Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = graphene wet transfer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 6206 KiB  
Article
Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems
by Syed M. Rahman, Md R. Kabir, Tamzeed B. Amin, James M. Mangum, Ashaduzzaman and Paul M. Thibado
Energies 2024, 17(23), 5895; https://doi.org/10.3390/en17235895 - 24 Nov 2024
Viewed by 1256
Abstract
High electrical conductivity and optical transparency make graphene a suitable candidate for photovoltaic-based power systems. In this study, we present the design and fabrication of an array of graphene-based Schottky junction solar cells. Using mainstream semiconductor manufacturing methods, we produced 96 solar cells [...] Read more.
High electrical conductivity and optical transparency make graphene a suitable candidate for photovoltaic-based power systems. In this study, we present the design and fabrication of an array of graphene-based Schottky junction solar cells. Using mainstream semiconductor manufacturing methods, we produced 96 solar cells from a single 100 mm diameter silicon wafer that was precoated with an oxide layer. The fabrication process involves removing the oxide layer over a select region, depositing metal contacts on both the oxide and bare silicon regions, and transferring large-area graphene onto the exposed silicon to create the photovoltaic interface. A single solar cell can provide up to 160 μA of short-circuit current and up to 0.42 V of open-circuit voltage. A series of solar cells are wired to recharge a 3 V battery intermittently, while the battery continuously powers a device. The solar cells and rechargeable battery together form a power system for any 3-volt low-power application. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

16 pages, 4533 KiB  
Article
Structural Defects on Graphene Generated by Deposition of CoO: Effect of Electronic Coupling of Graphene
by Cayetano Hernández-Gómez, Pilar Prieto, Carlos Morales, Aida Serrano, Jan Ingo Flege, Javier Méndez, Julia García-Pérez, Daniel Granados and Leonardo Soriano
Materials 2024, 17(13), 3293; https://doi.org/10.3390/ma17133293 - 3 Jul 2024
Viewed by 1439
Abstract
Understanding the interactions in hybrid systems based on graphene and functional oxides is crucial to the applicability of graphene in real devices. Here, we present a study of the structural defects occurring on graphene during the early stages of the growth of CoO, [...] Read more.
Understanding the interactions in hybrid systems based on graphene and functional oxides is crucial to the applicability of graphene in real devices. Here, we present a study of the structural defects occurring on graphene during the early stages of the growth of CoO, tailored by the electronic coupling between graphene and the substrate in which it is supported: as received pristine graphene on polycrystalline copper (coupled), cleaned in ultra-high vacuum conditions to remove oxygen contamination, and graphene transferred to SiO2/Si substrates (decoupled). The CoO growth was performed at room temperature by thermal evaporation of metallic Co under a molecular oxygen atmosphere, and the early stages of the growth were investigated. On the decoupled G/SiO2/Si samples, with an initial low crystalline quality of graphene, the formation of a CoO wetting layer is observed, identifying the Stranski-Krastanov growth mode. In contrast, on coupled G/Cu samples, the Volmer-Weber growth mechanism is observed. In both sets of samples, the oxidation of graphene is low during the early stages of growth, increasing for the larger coverages. Furthermore, structural defects are developed in the graphene lattice on both substrates during the growth of CoO, which is significantly higher on decoupled G/SiO2/Si samples mainly for higher CoO coverages. When approaching the full coverage on both substrates, the CoO islands coalesce to form a continuous CoO layer with strip-like structures with diameters ranging between 70 and 150 nm. Full article
Show Figures

