Next Article in Journal
Navigation in Indoor Environments: Does the Type of Visual Learning Stimulus Matter?
Previous Article in Journal
An Application of the Spatial Autocorrelation Method on the Change of Real Estate Prices in Taitung City
Open AccessArticle

A GIS Tool for Mapping Dam-Break Flood Hazards in Italy

1
School of Engineering, University of Basilicata, 85100 Potenza, Italy
2
Sustainable Development and Energy Resources Department, Research on Energy Systems SpA, 20134 Milano, Italy
3
Department of Bioresource Engineering, McGill University, Ste Anne de Bellevue, Quebec, H9X 1T6, Canada
*
Author to whom correspondence should be addressed.
ISPRS Int. J. Geo-Inf. 2019, 8(6), 250; https://doi.org/10.3390/ijgi8060250
Received: 3 April 2019 / Revised: 23 May 2019 / Accepted: 26 May 2019 / Published: 29 May 2019
Mapping the delineation of areas that are flooded due to water control infrastructure failure is a critical issue. Practical difficulties often present challenges to the accurate and effective analysis of dam-break hazard areas. Such studies are expensive, lengthy, and require large volumes of incoming data and refined technical skills. The creation of cost-efficient geospatial tools provides rapid and inexpensive estimates of instantaneous dam-break (due to structural failure) flooded areas that complement, but do not replace, the results of hydrodynamic simulations. The current study implements a Geographic Information System (GIS) based method that can provide useful information regarding the delineation of dam-break flood-prone areas in both data-scarce environments and transboundary regions, in the absence of detailed studies. Moreover, the proposed tool enables, without advanced technical skills, the analysis of a wide number of case studies that support the prioritization of interventions, or, in emergency situations, the simulation of numerous initial hypotheses (e.g., the modification of initial water level/volume in the case of limited dam functionality), without incurring high computational time. The proposed model is based on the commonly available data for masonry dams, i.e., dam geometry (e.g., reservoir capacity, dam height, and crest length), and a Digital Elevation Model. The model allows for rapid and cost-effective dam-break hazard mapping by evaluating three components: (i) the dam-failure discharge hydrograph, (ii) the propagation of the flood, and (iii) the delineation of flood-prone areas. The tool exhibited high accuracy and reliability in the identification of hypothetical dam-break flood-prone areas when compared to the results of traditional hydrodynamic approaches, as applied to a dam in Basilicata (Southern Italy). In particular, the over- and under-estimation rates of the proposed tool, for the San Giuliano dam, Basilicata, were evaluated by comparing its outputs with flood inundation maps that were obtained by two traditional methods whil using a one-dimensional and a two-dimensional propagation model, resulting in a specificity value of roughly 90%. These results confirm that most parts of the flood map were correctly classified as flooded by the proposed GIS model. A sensitivity value of over 75% confirms that several zones were also correctly identified as non-flooded. Moreover, the overall effectiveness and reliability of the proposed model were evaluated, for the Gleno Dam (located in the Central Italian Alps), by comparing the results of literature studies concerning the application of monodimensional numerical models and the extent of the flooded area reconstructed by the available historical information, obtaining an accuracy of around 94%. Finally, the computational efficiency of the proposed tool was tested on a demonstrative application of 250 Italian arch and gravity dams. The results, when carried out using a PC, Pentium Intel Core i5 Processor CPU 3.2 GHz, 8 GB RAM, required about 73 min, showing the potential of such a tool applied to dam-break flood mapping for a large number of dams. View Full-Text
Keywords: Flood mapping; dam-breaks; Geographic Information System (GIS); cost-efficient flood modeling; hydrodynamic modelling; data-scarce environment Flood mapping; dam-breaks; Geographic Information System (GIS); cost-efficient flood modeling; hydrodynamic modelling; data-scarce environment
Show Figures

Figure 1

MDPI and ACS Style

Albano, R.; Mancusi, L.; Adamowski, J.; Cantisani, A.; Sole, A. A GIS Tool for Mapping Dam-Break Flood Hazards in Italy. ISPRS Int. J. Geo-Inf. 2019, 8, 250.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop