Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy
Abstract
1. Introduction
2. Materials and Methods
2.1. Flume Characteristics and Flow Conditions
2.2. Physical Model of the Mitigation System
2.3. Parameters Used in This Study
3. Results
3.1. Flow Characteristics in the Experiments
3.1.1. Hydraulic Jump
3.1.2. Flow Structures Inside and Downstream of the Mitigation System
3.2. Water Cushion in the Gap
3.3. Reduction of the Flow Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuto, N. The Effectiveness and Limit of Tsunami Control Forests. Coast. Eng. Jpn. 1987, 30, 143–153. [Google Scholar] [CrossRef]
- Ohira, W.; Honda, K.; Harada, K. Reduction of Tsunami Inundation by Coastal Forests in Yogyakarta, Indonesia: A Numerical Study. Nat. Hazards Earth Syst. Sci. 2012, 12, 85–95. [Google Scholar] [CrossRef]
- Benazir; Triatmadja, R.; Yuwono, N.; Rahardjo, A.P.; Kuswandi; Triatmodjo, B. Nizam Investigating the Tsunami-Mitigating Properties of Vegetated Coastal Areas in Pacitan Bay, Indonesia: A Synergistic Approach of Numerical Modelling and Field Observations. J. Earth Syst. Sci. 2024, 133, 37. [Google Scholar] [CrossRef]
- Wanger, T.C.; Ainun, N.; Brook, B.W.; Friess, D.A.; Oh, R.R.Y.; Rusdin, A.; Smithers, S.; Tjoa, A. Ecosystem-Based Tsunami Mitigation for Tropical Biodiversity Hotspots. Trends Ecol. Evol. 2020, 35, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Tappin, D.R.; Evans, H.M.; Jordan, C.J.; Richmond, B.; Sugawara, D.; Goto, K. Coastal Changes in the Sendai Area from the Impact of the 2011 Tōhoku-Oki Tsunami: Interpretations of Time Series Satellite Images, Helicopter-Borne Video Footage and Field Observations. Sediment. Geol. 2012, 282, 151–174. [Google Scholar] [CrossRef]
- Suppasri, A.; Shuto, N.; Imamura, F.; Koshimura, S.; Mas, E.; Yalciner, A.C. Lessons Learned from the 2011 Great East Japan Tsunami: Performance of Tsunami Countermeasures, Coastal Buildings, and Tsunami Evacuation in Japan. Pure Appl. Geophys. 2013, 170, 993–1018. [Google Scholar] [CrossRef]
- Strusińska-Correia, A. Tsunami Mitigation in Japan after the 2011 Tōhoku Tsunami. Int. J. Disaster Risk Reduct. 2017, 22, 397–411. [Google Scholar] [CrossRef]
- Koshimura, S.; Hayashi, S.; Gokon, H. The Impact of the 2011 Tohoku Earthquake Tsunami Disaster and Implications to the Reconstruction. Soils Found. 2014, 54, 560–572. [Google Scholar] [CrossRef]
- Tanaka, N.; Sasaki, Y.; Mowjood, M.I.M.; Jinadasa, K.B.S.N.; Homchuen, S. Coastal Vegetation Structures and Their Functions in Tsunami Protection: Experience of the Recent Indian Ocean Tsunami. Landsc. Ecol. Eng. 2007, 3, 33–45. [Google Scholar] [CrossRef]
- Pakoksung, K.; Suppasri, A.; Imamura, F. Systematic Evaluation of Different Infrastructure Systems for Tsunami Defense in Sendai City. Geosciences 2018, 8, 173. [Google Scholar] [CrossRef]
- Sendai City Office. Sendai City Earthquake Disaster Reconstruction Plan. Dig. Version 2011, 1–12. Available online: https://www.city.sendai.jp/koryu/foreignlanguage/en/earthquake/documents/plan20english.pdf (accessed on 22 June 2025).
