cushion and maximum reduction of the flow energy. The highest energy reduction was between 45 and 70% in this experiment. These findings provide useful insights for developing multiple tsunami mitigation strategies that combine artificial and natural approaches. Full article
Show Figures

Figure 1

Back to TopTop