Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = gravity and magnetic anomaly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15588 KB  
Article
High Heat Producing Mesoproterozoic Granitoids and Their Impact on the Geothermal Field in Lithuania, Baltic Basin
by Saulius Šliaupa and Gediminas Motuza
Appl. Sci. 2025, 15(19), 10480; https://doi.org/10.3390/app151910480 - 27 Sep 2025
Viewed by 390
Abstract
The Palaeoproterozoic crystalline basement is overlain by the Baltic Basin. Lithuania is situated in the shallow eastern periphery and grades into the deep part of the basin, which comprises a number oil fields; the thickness of the sedimentary cover varies from 0.2 to [...] Read more.
The Palaeoproterozoic crystalline basement is overlain by the Baltic Basin. Lithuania is situated in the shallow eastern periphery and grades into the deep part of the basin, which comprises a number oil fields; the thickness of the sedimentary cover varies from 0.2 to 2.3 km. The Mesoproterozoic granitoid intrusions of different scales were discovered in the crystalline basement. In total, thirteen intrusions were defined on the gravity and magnetic maps and studied by abundant deep boreholes drilled in Lithuania. The recent dating revealed several phases of magmatic activity ranging from 1625 to 1445 Ma. No systematic lateral and temporal distribution of intrusions was noticed. The intrusions comprise sub-alkaline I-type diorites and quartz monzodiorites, granodiorites, and granites. The radiogenic granitoids are characterized by anomalous heat production ranging from 2.8 to 18.2 μW/m3 (average 7.26 μW/m3). The shoshonitic series correlates with high heat production. Furthermore, the Th series is documented in west Lithuanian (WLD) intrusions, while Th-U-enriched granitoids show high heat production in east Lithuania (LBB) domains. The high iron (magnetite) content of the Mesoproterozoic magmatic rocks accounts for specific high magnetic field anomalies. The most voluminous intrusions are mapped in the West Lithuanian Geothermal Anomaly, which is the most spectacular geothermal feature recognized in the East European Platform. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 13739 KB  
Article
Reconstruction of the Cretaceous Palaeogeographic Position of Hainan Island and Its Tectonic Significance
by Mingming Wang, Yang Zhou, Yongjian Yao, Weijie Zhang, Huaiyang Zhou and Qingsong Liu
J. Mar. Sci. Eng. 2025, 13(9), 1681; https://doi.org/10.3390/jmse13091681 - 1 Sep 2025
Viewed by 694
Abstract
Reconstruction of the palaeogeographical location of Hainan Island is important for understanding the interaction between Indochina and South China. In this study, we integrate topographic relief, gravity anomalies, and magnetic anomalies, along with geological constraints, to determine the Cretaceous location of Hainan Island. [...] Read more.
Reconstruction of the palaeogeographical location of Hainan Island is important for understanding the interaction between Indochina and South China. In this study, we integrate topographic relief, gravity anomalies, and magnetic anomalies, along with geological constraints, to determine the Cretaceous location of Hainan Island. The results show that Hainan Island was connected with South China in the Cretaceous and located in the Beibu Gulf Basin, and then rifted from South China with about 230 km displacement along the southeast direction during the Cenozoic. Further geological evidence suggests that Hainan Island and South China have co-evolved since at least the Permian. Hainan Island was rifted from South China from the Palaeocene to the Oligocene due to escape tectonics caused by the India–Asia collision. These new findings provide important clues for investigating the impact of the India–Asia collision and the continental margin evolution of South China. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