Figure 1

12 pages, 2172 KiB  
Article
Single Crystal Perovskite/Graphene Self-Driven Photodetector with Fast Response Speed
by Xiao Liu, Xiangshun Geng, Guanhua Dun, Zeshu Wang, Jingbo Du, Dan Xie, Yi Yang and Tianling Ren
Materials 2024, 17(11), 2599; https://doi.org/10.3390/ma17112599 - 28 May 2024
Cited by 2 | Viewed by 1654
Abstract
Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3 [...] Read more.
Recently, the combination of two-dimensional (2D) materials and perovskites has gained increasing attention in optoelectronic applications owing to their excellent optical and electrical characteristics. Here, we report a self-driven photodetector consisting of a monolayer graphene sheet and a centimeter-sized CH3NH3PbBr3 single crystal, which was prepared using an optimized wet transfer method. The photodetector exhibits a short response time of 2/30 μs by virtue of its high-quality interface, which greatly enhances electron–hole pair separation in the heterostructure under illumination. In addition, a responsivity of ~0.9 mA/W and a detectivity over 1010 Jones are attained at zero bias. This work inspires new methods for preparing large-scale high-quality perovskite/2D material heterostructures, and provides a new direction for the future enhancement of perovskite optoelectronics. Full article
Show Figures

Figure 1

14 pages, 9835 KiB  
Article
Controllable Fabrication of Sub-10 nm Graphene Nanopores via Helium Ion Microscopy and DNA Detection
by Zhishan Yuan, Yanbang Lin, Jieming Hu and Chengyong Wang
Biosensors 2024, 14(4), 158; https://doi.org/10.3390/bios14040158 - 27 Mar 2024
Cited by 3 | Viewed by 3928
Abstract
Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, [...] Read more.
Solid-state nanopores have become a prominent tool in the field of single-molecule detection. Conventional solid-state nanopores are thick, which affects the spatial resolution of the detection results. Graphene is the thinnest 2D material and has the highest spatial detection resolution. In this study, a graphene membrane chip was fabricated by combining a MEMS process with a 2D material wet transfer process. Raman spectroscopy was used to assess the quality of graphene after the transfer. The mechanism behind the influence of the processing dose and residence time of the helium ion beam on the processed pore size was investigated. Subsequently, graphene nanopores with diameters less than 10 nm were fabricated via helium ion microscopy. DNA was detected using a 5.8 nm graphene nanopore chip, and the appearance of double-peak signals on the surface of 20 mer DNA was successfully detected. These results serve as a valuable reference for nanopore fabrication using 2D material for DNA analysis. Full article
Show Figures

Figure 1

14 pages, 9570 KiB  
Article
Annealing Effects of ZnO Thin Film on Photocatalytic Performances of Graphene Composites
by Jobair Al Rafi, Yu Kanda, Mitsuhiro Honda and Yo Ichikawa
C 2024, 10(1), 4; https://doi.org/10.3390/c10010004 - 29 Dec 2023
Cited by 2 | Viewed by 3039
Abstract
The hybrid structure of Graphene and ZnO (Graphene/ZnO) is emerging as a novel material used to achieve the high performance of photocatalysis. In this study, we examined the ZnO characteristics that affect the photocatalytic activity of graphene/ZnO using a lamellar structure of graphene [...] Read more.
The hybrid structure of Graphene and ZnO (Graphene/ZnO) is emerging as a novel material used to achieve the high performance of photocatalysis. In this study, we examined the ZnO characteristics that affect the photocatalytic activity of graphene/ZnO using a lamellar structure of graphene and ZnO thin films. Graphene samples were synthesized via chemical vapor deposition, and a typical wet process was applied to transfer them on sputter-deposited ZnO thin films with and without annealing. We confirmed that graphene-deposited ZnO demonstrated more efficient photocatalytic behavior toward the decomposition of methylene blue (as a model organic compound) with ordinary sputtered ZnO thin films. Again, ZnO thin films annealed at 1000 °C in an N2 gas atmosphere with graphene performed better than unannealed films. XRD analysis confirmed that pre-thermal treatment of a ZnO thin film promoted re-crystallization, which had less impact on the photocatalytic improvement. The attachment of graphene to the film is considered to contribute to the enhancement. Raman analysis revealed that the graphene coverage areas on the post-annealed ZnO increased by two times compared to that of an unannealed film where the unannealed film had a higher graphene layer. The results presented in this study demonstrate that an annealed ZnO thin film forms a better attachment with graphene, resulting in a larger graphene coverage area with fewer multilayers, which effectively improves the photocatalytic activity in composite structures. Full article
Show Figures

