Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = gravity based structure (GBS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7769 KiB  
Article
Fruiting Characteristics and Molecular-Assisted Identification of Korla Fragrant Pear Bud Mutation Materials
by Xian’an Yang, Cuifang Zhang, Haichang Sun, Shiwei Wang, Yutong Cui and Long Zhao
Appl. Sci. 2024, 14(15), 6589; https://doi.org/10.3390/app14156589 - 28 Jul 2024
Cited by 1 | Viewed by 1459
Abstract
Korla fragrant pear is a high-quality local pear variety native to Xinjiang, China. Currently, the low fruit-setting rate and low calyx shedding rate problems in Korla fragrant pears have been highlighted, which seriously affect the fruit yield and quality. It is of great [...] Read more.
Korla fragrant pear is a high-quality local pear variety native to Xinjiang, China. Currently, the low fruit-setting rate and low calyx shedding rate problems in Korla fragrant pears have been highlighted, which seriously affect the fruit yield and quality. It is of great significance to research the fruiting characteristics and molecular-assisted identification of Korla fragrant pear bud mutation materials for enriching the germplasm resources of Korla fragrant pear. In this research, a natural pollination group (YB) of Korla fragrant pear bud mutation materials and a natural pollination group (CK) of Korla fragrant pears were established. On the fruiting characteristics, the fruit-setting rate and calyx-removal rate of the two groups were investigated. In terms of fruit quality, the fruit shape index, fruit specific gravity, soluble solids content, sugar:acid ratio, soluble sugar content, and other indicators were measured. For the anatomical structure of the calyx tube, the detachment cells were observed. The formation time of the two groups of detached cells was compared. In the GBS simplified genome sequencing, a phylogenetic tree was constructed based on the obtained SNP sites. A principal component analysis, population genetic structure analysis, and genetic diversity index analysis were carried out. In the aspect of SSR molecular marker identification, the SSR types were counted. Polyacrylamide gel electrophoresis was performed. The results demonstrate the following: (1) the fruit-setting rate (30.87%) and calyx-removal rate (68.11%) in the YB group were significantly higher than those in the CK group (19.37%) and the calyx-removal rate (55.18%). (2) There was no significant difference in fruit quality indexes, such as average fruit weight (127.10–130.00 g) and soluble sugar content (9.47–9.56%) between the two groups. (3) Abscission-layer cells were observed at 2, 4, 6, 8, and 10 h after calyx tube discoloration in the YB group and at 48, 72, and 96 h after calyx tube discoloration in the CK group. (4) The genetic background of the YB group and the CK group was similar at the GBS level, but there were differences at the DNA level. This research finally shows that Korla fragrant pear bud mutation material is a good germplasm resource. This germplasm resource can promote the structural optimization of Korla fragrant pear varieties and the healthy development of the industry. Full article
Show Figures

Figure 1

29 pages, 21098 KiB  
Article
Microstructure Analysis of Al-7 wt% Si Alloy Solidified on Earth Compared to Similar Experiments in Microgravity
by András Roósz, Arnold Rónaföldi, Yuze Li, Nathalie Mangelinck-Noël, Gerhard Zimmermann, Henri Nguyen-Thi, Mária Svéda and Zsolt Veres
Crystals 2022, 12(9), 1226; https://doi.org/10.3390/cryst12091226 - 31 Aug 2022
Cited by 2 | Viewed by 2162
Abstract
During ground-based solidification, buoyancy flow can develop by the density difference in the hypoeutectic type of the alloys, such as Al-7 wt% Si alloy. Buoyancy flow can affect the thermal field, solute distribution in the melt, and the position and amount of the [...] Read more.
During ground-based solidification, buoyancy flow can develop by the density difference in the hypoeutectic type of the alloys, such as Al-7 wt% Si alloy. Buoyancy flow can affect the thermal field, solute distribution in the melt, and the position and amount of the new grains. As solidification is a very complex process, it is not very easy to separate the different effects. Under microgravity conditions, natural convection does not exist or is strongly damped due to the absence of the buoyancy force. Therefore, experiments in microgravity conditions provide unique benchmark data for pure diffusive solidification conditions. Compared to the results of the ground-based and microgravity experiments, it is possible to get information on the effect of gravity (buoyancy force). In the framework of the CETSOL project, four microgravity solidification experiments were performed on grain refined (GF) and non-grain refined Al-7 wt% Si alloy onboard the International Space Station in the Materials Science Laboratory. These experiments aimed to study the effect of the solidification parameters (solid/liquid front velocity vSL, temperature gradient GSL) on the grain structure and dendritic microstructures. The microgravity environment eliminates the melt flow, which develops on Earth due to gravity. Four ground-based (GB) experiments were performed under Earth-like conditions with the same (similar) solidification parameters in a vertical Bridgman-type furnace having four heating zones. The detailed analysis of the grain structure, amount of eutectic, and secondary dendrite arm spacing (SDAS) for different process conditions is reported and compared with the results of the microgravity experiments. GB experiments showed that the microstructure was columnar in the samples that do not contain GF material or in case the solid/liquid (vSL front velocity was slow (0.02 mm/s)). In contrast, in the sample which contained GF material, progressive columnar/equiaxed transition (PCET) was observed at vSL = 0.077 mm/s and GSL = 3.9 K/mm. The secondary (SDAS) dendrite arm spacing follows the well-known power law, SDAS=K[t0]13, where K is a constant, and t0 is the local solidification time for both GB and µg experiments. Full article
(This article belongs to the Special Issue Microstructure Characterization and Design of Alloys)
Show Figures