20 pages, 9668 KB  
Article
Distribution Patterns and Main Controlling Factors of Helium in the Ordos Basin
by Dahai Wang, Lichi Ma, Tao Zhang, Dongya Zhu, Xiaohui Jin, Guojun Wang and Jun Peng
Appl. Sci. 2025, 15(16), 8806; https://doi.org/10.3390/app15168806 - 9 Aug 2025
Viewed by 814
Abstract
This study presents the first integrated, basin-scale analysis of helium distribution and its geological controls within the Ordos Basin, one of China’s most prospective cratonic gas provinces. Through comprehensive sampling and experimental analysis of the helium content in natural gas, combined with high-resolution [...] Read more.
This study presents the first integrated, basin-scale analysis of helium distribution and its geological controls within the Ordos Basin, one of China’s most prospective cratonic gas provinces. Through comprehensive sampling and experimental analysis of the helium content in natural gas, combined with high-resolution gravity and magnetic data processed using the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) method, we reveal significant spatial heterogeneity in helium enrichment. The results show that helium concentrations are generally higher along the basin margins and structurally complex zones, while central areas are relatively depleted. Helium primarily originates from the radioactive decay of uranium (U) and thorium (Th) within metamorphic and magmatic basement rocks. Fault systems act as efficient vertical migration pathways, enabling deep-sourced helium to accumulate in structurally and stratigraphically favorable traps. This study proposes a new enrichment mode, “basement-sourced helium generation, fault-mediated migration, and caprock-controlled preservation”, which highlights the synergistic roles of basement lithology, deep-seated faults, and sealing capacity in controlling helium distribution. This model is supported by the observed alignment of high helium concentrations with zones of strong basement magnetism and major fault intersections. These findings advance our understanding of helium accumulation mechanisms in stable cratonic settings and provide a predictive framework for helium exploration in similar geological contexts worldwide. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

31 pages, 10410 KB  
Article
Integrated Prospectivity Mapping for Copper Mineralization in the Koldar Massif, Kazakhstan
by Dinara Talgarbayeva, Andrey Vilayev, Elmira Serikbayeva, Elmira Orynbassarova, Hemayatullah Ahmadi, Zhanibek Saurykov, Nurmakhambet Sydyk, Aigerim Bermukhanova and Berik Iskakov
Minerals 2025, 15(8), 805; https://doi.org/10.3390/min15080805 - 30 Jul 2025
Viewed by 1321
Abstract
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament [...] Read more.
This study developed a copper mineral prospectivity map for the Koldar massif, Kazakhstan, using an integrated approach combining geophysical and satellite methods. A strong spatialgenetic link was identified between faults and hydrothermal mineralization, with faults acting as key conduits for ore-bearing fluids. Lineament analysis and density mapping confirmed the high permeability of the Koldar massif, indicating its structural prospectivity. Hyperspectral and multispectral data (ASTER, PRISMA, WorldView-3) were applied for detailed mapping of hydrothermal alteration (phyllic, propylitic, argillic zones), which are critical for discovering porphyry copper deposits. In particular, WorldView-3 imagery facilitated the identification of new prospective zones. The transformation of magnetic and gravity data successfully delineated geological features and structural boundaries, confirming the fractured nature of the massif, a key structural factor for mineralization. The resulting map of prospective zones, created by normalizing and integrating four evidential layers (lineament density, PRISMA-derived hydrothermal alteration, magnetic, and gravity anomalies), is thoroughly validated, successfully outlining the known Aktogay, Aidarly, and Kyzylkiya deposits. Furthermore, new, previously underestimated prospective areas were identified. This work fills a significant knowledge gap concerning the Koldar massif, which had not been extensively studied using satellite methods previously. The key advantage of this research lies in its comprehensive approach and the successful application of high-quality hyperspectral imagery for mapping new prospective zones, offering a cost-effective and efficient alternative to traditional ground-based investigations. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

20 pages, 16432 KB  
Article
Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
by Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren and Xiang Zhang
Minerals 2025, 15(7), 760; https://doi.org/10.3390/min15070760 - 20 Jul 2025
Cited by 1 | Viewed by 488
Abstract
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages [...] Read more.
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application. Full article
Show Figures