Graphical abstract

13 pages, 3792 KiB  
Article
Ultraviolet Exposure Improves SERS Activity of Graphene-Coated Ag/ZrO2 Substrates
by Hanna Bandarenka, Aliaksandr Burko, Diana Laputsko, Lizaveta Dronina, Nikolai Kovalchuk, Alise Podelinska, Uladzislau Shapel, Anatoli I. Popov and Dmitry Bocharov
Crystals 2023, 13(11), 1570; https://doi.org/10.3390/cryst13111570 - 3 Nov 2023
Cited by 4 | Viewed by 1510
Abstract
This study reveals a significant improvement in surface-enhanced Raman scattering (SERS) activity of Ag/ZrO2 substrates covered with a few-layer graphene preliminary exposed to ultraviolet (UV) light. The SERS-active substrates are formed by the “silver mirror” deposition of Ag nanoparticles on annealed zirconia [...] Read more.
This study reveals a significant improvement in surface-enhanced Raman scattering (SERS) activity of Ag/ZrO2 substrates covered with a few-layer graphene preliminary exposed to ultraviolet (UV) light. The SERS-active substrates are formed by the “silver mirror” deposition of Ag nanoparticles on annealed zirconia blocks. The film composed of ~3 graphene layers is grown on copper foil by a chemical vapor deposition and then wet-transferred to the SERS-active substrates. The graphene-free Ag/ZrO2 samples are found to provide an enhancement of the Raman scattering from rhodamine 6G (R6G) at a micromolar concentration, which is associated with combined effects from the surface plasmon resonance in the Ag nanoparticles and a charge transfer facilitated by zirconium dioxide. It is revealed that the SERS signal from the analyte molecules can be suppressed by a UV exposure of the Ag/ZrO2 samples due to photocatalytic activity of the wide band gap semiconductor. However, if the samples are covered with a few-layer graphene (Gr/Ag/ZrO2) it prevents the dye molecule decomposition upon the UV treatment and improves SERS activity of the substrates. The 365 nm treatment leads to a 40% increase in the 10–6 M R6G SERS spectrum intensity, while the 254 nm irradiation causes it to rise by 47%, which is explained by different responses from the surface and bulk zirconia crystals to the short and long UV wavelengths. This enhancement is attributed to the distinct responses of surface and in-depth zirconia crystals to varied UV wavelengths and underscores the pivotal role of graphene as a protective and enhancing layer. Full article
(This article belongs to the Special Issue Advanced Technologies in Graphene-Based Materials)
Show Figures

Figure 1

10 pages, 2097 KiB  
Communication
Label-Free Direct Detection of Cylindrospermopsin via Graphene-Enhanced Surface Plasmon Resonance Aptasensor
by Stefan Jaric, Aabha Bajaj, Vladimir Vukic, Ivana Gadjanski, Ibrahim Abdulhalim and Ivan Bobrinetskiy
Toxins 2023, 15(5), 326; https://doi.org/10.3390/toxins15050326 - 10 May 2023
Cited by 6 | Viewed by 2517
Abstract
In this work, we report a novel method for the label-free detection of cyanotoxin molecules based on a direct assay utilizing a graphene-modified surface plasmon resonance (SPR) aptasensor. Molecular dynamic simulation of the aptamer’s interaction with cylindrospermopsin (CYN) reveals the strongest binding sites [...] Read more.
In this work, we report a novel method for the label-free detection of cyanotoxin molecules based on a direct assay utilizing a graphene-modified surface plasmon resonance (SPR) aptasensor. Molecular dynamic simulation of the aptamer’s interaction with cylindrospermopsin (CYN) reveals the strongest binding sites between C18–C26 pairs. To modify the SPR sensor, the wet transfer method of CVD monolayer graphene was used. For the first time, we report the use of graphene functionalized by an aptamer as a bioreceptor in conjunction with SPR for the detection of CYN. In a direct assay with an anti-CYN aptamer, we demonstrated a noticeable change in the optical signal in response to the concentrations far below the maximum tolerable level of 1 µg/L and high specificity. Full article
(This article belongs to the Special Issue Prospective Studies in Survey and Biosurvey of Cyanotoxins In Situ)
Show Figures