Figure 1

23 pages, 18610 KiB  
Article
A GIS Tool for Mapping Dam-Break Flood Hazards in Italy
by Raffaele Albano, Leonardo Mancusi, Jan Adamowski, Andrea Cantisani and Aurelia Sole
ISPRS Int. J. Geo-Inf. 2019, 8(6), 250; https://doi.org/10.3390/ijgi8060250 - 29 May 2019
Cited by 25 | Viewed by 10271
Abstract
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of [...] Read more.
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of incoming data and refined technical skills. The creation of cost-efficient geospatial tools provides rapid and inexpensive estimates of instantaneous dam-break (due to structural failure) flooded areas that complement, but do not replace, the results of hydrodynamic simulations. The current study implements a Geographic Information System (GIS) based method that can provide useful information regarding the delineation of dam-break flood-prone areas in both data-scarce environments and transboundary regions, in the absence of detailed studies. Moreover, the proposed tool enables, without advanced technical skills, the analysis of a wide number of case studies that support the prioritization of interventions, or, in emergency situations, the simulation of numerous initial hypotheses (e.g., the modification of initial water level/volume in the case of limited dam functionality), without incurring high computational time. The proposed model is based on the commonly available data for masonry dams, i.e., dam geometry (e.g., reservoir capacity, dam height, and crest length), and a Digital Elevation Model. The model allows for rapid and cost-effective dam-break hazard mapping by evaluating three components: (i) the dam-failure discharge hydrograph, (ii) the propagation of the flood, and (iii) the delineation of flood-prone areas. The tool exhibited high accuracy and reliability in the identification of hypothetical dam-break flood-prone areas when compared to the results of traditional hydrodynamic approaches, as applied to a dam in Basilicata (Southern Italy). In particular, the over- and under-estimation rates of the proposed tool, for the San Giuliano dam, Basilicata, were evaluated by comparing its outputs with flood inundation maps that were obtained by two traditional methods whil using a one-dimensional and a two-dimensional propagation model, resulting in a specificity value of roughly 90%. These results confirm that most parts of the flood map were correctly classified as flooded by the proposed GIS model. A sensitivity value of over 75% confirms that several zones were also correctly identified as non-flooded. Moreover, the overall effectiveness and reliability of the proposed model were evaluated, for the Gleno Dam (located in the Central Italian Alps), by comparing the results of literature studies concerning the application of monodimensional numerical models and the extent of the flooded area reconstructed by the available historical information, obtaining an accuracy of around 94%. Finally, the computational efficiency of the proposed tool was tested on a demonstrative application of 250 Italian arch and gravity dams. The results, when carried out using a PC, Pentium Intel Core i5 Processor CPU 3.2 GHz, 8 GB RAM, required about 73 min, showing the potential of such a tool applied to dam-break flood mapping for a large number of dams. Full article
Show Figures