Figure 1

23 pages, 33244 KB  
Article
The Sedimentary Distribution and Evolution of Middle Jurassic Reefs and Carbonate Platform on the Middle Low Uplift in the Chaoshan Depression, Northern South China Sea
by Ming Sun, Hai Yi, Zhongquan Zhao, Changmao Feng, Guangjian Zhong and Guanghong Tu
J. Mar. Sci. Eng. 2025, 13(6), 1025; https://doi.org/10.3390/jmse13061025 - 23 May 2025
Viewed by 809
Abstract
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of [...] Read more.
The Chaoshan Depression, situated in the northern South China Sea, is a Mesozoic residual depression beneath the Cenozoic Pearl River Mouth Basin. Borehole LF35-1-1 has confirmed the existence of marine Jurassic layers rich in organic carbon within this depression. However, the understanding of petroleum geology in this area is limited due to the complex interplay of Mesozoic and Cenozoic tectonic activities and the poor quality of seismic imaging from previous surveys, which have obstructed insights into the characteristics of Mesozoic reservoirs and the processes of oil and gas accumulation. Recent quasi-3D seismic data have allowed for the identification of Mesozoic bioherms and carbonate platforms in the Middle Low Uplift of the Chaoshan Depression. This research employs integrated geophysical data (MCS, gravity, magnetic) and well data to explore the factors that influenced Middle Jurassic reef development and their implications for reservoir formation. The seismic reflection patterns of reefs and carbonate platforms are primarily characterized by high-amplitude discontinuous to chaotic reflections, with occasional blank reflections or weak, sub-parallel reflections, as well as significant high-velocity, high Bouguer gravity and low reduced-to-pole (RTP) magnetic anomalies. Atolls, stratiform reefs, and patch reefs are located on the local topographic highs of the platform. Three vertical evolutionary stages have been identified based on the size of atolls and fluctuations in relative sea level: initiation, growth, and submergence. The location of bioherms and carbonate platforms was influenced by paleotectonic topography, while their horizontal distribution was affected by variations in relative sea level. Furthermore, the reef limestone reservoirs from the upper member of the Middle Jurassic, combined with the mudstone source rocks from the Lower Jurassic and the lower section of the Middle Jurassic, as well as the bathyal mudstone caprocks from the lower part of the Late Jurassic, create highly favorable conditions for hydrocarbon accumulation. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

22 pages, 5222 KB  
Article
A Prior Knowledge-Enhanced Deep Learning Framework for Improved Thermospheric Mass Density Prediction
by Ling Li, Changyong He, Dunyong Zheng, Shaoning Li and Dong Zhao
Atmosphere 2025, 16(5), 539; https://doi.org/10.3390/atmos16050539 - 2 May 2025
Viewed by 730
Abstract
Accurate thermospheric mass density (TMD) prediction is critical for applications in solar-terrestrial physics, spacecraft safety, and remote sensing systems. While existing deep learning (DL)-based TMD models are predominantly data-driven, their performance remains constrained by observational data limitations. This study proposes ResNet-MSIS, a novel [...] Read more.
Accurate thermospheric mass density (TMD) prediction is critical for applications in solar-terrestrial physics, spacecraft safety, and remote sensing systems. While existing deep learning (DL)-based TMD models are predominantly data-driven, their performance remains constrained by observational data limitations. This study proposes ResNet-MSIS, a novel hybrid framework that integrates prior knowledge from the empirical NRLMSIS-2.1 model into a residual network (ResNet) architecture. The incorporation of NRLMSIS-2.1 enhanced the performance of ResNet-MSIS, yielding a lower root mean squared error (RMSE) of 0.2657 × 1012 kg/m3 in TMD prediction compared with 0.2750 × 1012 kg/m3 from ResNet, along with faster convergence during training and better generalization on Gravity Recovery and Climate Experiment (GRACE-A) data, which was trained and validated on the CHAllenging Minisatellite Payload (CHAMP) TMD data (2000–2009, altitude of 305–505 km, avg. 376 km) under quiet geomagnetic conditions (Kp ≤ 3). The DL model was subsequently tested on the remaining CHAMP-derived TMD observations, and the results demonstrated that ResNet-MSIS outperformed both ResNet and NRLMSIS-2.1 on the test dataset. The model’s robustness was further demonstrated on GRACE-A data (2002–2009, altitude of 450–540 km, avg. 482 km) under magnetically quiet conditions, with the RMSE decreasing from 0.3352 × 1012 kg/m3 to 0.2959 × 1012 kg/m3, indicating improved high-altitude prediction accuracy. Additionally, ResNet-MSIS effectively captured the horizontal TMD variations, including equatorial mass density anomaly (EMA) and midnight density maximum (MDM) structures, confirming its ability to learn complex spatiotemporal patterns. This work underscores the value of merging data-driven methods with domain-specific prior knowledge, offering a promising pathway for advancing TMD modeling in space weather and atmospheric research. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