Figure 1

11 pages, 2272 KiB  
Article
A Modified Wet Transfer Method for Eliminating Interfacial Impurities in Graphene
by Dong Jin Jang, Mohd Musaib Haidari, Jin Hong Kim, Jin-Yong Ko, Yoonsik Yi and Jin Sik Choi
Nanomaterials 2023, 13(9), 1494; https://doi.org/10.3390/nano13091494 - 27 Apr 2023
Cited by 5 | Viewed by 2832
Abstract
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet [...] Read more.
Graphene has immense potential as a material for electronic devices owing to its unique electrical properties. However, large-area graphene produced by chemical vapor deposition (CVD) must be transferred from the as-grown copper substrate to an arbitrary substrate for device fabrication. The conventional wet transfer technique, which uses FeCl3 as a Cu etchant, leaves microscale impurities from the substrate, and the etchant adheres to graphene, thereby degrading its electrical performance. To address this limitation, this study introduces a modified transfer process that utilizes a temporary UV-treated SiO2 substrate to adsorb impurities from graphene before transferring it onto the final substrate. Optical microscopy and Raman mapping confirmed the adhesion of impurities to the temporary substrate, leading to a clean graphene/substrate interface. The retransferred graphene shows a reduction in electron–hole asymmetry and sheet resistance compared to conventionally transferred graphene, as confirmed by the transmission line model (TLM) and Hall effect measurements (HEMs). These results indicate that only the substrate effects remain in action in the retransferred graphene, and most of the effects of the impurities are eliminated. Overall, the modified transfer process is a promising method for obtaining high-quality graphene suitable for industrial-scale utilization in electronic devices. Full article
(This article belongs to the Special Issue Graphene and Related 2D Materials)
Show Figures

Figure 1

15 pages, 3644 KiB  
Article
Nanostructures Stacked on Hafnium Oxide Films Interfacing Graphene and Silicon Oxide Layers as Resistive Switching Media
by Tauno Kahro, Kristina Raudonen, Joonas Merisalu, Aivar Tarre, Peeter Ritslaid, Aarne Kasikov, Taivo Jõgiaas, Tanel Käämbre, Markus Otsus, Jekaterina Kozlova, Harry Alles, Aile Tamm and Kaupo Kukli
Nanomaterials 2023, 13(8), 1323; https://doi.org/10.3390/nano13081323 - 9 Apr 2023
Viewed by 2627
Abstract
SiO2 films were grown to thicknesses below 15 nm by ozone-assisted atomic layer deposition. The graphene was a chemical vapor deposited on copper foil and transferred wet-chemically to the SiO2 films. On the top of the graphene layer, either continuous HfO [...] Read more.
SiO2 films were grown to thicknesses below 15 nm by ozone-assisted atomic layer deposition. The graphene was a chemical vapor deposited on copper foil and transferred wet-chemically to the SiO2 films. On the top of the graphene layer, either continuous HfO2 or SiO2 films were grown by plasma-assisted atomic layer deposition or by electron beam evaporation, respectively. Micro-Raman spectroscopy confirmed the integrity of the graphene after the deposition processes of both the HfO2 and SiO2. Stacked nanostructures with graphene layers intermediating the SiO2 and either the SiO2 or HfO2 insulator layers were devised as the resistive switching media between the top Ti and bottom TiN electrodes. The behavior of the devices was studied comparatively with and without graphene interlayers. The switching processes were attained in the devices supplied with graphene interlayers, whereas in the media consisting of the SiO2-HfO2 double layers only, the switching effect was not observed. In addition, the endurance characteristics were improved after the insertion of graphene between the wide band gap dielectric layers. Pre-annealing the Si/TiN/SiO2 substrates before transferring the graphene further improved the performance. Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