- Zaha, T.; Tanaka, N.; Kimiwada, Y. Flume Experiments on Optimal Arrangement of Hybrid Defense System Comprising an Embankment, Moat, and Emergent Vegetation to Mitigate Inundating Tsunami Current. Ocean Eng. 2019, 173, 45–57. [Google Scholar] [CrossRef]
- Usman, F.; Murakami, K.; Kurniawan, E.B. Study on Reducing Tsunami Inundation Energy by the Modification of Topography Based on Local Wisdom. Procedia Environ. Sci. 2014, 20, 642–650. [Google Scholar] [CrossRef]
- Ahmed, A.; Ghumman, A.R. Experimental Investigation of Flood Energy Dissipation by Single and Hybrid Defense System. Water 2019, 11, 1971. [Google Scholar] [CrossRef]
- Rashedunnabi, A.H.M.; Tanaka, N.; Rahman, M.A. Transformations in Flow Characteristics and Fluid Force Reduction with Respect to the Vegetation Type and Its Installation Position Downstream of an Embankment. Fluids 2025, 10, 16. [Google Scholar] [CrossRef]
- Ohtsu, I.; Yasuda, Y. Hydraulic Jump in Sloping Channels. J. Hydraul. Eng. 1991, 117, 905–921. [Google Scholar] [CrossRef]
- Hager, W.H. B-Jump in Sloping Channel. J. Hydraul. Res. 1988, 26, 539–558. [Google Scholar] [CrossRef]
- Rahman, M.A.; Tanaka, N.; Rashedunnabi, A.H.M. Flume Experiments on Flow Analysis and Energy Reduction through a Compound Tsunami Mitigation System with a Seaward Embankment and Landward Vegetation over a Mound. Geosciences 2021, 11, 90. [Google Scholar] [CrossRef]
- Shafiei, S.; Melville, B.W.; Shamseldin, A.Y.; Adams, K.N.; Beskhyroun, S. Experimental Investigation of Tsunami-Borne Debris Impact Force on Structures: Factors Affecting Impulse-Momentum Formula. Ocean Eng. 2016, 127, 158–169. [Google Scholar] [CrossRef]
- Foytong, P.; Ruangrassamee, A.; Shoji, G.; Hiraki, Y.; Ezura, Y. Analysis of Tsunami Flow Velocities during the March 2011 Tohoku, Japan, Tsunami. Earthq. Spectra 2013, 29, S161–S181. [Google Scholar] [CrossRef]
- Suppasri, A.; Latcharote, P.; Bricker, J.D.; Leelawat, N.; Hayashi, A.; Yamashita, K.; Makinoshima, F.; Roeber, V.; Imamura, F. Improvement of Tsunami Countermeasures Based on Lessons from the 2011 Great East Japan Earthquake and Tsunami—Situation after Five Years. Coast. Eng. J. 2016, 58, 1–30. [Google Scholar] [CrossRef]
- Tanaka, N.; Yasuda, S.; Iimura, K.; Yagisawa, J. Combined Effects of Coastal Forest and Sea Embankment on Reducing the Washout Region of Houses in the Great East Japan Tsunami. J. Hydro-Environ. Res. 2014, 8, 270–280. [Google Scholar] [CrossRef]
- Benazir, B.; Triatmadja, R.; Syamsidik, S.; Nizam, N.; Warniyati, W. Vegetation-Based Approached for Tsunami Risk Reduction: Insights and Challenges. Prog. Disaster Sci. 2024, 23, 100352. [Google Scholar] [CrossRef]
- Jayaratne, M.P.R.; Premaratne, B.; Adewale, A.; Mikami, T.; Matsuba, S.; Shibayama, T.; Esteban, M.; Nistor, I. Failure Mechanisms and Local Scour at Coastal Structures Induced by Tsunami. Coast. Eng. J. 2016, 58, 1640017. [Google Scholar] [CrossRef]
- Tanaka, N.; Sato, M. Scoured Depth and Length of Pools and Ditches Generated by Overtopping Flow from Embankments during the 2011 Great East Japan Tsunami. Ocean Eng. 2015, 109, 72–82. [Google Scholar] [CrossRef]
- Chow, V. Te Open-Channel Hydraulics. McGraw-Hill Book Co. 1959, 728, 26–27. [Google Scholar]
- Castro-Orgaz, O.; Chanson, H. Minimum Specific Energy and Transcritical Flow in Unsteady Open-Channel Flow. J. Irrig. Drain. Eng. 2016, 142, 1–12. [Google Scholar] [CrossRef]
- Adam, A.M.; Ruff, J.F.; AlQaser, G.; Abt, S.R. Characteristics of B-Jump with Different Toe Locations. J. Hydraul. Eng. 1993, 119, 938–948. [Google Scholar] [CrossRef]
- Tanimoto, R.; Tokida, K.; Kitagawa, H.; Araki, S. Investigation on Resistance of Earth Bank and Reduction by Dug Pool against Tsunami. J. Jpn. Soc. Civ. Eng. Ser. B2 2011, 68, 316–320. [Google Scholar] [CrossRef]
- Mikami, T.; Shibayama, T.; Esteban, M.; Matsumaru, R. Field Survey of the 2011 Tohoku Earthquake and Tsunami in Miyagi and Fukushima Prefectures. Coast. Eng. J. 2012, 54, 1–26. [Google Scholar] [CrossRef]
- Hoque, A.; Aoki, S.-I. A Quantitative Analysis of Energy Dissipation among Three Typical Air Entrainment Phenomena. Environ. Fluid Mech. 2005, 5, 325–340. [Google Scholar] [CrossRef]
- Rahman, M.A.; Tanaka, N.; Anjum, N. Damming Effects of Tsunami-Borne Washed-out Trees in Reducing Local Scouring and Tsunami Energy behind a Coastal Embankment. Appl. Ocean Res. 2022, 126, 103260. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Koshimura, S.; Goto, K.; Miyagi, T.; Imamura, F.; Ruangrassamee, A.; Tanavud, C. The Reduction Effects of Mangrove Forest on a Tsunami Based on Field Surveys at Pakarang Cape, Thailand and Numerical Analysis. Estuar. Coast. Shelf Sci. 2009, 81, 27–37. [Google Scholar] [CrossRef]
Case | h′c | MH (cm) | ML (cm) | No. of Tree Row on Mound | S/d |
---|---|---|---|---|---|
EML1 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6, 5.4 | 9.5 | --- | ---- |
EML2 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6, 5.4 | 16 | --- | ---- |
EML3 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6, 5.4 | 27 | --- | ---- |
EMFR4 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6 | 9.5 | 4 | 2.5 |
EMFR7 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6 | 16 | 7 | 2.5 |
EMFR12 | 0.1, 0.16, 0.20, 0.26, 0.34, 0.44 | 1.8, 2.7, 3.6 | 27 | 12 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashedunnabi, A.H.M.; Tanaka, N.; Rahman, M.A. Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy. Geosciences 2025, 15, 243. https://doi.org/10.3390/geosciences15070243
Rashedunnabi AHM, Tanaka N, Rahman MA. Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy. Geosciences. 2025; 15(7):243. https://doi.org/10.3390/geosciences15070243
Chicago/Turabian StyleRashedunnabi, A H M, Norio Tanaka, and Md Abedur Rahman. 2025. "Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy" Geosciences 15, no. 7: 243. https://doi.org/10.3390/geosciences15070243
APA StyleRashedunnabi, A. H. M., Tanaka, N., & Rahman, M. A. (2025). Flume Experiment on Flow Transition and Water Cushion Formation by Optimal Vegetation on a Mound Behind a Coastal Dike and Its Impact on Reducing the Flow Energy. Geosciences, 15(7), 243. https://doi.org/10.3390/geosciences15070243