10 pages, 211 KB  
Review
Exploring Lymphangioma: A Synthesis of the Literature and Clinical Perspectives
by Nada Bochor and Parshotam Gera
Lymphatics 2025, 3(1), 4; https://doi.org/10.3390/lymphatics3010004 - 11 Feb 2025
Viewed by 2133
Abstract
Lymphatic malformations (LMs) are benign, congenital vascular anomalies caused by abnormal lymphangiogenesis during embryology, often presenting as fluid-filled cystic lesions. Though LMs can affect any part of the body except the brain, they primarily manifest in the head and neck or axilla regions [...] Read more.
Lymphatic malformations (LMs) are benign, congenital vascular anomalies caused by abnormal lymphangiogenesis during embryology, often presenting as fluid-filled cystic lesions. Though LMs can affect any part of the body except the brain, they primarily manifest in the head and neck or axilla regions of children. With a prevalence of approximately 1 in 4000 births, LMs are commonly diagnosed by age two, with symptoms varying based on lesion location and size. This paper reviews the classification of LMs and discusses the de Serres staging system, which aids in assessing prognosis based on lesion site. Mutations in the (PIK3CA) gene are implicated in most cases, and LMs are also associated with syndromic conditions like Turner and Noonan syndromes. They are diagnosed by ultrasound (USS) or magnetic resonance imaging (MRI), while a histologic analysis can confirm lymphatic origin. Treatment options range from conservative approaches, such as observation, to sclerotherapy, pharmacotherapy, and surgery. Sclerotherapy, particularly with agents like OK-432, bleomycin, and doxycycline, has shown significant efficacy in reducing LM size and symptoms with minimal side effects. Pharmacological therapies, such as sirolimus, that target the mTOR pathway are also increasingly being used, with a good effect on the burden of disease. While surgical excision remains a choice for symptomatic or large lesions, minimally invasive approaches are often preferred due to lower morbidity. Emerging techniques include gravity-dependent sclerotherapy, electrosclerotherapy, alpelisib, everolimus, and Wnt/β-catenin pathway stimulators (e.g., tankyrase inhibitors, porcupine inhibitors). Computational atomistic molecular dynamics (MD) and density functional tight binding (DFTB) techniques may offer an experimental approach to future therapeutic targets. This paper highlights a multidisciplinary approach to LM management, emphasising individualised treatment based on lesion characteristics and patient needs. Full article
18 pages, 14274 KB  
Article
The Evolution of Powell Basin (Antarctica)
by Alberto Santamaría Barragán, Manuel Catalán and Yasmina M. Martos
Remote Sens. 2024, 16(21), 4053; https://doi.org/10.3390/rs16214053 - 31 Oct 2024
Viewed by 1408
Abstract
Powell Basin is an ocean basin formed as a result of the Scotia Sea evolution. The existing tectonic models propose a variety of starting and ending ages for the spreading of the basin based on seafloor magnetic anomalies. Here, we use recent magnetic [...] Read more.
Powell Basin is an ocean basin formed as a result of the Scotia Sea evolution. The existing tectonic models propose a variety of starting and ending ages for the spreading of the basin based on seafloor magnetic anomalies. Here, we use recent magnetic field data obtained from eight magnetic profiles in Powell Basin to provide insights into the oceanic spreading evolution. The differences found between the number of anomalies on both sides of the axis and the asymmetry in the spreading rates suggest different opening models for different parts of the basin. We propose a spreading model starting in the late Eocene (38.08 Ma) and ending in the early Miocene (21.8 Ma) for the northern part of Powell Basin. For the southern part, the opening started in the late Eocene (38.08 Ma) and ended in the middle Paleogene (25.2 Ma). The magnetic data have been combined with gravity and sediment thickness data to better constrain the age models. The gravity and sediment thickness information allow us to more accurately locate the position of the extinct spreading axis. Geothermal heat flow measurements are used to understand the relationship between the low amplitudes of the magnetic anomalies and the heat beneath them. Our proposed oceanic spreading models suggest that the initial incursions of the Pacific mantle outflow into the Powell Basin occurred in the Oligocene, and the initial incursions of oceanic currents from the Weddell Sea occurred in the Eocene. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