7 pages, 1727 KiB  
Article
Direct CVD Growth of Transferable 3D Graphene for Sensitive and Flexible SERS Sensor
by Su Han Kim, Shiru Jiang and Sang-Shin Lee
Nanomaterials 2023, 13(6), 1029; https://doi.org/10.3390/nano13061029 - 13 Mar 2023
Cited by 7 | Viewed by 2689
Abstract
Three-dimensional (3D) graphene (Gr) has been successfully grown on a patterned sapphire substrate (PSS) with very low mismatch between Gr and the sapphire nanostructure through metal-catalyst-assisted chemical vapor deposition (CVD). However, the transfer of the 3D Gr film without compromising the structural integrity [...] Read more.
Three-dimensional (3D) graphene (Gr) has been successfully grown on a patterned sapphire substrate (PSS) with very low mismatch between Gr and the sapphire nanostructure through metal-catalyst-assisted chemical vapor deposition (CVD). However, the transfer of the 3D Gr film without compromising the structural integrity of Gr is challenging because of the low etching rate of PSS. For easy and high-quality transfer of 3D Gr, we propose to coat a transfer-support layer (TSL) on PSS before direct CVD growth of 3D Gr. The TSL is directly deposited on PSS by atomic layer deposition without causing any structural changes in the substrate, as verified through atomic force microscopy (AFM). Few-layer 3D Gr is conformally produced along the surface of the TSL/PSS and successfully transferred onto a flexible substrate through wet-etching transfer, as confirmed by scanning electron microscopy, AFM, and Raman spectroscopy studies. We also present the fabrication of a sensitive and flexible surface-enhanced Raman scattering sensor based on 3D Gr on PMMA with high detection performance for low concentrations of R6G (10−9 M). The proposed transfer method with TSL is expected to broaden the use of 3D graphene in next-generation device applications. Full article
(This article belongs to the Special Issue 2D Materials for Advanced Sensors: Fabrication and Applications)
Show Figures

Figure 1

9 pages, 2902 KiB  
Communication
Epitaxial Lateral Overgrowth of GaN on a Laser-Patterned Graphene Mask
by Arūnas Kadys, Jūras Mickevičius, Kazimieras Badokas, Simonas Strumskis, Egidijus Vanagas, Žydrūnas Podlipskas, Ilja Ignatjev and Tadas Malinauskas
Nanomaterials 2023, 13(4), 784; https://doi.org/10.3390/nano13040784 - 20 Feb 2023
Cited by 3 | Viewed by 3246
Abstract
Epitaxial lateral overgrowth (ELO) of GaN epilayers on a sapphire substrate was studied by using a laser-patterned graphene interlayer. Monolayer graphene was transferred onto the sapphire substrate using a wet transfer technique, and its quality was confirmed by Raman spectroscopy. The graphene layer [...] Read more.
Epitaxial lateral overgrowth (ELO) of GaN epilayers on a sapphire substrate was studied by using a laser-patterned graphene interlayer. Monolayer graphene was transferred onto the sapphire substrate using a wet transfer technique, and its quality was confirmed by Raman spectroscopy. The graphene layer was ablated using a femtosecond laser, which produced well-defined patterns without damaging the underlying sapphire substrate. Different types of patterns were produced for ELO of GaN epilayers: stripe patterns were ablated along the [1¯100]sapphire and [112¯0]sapphire  directions, a square island pattern was ablated additionally. The impact of the graphene pattern on GaN nucleation was analyzed by scanning electron microscopy. The structural quality of GaN epilayers was studied by cathodoluminescence. The investigation shows that the laser-ablated graphene can be integrated into the III-nitride growth process to improve crystal quality. Full article
(This article belongs to the Special Issue Graphene and Related 2D Materials)
Show Figures