Figure 1

14 pages, 4492 KiB  
Review
Gravity-Based Foundations in the Offshore Wind Sector
by M. Dolores Esteban, José-Santos López-Gutiérrez and Vicente Negro
J. Mar. Sci. Eng. 2019, 7(3), 64; https://doi.org/10.3390/jmse7030064 - 12 Mar 2019
Cited by 54 | Viewed by 12966
Abstract
In recent years, the offshore wind industry has seen an important boost that is expected to continue in the coming years. In order for the offshore wind industry to achieve adequate development, it is essential to solve some existing uncertainties, some of which [...] Read more.
In recent years, the offshore wind industry has seen an important boost that is expected to continue in the coming years. In order for the offshore wind industry to achieve adequate development, it is essential to solve some existing uncertainties, some of which relate to foundations. These foundations are important for this type of project. As foundations represent approximately 35% of the total cost of an offshore wind project, it is essential that they receive special attention. There are different types of foundations that are used in the offshore wind industry. The most common types are steel monopiles, gravity-based structures (GBS), tripods, and jackets. However, there are some other types, such as suction caissons, tripiles, etc. For high water depths, the alternative to the previously mentioned foundations is the use of floating supports. Some offshore wind installations currently in operation have GBS-type foundations (also known as GBF: Gravity-based foundation). Although this typology has not been widely used until now, there is research that has highlighted its advantages over other types of foundation for both small and large water depth sites. There are no doubts over the importance of GBS. In fact, the offshore wind industry is trying to introduce improvements so as to turn GBF into a competitive foundation alternative, suitable for the widest ranges of water depth. The present article deals with GBS foundations. The article begins with the current state of the field, including not only the concepts of GBS constructed so far, but also other concepts that are in a less mature state of development. Furthermore, we also present a classification of this type of structure based on the GBS of offshore wind facilities that are currently in operation, as well as some reflections on future GBS alternatives. Full article
(This article belongs to the Special Issue Offshore Wind Farms)
Show Figures

Figure 1

17 pages, 3286 KiB  
Article
Preliminary Design for Wave Run-Up in Offshore Wind Farms: Comparison between Theoretical Models and Physical Model Tests
by Jorge Luengo Frades, Vicente Negro, Javier García Barba, Mario Martín-Antón, José Santos López-Gutiérrez, M. Dolores Esteban and Luis J. Moreno Blasco
Energies 2019, 12(3), 492; https://doi.org/10.3390/en12030492 - 3 Feb 2019
Cited by 5 | Viewed by 4943
Abstract
Estimation of wave run-up has been of increasing concern for offshore wind structures and a critical aspect for designers. The highly nonlinear phenomenon makes the study difficult. That is the reason for the very few design rules and experimental data available to estimate [...] Read more.
Estimation of wave run-up has been of increasing concern for offshore wind structures and a critical aspect for designers. The highly nonlinear phenomenon makes the study difficult. That is the reason for the very few design rules and experimental data available to estimate it. Actual wave run-up is greater than commonly predicted. The goal of this research is to benchmark the theoretical formulations with the results of the physical model tests performed by Deltares in the field of crest elevation, run-up, forces and pressures. The laboratory reproduced in a wave tank (75 m length; 8.7 m width; 1 m depth; and a 1:60 scale, with Froude similarity) an offshore power converter platform located at intermediate water depths (25–43.80 m) in the Southern North Sea, designed by the Norwegian company Aibel. The purpose of this research is to offer a preliminary design guide for wave run–up using theoretical expressions both for cylinders and gravity based structures (GBS), leaning on the cited laboratory tests to validate the results obtained by such theoretical models. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 5284 KiB  
Review
Recent Advances in Ocean Nuclear Power Plants
by Kang-Heon Lee, Min-Gil Kim, Jeong Ik Lee and Phill-Seung Lee
Energies 2015, 8(10), 11470-11492; https://doi.org/10.3390/en81011470 - 14 Oct 2015
Cited by 89 | Viewed by 16686
Abstract
In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs) are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. [...] Read more.
In this paper, recent advances in Ocean Nuclear Power Plants (ONPPs) are reviewed, including their general arrangement, design parameters, and safety features. The development of ONPP concepts have continued due to initiatives taking place in France, Russia, South Korea, and the United States. Russia’s first floating nuclear power stations utilizing the PWR technology (KLT-40S) and the spar-type offshore floating nuclear power plant designed by a research group in United States are considered herein. The APR1400 and SMART mounted Gravity Based Structure (GBS)-type ONPPs proposed by a research group in South Korea are also considered. In addition, a submerged-type ONPP designed by DCNS of France is taken into account. Last, issues and challenges related to ONPPs are discussed and summarized. Full article
(This article belongs to the Special Issue Sustainable Future of Nuclear Power)
Show Figures

Graphical abstract

Back to TopTop