21 pages, 7259 KB  
Article
Integrating Multimodal Deep Learning with Multipoint Statistics for 3D Crustal Modeling: A Case Study of the South China Sea
by Hengguang Liu, Shaohong Xia, Chaoyan Fan and Changrong Zhang
J. Mar. Sci. Eng. 2024, 12(11), 1907; https://doi.org/10.3390/jmse12111907 - 25 Oct 2024
Cited by 2 | Viewed by 1982
Abstract
Constructing an accurate three-dimensional (3D) geological model is crucial for advancing our understanding of subsurface structures and their evolution, particularly in complex regions such as the South China Sea (SCS). This study introduces a novel approach that integrates multimodal deep learning with multipoint [...] Read more.
Constructing an accurate three-dimensional (3D) geological model is crucial for advancing our understanding of subsurface structures and their evolution, particularly in complex regions such as the South China Sea (SCS). This study introduces a novel approach that integrates multimodal deep learning with multipoint statistics (MPS) to develop a high-resolution 3D crustal P-wave velocity structure model of the SCS. Our method addresses the limitations of traditional algorithms in capturing non-stationary geological features and effectively incorporates heterogeneous data from multiple geophysical sources, including 44 wide-angle seismic crustal structure profiles obtained by ocean bottom seismometers (OBSs), gravity anomalies, magnetic anomalies, and topographic data. The proposed model is rigorously validated against existing methods such as Kriging interpolation and MPS alone, demonstrating superior performance in reconstructing both global and local spatial features of the crustal structure. The integration of diverse datasets significantly enhances the model’s accuracy, reducing errors and improving the alignment with known geological information. The resulting 3D model provides a detailed and reliable representation of the SCS crust, offering critical insights for studies on tectonic evolution, resource exploration, and geodynamic processes. This work highlights the potential of combining deep learning with geostatistical methods for geological modeling, providing a robust framework for future applications in geosciences. The flexibility of our approach also suggests its applicability to other regions and geological attributes, paving the way for more comprehensive and data-driven investigations of Earth’s subsurface. Full article
(This article belongs to the Special Issue Modeling and Waveform Inversion of Marine Seismic Data)
Show Figures

Figure 1

14 pages, 5127 KB  
Article
Deep Geological Structure Analysis of the Dongyang Area, Fujian, China: Insights from Integrated Gravity and Magnetic Data
by Zhenyu Zhang, Yongbo Li, Liang Chen, Qiang Zhang and Yue Sun
Minerals 2024, 14(8), 837; https://doi.org/10.3390/min14080837 - 19 Aug 2024
Cited by 1 | Viewed by 1322
Abstract
To explore the deep geological structure of the Dongyang area in Fujian, China, gravity data from the area and its surroundings were collected and processed. Additionally, a high-precision magnetic survey was conducted in the Zhongxian region of this area, with subsequent analysis of [...] Read more.
To explore the deep geological structure of the Dongyang area in Fujian, China, gravity data from the area and its surroundings were collected and processed. Additionally, a high-precision magnetic survey was conducted in the Zhongxian region of this area, with subsequent analysis of the magnetic anomalies. Through the integration of regional geological data, a comprehensive analysis was carried out on the characteristics of gravity–magnetic anomalies and deep geological structures in the Dongyang area. The study indicates that the primary portion of the Dongyang area lies southwest of the expansive circular volcanic structure spanning Dehua to Yongtai. Two significant residual gravity anomalies were identified within the region, interpreted as the Xiaoban-Shuangqishan and Dongyang-Lingtouping residual gravity-positive anomalies. In the Zhongxian region, the magnetic field exhibits complexity with notable amplitude variations. Positive anomalies predominate in the western and northern sectors, while localized positive anomalies are prominent in the eastern region. The central area portrays a circular and disordered mix of positive and negative anomalies. Particularly distinctive are the band-shaped and fan-shaped negative anomalies curving from northeast to southeast through the central region. Various positive and negative anomalies of varying strengths, gradients, and orientations overlay both positive and negative magnetic backgrounds in specific locales. Moreover, the Dongyang area showcases well-developed fault structures, primarily oriented in northeast and northwest directions. Leveraging the regional magnetic attributes in conjunction with regional geological data, 39 faults were deduced in the Zhongxian region of the Dongyang area, delineating three promising mineralization zones. Full article
Show Figures