Figure 1

10 pages, 1956 KiB  
Article
Effects of the Transfer Method and Interfacial Adhesion on the Frictional and Wear Resistance Properties of a Graphene-Coated Polymer
by Temesgen B. Yallew, Prashant Narute, Rakesh S. Sharbidre, Ji Cheol Byen, Jaesung Park and Seong-Gu Hong
Nanomaterials 2023, 13(4), 655; https://doi.org/10.3390/nano13040655 - 8 Feb 2023
Cited by 4 | Viewed by 2510
Abstract
Graphene is a promising candidate used to reduce friction and wear in micro- and nano-device applications owing to its superior mechanical robustness and intrinsic lubrication properties. Herein, we report the frictional and wear resistance properties of a graphene-coated polymer and how they are [...] Read more.
Graphene is a promising candidate used to reduce friction and wear in micro- and nano-device applications owing to its superior mechanical robustness and intrinsic lubrication properties. Herein, we report the frictional and wear resistance properties of a graphene-coated polymer and how they are affected by fabrication processes. The results show that graphene deposited on a polymer substrate effectively improves both frictional and wear resistance properties, and the degree of improvement significantly depends on the graphene transfer method and interfacial adhesion between graphene and the substrate. Dry-transferred graphene showed better improvement than wet-transferred graphene, and the strong adhesion of graphene achieved by imidazole treatment aided the improvement. A combined analysis of surface morphology and scratch trace shows that the graphene transfer method and graphene adhesion dominate the structural integrity of the transferred graphene, and the graphene/substrate interfacial adhesion plays a decisive role in the improvement of both properties by suppressing the delamination of graphene from the substrate during the nanoscratch test, thereby preventing crack formation in graphene and weakening the puckering effect. Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Figure 1

8 pages, 1822 KiB  
Communication
Improvement of Visible Photodetection of Chemical Vapor Deposition-Grown MoS2 Devices via Graphene/Au Contacts
by Yeongsik Hwa and Sang-Soo Chee
Sensors 2022, 22(24), 9687; https://doi.org/10.3390/s22249687 - 10 Dec 2022
Viewed by 2826
Abstract
Two-dimensional (2D) molybdenum disulfide (MoS2) is a promising material for constructing high-performance visible photosensor arrays because of its high mobility and scale-up process. These distinct properties enable the construction of practical optoelectrical sensor arrays. However, contact engineering for MoS2 films [...] Read more.
Two-dimensional (2D) molybdenum disulfide (MoS2) is a promising material for constructing high-performance visible photosensor arrays because of its high mobility and scale-up process. These distinct properties enable the construction of practical optoelectrical sensor arrays. However, contact engineering for MoS2 films is not still optimized. In this work, we inserted a graphene interlayer between the MoS2 films and Au contacts (graphene/Au) via the wet-transfer method to boost the device performance. Using graphene/Au contacts, outstanding electrical properties, namely field-effect mobility of 12.06 cm2/V∙s, on/off current ratio of 1.0 × 107, and responsivity of 610 A/W under illumination at 640 nm, were achieved. These favorable results were from the Fermi-level depinning effect induced by the graphene interlayer. Our results may help to construct large-area photonic sensor arrays based on 2D materials. Full article
(This article belongs to the Special Issue 2D Materials-Based Sensors and Nanoscale Devices)
Show Figures

Figure 1

12 pages, 8194 KiB  
Article
Evaluation of Surface Roughness, Tool Wear and Chip Morphology during Machining of Nickel-Based Alloy under Sustainable Hybrid Nanofluid-MQL Strategy
by Mayur A. Makhesana, Kaushik M. Patel and Prashant J. Bagga
Lubricants 2022, 10(11), 315; https://doi.org/10.3390/lubricants10110315 - 18 Nov 2022
Cited by 24 | Viewed by 3022
Abstract
Nickel-based super alloys exhibit high strength, oxidation and corrosion resistance; however, the machining of these alloys is a challenge that can be overcome with effective cooling/lubrication techniques. The use of a minimum quantity lubrication (MQL) technique is limited to lower cutting parameters due [...] Read more.
Nickel-based super alloys exhibit high strength, oxidation and corrosion resistance; however, the machining of these alloys is a challenge that can be overcome with effective cooling/lubrication techniques. The use of a minimum quantity lubrication (MQL) technique is limited to lower cutting parameters due to the tremendous heat produced during the machining of Inconel 718. Sustainable and eco-friendly machining of Inconel 718 can be attained using MQL and lubricants based on nanofluids because of their improved heat transfer capabilities. For that purpose, the performance of hybrid nanofluid-MQL is examined. In this novel study, graphene and hexagonal boron nitride (hBN) nanoparticles are reinforced with palm oil and delivered to the machining interface using an MQL setup. The machining experiments are performed under the conditions of dry, wet, MQL and MQL with graphene/hBN deposited in palm oil. The machining performance under selected cutting conditions is assessed by analyzing the surface roughness, tool wear, chip morphology and surface quality of the machined workpiece. A comparison of results showcased the effectiveness of hybrid nanofluid-MQL with improvement in surface finish, reduction in tool wear and favorable chip forms concerning all other machining conditions. Full article
Show Figures

Figure 1

17 pages, 4074 KiB  
Article
Green Removal of DUV-Polarity-Modified PMMA for Wet Transfer of CVD Graphene
by Justinas Jorudas, Daniil Pashnev, Irmantas Kašalynas, Ilja Ignatjev, Gediminas Niaura, Algirdas Selskis, Vladimir Astachov and Natalia Alexeeva
Nanomaterials 2022, 12(22), 4017; https://doi.org/10.3390/nano12224017 - 15 Nov 2022
Cited by 3 | Viewed by 4199
Abstract
To fabricate graphene-based high-frequency electronic and optoelectronic devices, there is a high demand for scalable low-contaminated graphene with high mobility. Graphene synthesized via chemical vapor deposition (CVD) on copper foil appears promising for this purpose, but residues from the polymethyl methacrylate (PMMA) layer, [...] Read more.
To fabricate graphene-based high-frequency electronic and optoelectronic devices, there is a high demand for scalable low-contaminated graphene with high mobility. Graphene synthesized via chemical vapor deposition (CVD) on copper foil appears promising for this purpose, but residues from the polymethyl methacrylate (PMMA) layer, used for the wet transfer of CVD graphene, drastically affect the electrical properties of graphene. Here, we demonstrate a scalable and green PMMA removal technique that yields high-mobility graphene on the most common technologically relevant silicon (Si) substrate. As the first step, the polarity of the PMMA was modified under deep-UV irradiation at λ = 254 nm, due to the formation of ketones and aldehydes of higher polarity, which simplifies hydrogen bonding in the step of its dissolution. Modification of PMMA polarity was confirmed by UV and FTIR spectrometry and contact angle measurements. Consecutive dissolution of DUV-exposed PMMA in an environmentally friendly, binary, high-polarity mixture of isopropyl alcohol/water (more commonly alcohol/water) resulted in the rapid and complete removal of DUV-exposed polymers without the degradation of graphene properties, as low-energy exposure does not form free radicals, and thus the released graphene remained intact. The high quality of graphene after PMMA removal was confirmed by SEM, AFM, Raman spectrometry, and by contact and non-contact electrical conductivity measurements. The removal of PMMA from graphene was also performed via other common methods for comparison. The charge carrier mobility in graphene films was found to be up to 6900 cm2/(V·s), demonstrating a high potential of the proposed PMMA removal method in the scalable fabrication of high-performance electronic devices based on CVD graphene. Full article
(This article belongs to the Special Issue Nanoscience and Nanotechnology for Electronics)
Show Figures

Graphical abstract

Back to TopTop