Figure 1

15 pages, 4363 KB  
Article
Characteristics and Deep Mineralization Prediction of the Langmuri Copper–Nickel Sulfide Deposit in the Eastern Kunlun Orogenic Belt, China
by Cai Ma, Baochun Li, Jie Li, Peng Wang, Ji’en Dong, Zhaoyu Cui and Shunlong Yang
Minerals 2024, 14(8), 786; https://doi.org/10.3390/min14080786 - 31 Jul 2024
Cited by 1 | Viewed by 1479
Abstract
The discovery of a Cu-Ni sulfide deposit in Langmuri of the Eastern Kunlun Orogenic Belt holds significant geological implications. This study, based on the examination of the metallogenic geological body, metallogenic structure, and metallogenic process characteristics, suggests that the deposit is a magmatic [...] Read more.
The discovery of a Cu-Ni sulfide deposit in Langmuri of the Eastern Kunlun Orogenic Belt holds significant geological implications. This study, based on the examination of the metallogenic geological body, metallogenic structure, and metallogenic process characteristics, suggests that the deposit is a magmatic Cu-Ni sulfide deposit formed in the collision of orogenic and post-extension processes of the Late Ordovician. The early mineralization of the deposit was primarily derived from the differentiation of sulfides in the mafic–ultramafic rock (450–439 Ma) of the Late Ordovician, while the late-stage mineralization underwent significant superimposed modification by the magmatic–hydrothermal activity of crustal-contaminated biotite granite (415 Ma). In addition, this article analyzes the measurements of the geochemical studies of sediments, and the magnetic and gravity measurements carried out in the area, focusing on the geochemical and geophysical anomaly characteristics in the study area, and selects favorable exploration areas, which have been confirmed to have multiple mineral bodies. By integrating comprehensive gravity, magnetic, induced polarization, and audio-frequency magnetotelluric profile measurements, this study analyzes delineated mineralized zones and the deep extensions of surface mineral bodies to assess deep mineralization potential and identify deep ore-finding targets. It suggests that diverse and scattered mafic–ultramafic complexes in the Langmuri mining area have a large-scale distribution of ore-bearing rocks in the deep. Through the analysis and inverse of the geophysical data, a deep mineralization predictive model was established in the basic–ultrabasic rock mass. The study presents prospects for the delineation of the deep-seated mineralization in the Langmuri deposit. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

30 pages, 15303 KB  
Article
Discovery and Exploration of the Luming Porphyry Mo Deposit, Northeastern China: Implications for Regional Prospecting
by Bangfei Gao, Minghua Dong, Hui Xie, Zhiliang Liu, Yihang Li and Tong Zhou
Minerals 2024, 14(7), 718; https://doi.org/10.3390/min14070718 - 16 Jul 2024
Cited by 1 | Viewed by 2562
Abstract
Over the past two decades, significant deposit discoveries were made in Northeastern China, including the super-large Chalukou, Daheishan, and Luming porphyry Mo deposits. The discovery of the Luming deposit was accomplished through verification of stream sediment anomalies, with mineralization closely associated with early [...] Read more.
Over the past two decades, significant deposit discoveries were made in Northeastern China, including the super-large Chalukou, Daheishan, and Luming porphyry Mo deposits. The discovery of the Luming deposit was accomplished through verification of stream sediment anomalies, with mineralization closely associated with early Jurassic monzogranite and granite porphyry. Previous studies primarily focused on the mineralization mechanisms of these deposits without adequately addressing the exploration methods and prospecting criteria. This study involved a comprehensive re-evaluation of geological observations, analysis of rock primary halo, gravity and magnetic surveys, and induced polarization surveys conducted during exploration campaigns at the Luming porphyry Mo deposit. The results suggest that hydrothermal breccias play a critical role in controlling the mineralization by forming a central low-grade core within the deposit while the Mo mineralization and hydrothermal alteration exhibit a donut-shaped distribution around it. The primary halo shows a distinct metal zonation moving from a central W-Bi-Mo-(Sb) to a peripheral Cu-Co-Ni and a distal Pb-Zn-Ag-In. The mineralization zone exhibits a low Bouguer gravity anomaly, negative magnetic anomaly, medium to low resistivity, and moderate to high chargeability, indicating the effectiveness of geophysical methods in defining the extent of the ore body. The Luming porphyry Mo deposit and distal skarn-epithermal Pb-Zn mineralization are parts of a porphyry-related magmatic-hydrothermal system. The results of this study offer valuable insights into the genesis of porphyry Mo deposits and their implications for prospecting in the forested region of Northeastern China. Full article
Show Figures

Figure 1

12 pages, 2934 KB  
Article
Data Quality Assessment of Gravity Recovery and Climate Experiment Follow-On Accelerometer
by Zongpeng Pan and Yun Xiao
Sensors 2024, 24(13), 4286; https://doi.org/10.3390/s24134286 - 1 Jul 2024
Cited by 2 | Viewed by 1297
Abstract
Accelerometers are mainly used to measure the non-conservative forces at the center of mass of gravity satellites and are the core payloads of gravity satellites. All kinds of disturbances in the satellite platform and the environment will affect the quality of the accelerometer [...] Read more.
Accelerometers are mainly used to measure the non-conservative forces at the center of mass of gravity satellites and are the core payloads of gravity satellites. All kinds of disturbances in the satellite platform and the environment will affect the quality of the accelerometer data. This paper focuses on the quality assessment of accelerometer data from the GRACE-FO satellites. Based on the ACC1A data, we focus on the analysis of accelerometer data anomalies caused by various types of disturbances in the satellite platform and environment, including thruster spikes, peaks, twangs, and magnetic torque disturbances. The data characteristics and data accuracy of the accelerometer in different operational states and satellite observation modes are analyzed using accelerometer observation data from different time periods. Finally, the data consistency of the accelerometer is analyzed using the accelerometer transplantation method. The results show that the amplitude spectral density of three-axis linear acceleration is better than the specified accuracy (above 10−1 Hz) in the accelerometer’s nominal status. The results are helpful for understanding the characteristics and data accuracy of GRACE-FO accelerometer observations. Full article
(This article belongs to the Special Issue Advanced Inertial Sensors: Advances, Challenges and Applications)
Show Figures

Figure 1

8 pages, 1717 KB  
Article
Using Euler Deconvolution as Part of a Mineral Exploration Project
by G. R. J. Cooper
Minerals 2024, 14(4), 393; https://doi.org/10.3390/min14040393 - 10 Apr 2024
Cited by 3 | Viewed by 1908
Abstract
Mineral exploration projects can make considerable use of a variety of geophysical techniques and datasets, including magnetic and gravity data. The interpretation of large quantities of data can be very time consuming, so semi-automatic interpretation techniques are often used to provide initial estimates [...] Read more.
Mineral exploration projects can make considerable use of a variety of geophysical techniques and datasets, including magnetic and gravity data. The interpretation of large quantities of data can be very time consuming, so semi-automatic interpretation techniques are often used to provide initial estimates of the parameters (primarily the location and depth) of the sources of anomalies. Euler deconvolution is a commonly used interpretation method for potential fields which has a number of advantages over many other techniques, such as working in the presence of remanent magnetisation, and not being restricted to a particular model such as a contact. A second-order version of Euler’s equation is introduced here, which is much less affected by trends in the data than the standard method and additionally produces depth parabolas, which simplify the interpretation of results. The method was applied to aeromagnetic data from a mineral exploration project in Southern Africa and provided plausible results. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop