Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = grapevine buds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1428 KiB  
Article
Exogenous Cytokinins and Auxins Affect Double Cropping in Vitis vinifera L. cv. ‘Ortrugo’ Grown in a Temperate Climate: Preliminary Results
by Filippo Del Zozzo, Harsh Tiwari, Ginevra Canavera, Tommaso Frioni and Stefano Poni
Horticulturae 2025, 11(4), 346; https://doi.org/10.3390/horticulturae11040346 - 23 Mar 2025
Viewed by 550
Abstract
The success of double cropping in Vitis vinifera L. cultivated in temperate climates relies on bud forcing efficiency, which requires the prompt unlocking of apical dormant buds with sufficient fruitfulness. Chemical dormancy-breaking strategies need to be tested to enhance dormant bud forcing in [...] Read more.
The success of double cropping in Vitis vinifera L. cultivated in temperate climates relies on bud forcing efficiency, which requires the prompt unlocking of apical dormant buds with sufficient fruitfulness. Chemical dormancy-breaking strategies need to be tested to enhance dormant bud forcing in summer pruning, as hydrogen cyanamide, the most used agent, could damage green organs. This study tested whether foliar applications of cytokinins and auxins could modulate dormancy release, potentially affecting bud forcing dynamics and shoot fruitfulness. The forcing treatments involved trimming primary shoots at the eighth node, removing lateral shoots, and retaining the main leaves and inflorescences. Five treatments were investigated: unforced control, control + 6-Benzyladenine application, forcing (FR), forcing + 6-Benzyladenine application (FBA), and forcing + Naphthaleneacetic acid application (FNAA). Phenological evolution, vegetative and productive parameters, and physiological characteristics have been assessed. Results showed that among the forcing treatments, FBA showed the highest forced/primary shoots ratio (106%), followed by FR (94%) and FNAA (21%). Primary yields were similar across treatments (2.74 kg), but total yield was highest in FBA (4.78 kg, including 2.02 kg from forced grapes), followed by FR (3.62 kg, with 1.09 kg forced). FNAA yielded no forced crop. During forced grapes maturation, photosynthesis rates were higher in forced leaves (11.1 μmol m−2 s−1, as FR and FBA average) than primary leaves (−32%). Forced grapes ripened 47 days later and achieved higher sugar content (21.7 °Brix) and titratable acidity (10.6 g/L) than primary grapes. The findings suggest cytokinins application enhances bud forcing, supporting the feasibility of double cropping, while auxins limited it. Full article
(This article belongs to the Special Issue Orchard Management: Strategies for Yield and Quality)
Show Figures

Graphical abstract

18 pages, 13362 KiB  
Article
MIKC-Type MADS-Box Gene Analysis Reveals the Role of PlSOC1 in Bud Dormancy Transition in Herbaceous Peony
by Qiaoyu Huang, Xiaoxuan Chen, Shuyun Zhong, Shuangzhe Wu, Junhong Guo, Qiyao Wang, Jiahe Li, Danqing Li, Yiping Xia, Jiaping Zhang and Xiaobin Wang
Plants 2025, 14(6), 928; https://doi.org/10.3390/plants14060928 - 15 Mar 2025
Viewed by 863
Abstract
The MIKC-type MADS-box (MIKC) gene family is essential for controlling various plant developmental processes, including flowering time and dormancy transitions. Although the MIKC gene family has been widely studied across different plants, its characterization and functional study in herbaceous peony remain limited. In [...] Read more.
The MIKC-type MADS-box (MIKC) gene family is essential for controlling various plant developmental processes, including flowering time and dormancy transitions. Although the MIKC gene family has been widely studied across different plants, its characterization and functional study in herbaceous peony remain limited. In this study, 19 Paeonia lactiflora Pall. MIKC-type (PlMIKC) genes were identified from the transcriptome of a low-chilling requirement Paeonia lactiflora Pall. cultivar ‘Hang Baishao’. These MIKC genes were categorized into seven clades: six were classified as MIKCC-type, including FUL/AP1, DAM, PI, AGL18, AGL12, AG, and SOC1, and one, AGL30, was classified as MIKC*-type. Notably, the FLC clade genes were absent in Paeonia lactiflora Pall. The PlMIKC genes were predominantly localized to the nucleus, and their sequences contained highly conserved MADS and K-domains. Phylogenetic analysis demonstrated that PlMIKC genes share a strong evolutionary affinity with the MIKC genes from grapevine (Vitis vinifera) and poplar (Populus trichocarpa). A low-temperature-induced bud dormancy transition (BDT) experiment revealed that PlMIKC genes, such as PlFUL and PlDAM, were highly expressed during dormancy maintenance, while PlSOC1, PlAGL12, and PlAGL30 were upregulated during BDT. Additionally, the transient overexpression of PlSOC1 in ‘Hang Baishao’ significantly accelerated BDT and promoted bud break, suggesting that SOC1, traditionally linked to flowering regulation, also plays a key role in dormancy transition. Since limited literature on the MIKC gene family is currently available in herbaceous peony, this study expands the knowledge of the MIKC genes in Paeonia lactiflora Pall. and offers valuable insights into the molecular regulation of bud dormancy in response to low temperatures. Full article
Show Figures

Figure 1

17 pages, 2623 KiB  
Article
Exploring the Grape Agrivoltaic System: Climate Modulation and Vine Benefits in the Puglia Region, Southeastern Italy
by Andrea Magarelli, Andrea Mazzeo and Giuseppe Ferrara
Horticulturae 2025, 11(2), 160; https://doi.org/10.3390/horticulturae11020160 - 3 Feb 2025
Cited by 5 | Viewed by 2615
Abstract
Climate change poses significant challenges to agriculture, a sector with a long-standing tradition in the Mediterranean basin. The region faces altered rainfall patterns, extreme temperatures, aridification, loss of biodiversity, and changes in crop yield and quality. These impacts, combined with intensive farming practices, [...] Read more.
Climate change poses significant challenges to agriculture, a sector with a long-standing tradition in the Mediterranean basin. The region faces altered rainfall patterns, extreme temperatures, aridification, loss of biodiversity, and changes in crop yield and quality. These impacts, combined with intensive farming practices, threaten long-term agricultural sustainability. This study investigates agrivoltaics (AVs), a dual-use technology that integrates solar energy production (photovoltaic panels) with agriculture, as a potential solution to enhance resilience and adaptation of crops. Research at an AV system in Puglia (Southeastern Italy), combined with grapevine (Vitis vinifera L.), assessed soil moisture, temperature, and microclimate conditions together with vine yield and fruitfulness. Results showed that shading from photovoltaic panels increased soil moisture and moderated soil temperature, thus benefiting crops. Vines beneath the panels yielded more grapes (+277%) than in the full sun, confirmed by even the better bud fruitfulness of the shaded canes. While panels had minimal impact on air temperature, they reduced wind speed and vapor pressure deficit, creating a better microenvironment for vines. Spectral analysis revealed an increase in UV and blue light under the panels, potentially affecting photosynthesis. The AV system also produced substantial electricity, more than 90% compared to a ground-mounted system, demonstrating its dual-use application. The higher land equivalent ratio (LER) achieved by the AV system (3.54) confirmed that such systems can be advantageous in areas with a Mediterranean climate, allowing crop and energy production on the same land. Full article
Show Figures

Graphical abstract

16 pages, 4309 KiB  
Review
Floral Regulation: The Significant Virtue of Horticultural Flowering Plants
by Faiza Shafique Khan, Chong-Yang Ning, Zhuang-Zhuang Li, Chun-Gen Hu and Jin-Zhi Zhang
Horticulturae 2025, 11(1), 102; https://doi.org/10.3390/horticulturae11010102 - 17 Jan 2025
Cited by 1 | Viewed by 1636
Abstract
Flowering is a complex developmental mechanism and is essential for successful reproduction in plants. Complex regulatory networks transform vegetative shoot apical meristems into inflorescence meristems. Further, floral meristems transition to floral bud outgrowth and flowering. Floral regulatory pathways are independently involved in flowering, [...] Read more.
Flowering is a complex developmental mechanism and is essential for successful reproduction in plants. Complex regulatory networks transform vegetative shoot apical meristems into inflorescence meristems. Further, floral meristems transition to floral bud outgrowth and flowering. Floral regulatory pathways are independently involved in flowering, and most of what we know about genetic regulation comes from model plants. Despite the advancements in plant development biology, the understanding of molecular mechanisms and floral signals in horticultural plants is complex. Studies on gene regulatory mechanisms provide a global view of flowering in horticultural plants. In this paper, we discuss the flowering pathways converging on complex gene regulatory mechanisms and summarize the recent findings in horticultural plants in order to help us understand how they regulate flowering and provide an update for future research. Full article
(This article belongs to the Special Issue Color Formation and Regulation in Horticultural Plants)
Show Figures

Figure 1

26 pages, 19399 KiB  
Article
The Status of Wild Grapevine (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) Populations in Georgia (South Caucasus)
by Gabriele Cola, Gabriella De Lorenzis, Osvaldo Failla, Nikoloz Kvaliashvili, Shengeli Kikilashvili, Maia Kikvadze, Londa Mamasakhlisashvili, Irma Mdinaradze, Ramaz Chipashvili and David Maghradze
Plants 2025, 14(2), 232; https://doi.org/10.3390/plants14020232 - 15 Jan 2025
Cited by 1 | Viewed by 1428
Abstract
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine [...] Read more.
Repeated expeditions across various regions of Georgia in the early 2000s led to the identification of 434 wild grapevine individuals (Vitis vinifera L. subsp. sylvestris (C.C. Gmel.) Hegi) across 127 different sites, with 45% of these sites containing only a single vine and only 7% more than 9 vines. A total of 70 accessions were propagated in a germplasm collection, 41 of them were descripted from the ampelographic point of view and 32 from the phenological one. The geographical and ecological analysis confirmed that wild grapevines primarily grow in humid environments with warm and fully humid climates, often near rivers. They favor deep, fertile, and evolved soils, mainly alluvial and cinnamonic types (80%), with a marginal presence on strongly eroded soils. Their main natural vegetations are forests and open woodlands, with some individuals in the Southeast found in steppes. The altitudinal range spans from 0 to 1200 m, with 80% of vines distributed between 400 and 900 m. The phenological analysis revealed significant differences among the accessions but no difference among populations, with only a slight variation in bud-break timing, indicating a high level of synchronicity overall. Flowering timing proved to be the most uniform stage, suggesting minimal environmental pressure on genetic adaptation. The mature leaf morphology exhibited significant polymorphism, though leaves were generally three- or five-lobed, weak-wrinkling, and -blistering, with a low density of hairs. Bunch and berry morphology were more uniform. Bunches were consistently very small, cylindrical, and never dense or winged. Berries were also very small, mostly globular, always blue-black in color, and non-aromatic. A striking feature was the frequency of red flesh coloration, which ranged from weak to strong, with uncolored flesh being rare. The Georgian population of wild grapevines was found to be fragmented, often consisting of scattered single individuals or small groups. Therefore, we believe it is urgent for Georgia to implement specific protection measures to preserve this vital genetic resource. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

13 pages, 264 KiB  
Article
Primary Assessment of Grapevine Cultivars’ Bud Fertility with Diverse Ancestry Following Spring Frost Under Central Poland Environmental Conditions
by Jerzy Lisek
Agriculture 2025, 15(1), 108; https://doi.org/10.3390/agriculture15010108 - 5 Jan 2025
Cited by 2 | Viewed by 1477
Abstract
Vine damage caused by spring frosts remains one of the main factors threatening grapevine yields in Central European countries, such as Poland. April frosts that followed a very early and warm spring in 2024 caused massive damage to young shoots and primary buds [...] Read more.
Vine damage caused by spring frosts remains one of the main factors threatening grapevine yields in Central European countries, such as Poland. April frosts that followed a very early and warm spring in 2024 caused massive damage to young shoots and primary buds after budburst. This study was conducted on vines of fifty cultivars belonging to Vitis vinifera, interspecific hybrids, and inter-intra- or intra-interspecific hybrids (classified by some sources as V. vinifera), which were obtained via field collection. The aim of this study was to obtain primary results regarding the fertility of secondary, basal, and latent buds. The presence of inflorescences in these buds determines the ability to compensate for yield, i.e., produce a crop after damage to the primary buds. The tested cultivars, which were within the three groups mentioned above, differed significantly in their ability to compensate for yield. The majority of the analyzed V. vinifera cultivars were characterized by lower fertility in their secondary, basal, and latent buds and a reduced ability to compensate for yield after post-budburst freeze damage compared to interspecific hybrids and inter-intra- or intra-interspecific hybrids. Future research, with more comprehensive data collected over a longer period, will provide stronger suggestions for suitable cultivars in regions at risk of spring frost damage. Full article
(This article belongs to the Special Issue Genetic Diversity Assessment and Phenotypic Characterization of Crops)
15 pages, 4222 KiB  
Communication
Could 101-14 Mgt Rootstock Affect Post-Spring Frost Vine Developing? Preliminary Findings
by Gastón Gutiérrez-Gamboa, Cristóbal Palacios-Peralta, Nicolás Verdugo-Vásquez, Marjorie Reyes-Díaz, Ariel Muñoz and Alejandra Ribera-Fonseca
Horticulturae 2024, 10(8), 880; https://doi.org/10.3390/horticulturae10080880 - 20 Aug 2024
Cited by 2 | Viewed by 1524
Abstract
(1) Background: Spring frost damage is a common phenomenon that occurs in Southern Chile that considerably affects vine productivity and grape quality. (2) Methods: A field trial was conducted in order to study vine phenology and berry physicochemical parameters in Chardonnay, Sauvignon Blanc [...] Read more.
(1) Background: Spring frost damage is a common phenomenon that occurs in Southern Chile that considerably affects vine productivity and grape quality. (2) Methods: A field trial was conducted in order to study vine phenology and berry physicochemical parameters in Chardonnay, Sauvignon Blanc and Pinot Noir ungrafted and grafted (onto 101-14 Mgt rootstock) grapevines after a spring frost. This event killed the totality of primary bud shoots when the vines reached the phenological stage of unfolded leaves. (3) Results: From budburst, to flowering of secondary bud shoots, ungrafted Sauvignon Blanc grapevines presented an advanced phenology, whereas 101-14 Mgt rootstock tended to advance the maturity of Pinot Noir grapevines from flowering to ripening of berries. At harvest, berries from secondary buds of vines grafted onto 101-14 Mgt rootstock showed higher soluble solids than the ones from ungrafted Chardonnay and Sauvignon Blanc vines. High total phenolic content was found in berries from secondary buds of the grafted vines, compared to the ones from the ungrafted vines. Berry soluble solids variability tended to statistically decrease toward harvest in the studied plant materials, and the maximum coefficient of variation for soluble solids, berry weight, berry firmness and berry size reached 9.5%, 25.9%, 18.6% and 8.9%, respectively. (4) Conclusions: These preliminary results may be interesting for the Southern Chilean viticulturists since it seems that 101-14 Mgt rootstock could affect phenology and grape berry maturity of grapevines established in the Cautín Valley after spring frost damage. Full article
(This article belongs to the Topic Effects of Climate Change on Viticulture (Grape))
Show Figures

Figure 1

21 pages, 1509 KiB  
Article
Improving Water Use Efficiency, Yield, and Fruit Quality of Crimson Seedless Grapevines under Drought Stress
by Mohamed E. A. El-Sayed, Amr A. Hammam, Ahmed S. K. Fayed, Nazih Y. Rebouh and Rasha M. Badr Eldin
Horticulturae 2024, 10(6), 576; https://doi.org/10.3390/horticulturae10060576 - 1 Jun 2024
Viewed by 1777
Abstract
Drought stress is a group of abiotic stresses that affects plant growth and yield production. A field experiment over two successive seasons (2021–2022 and 2022–2023) in sand soil was conducted to investigate the integration effect of deficit irrigation, soil amendment “hundzsoil”, and the [...] Read more.
Drought stress is a group of abiotic stresses that affects plant growth and yield production. A field experiment over two successive seasons (2021–2022 and 2022–2023) in sand soil was conducted to investigate the integration effect of deficit irrigation, soil amendment “hundzsoil”, and the spraying of proline on the water use efficiency (WUE), yield, and fruit quality of 8-year-old Crimson seedless table grapes. Four application rates of soil amendment (0, 2, 4, and 6 kg hundzsoil /vine) were added during the dormancy period, and four irrigation levels at 125, 100, 75, and 60% of the field capacity were applied just before flowering until harvest. Proline at two levels (0 and 500 ppm) was applied as a foliar spray. Parameters such as bud fertility, weight of 100 berries, juice volume, and cluster number were positively affected by irrigation at 75% FC along with applying hundzsoil at 2 and 4 kg/vine under proline spray in both seasons. Irrigation at the 125% FC level with a 6 kg hundzsoil application under proline spray resulted in the highest yield, berries number, cluster length, cluster weight, and total anthocyanin in both seasons. The TSS/acidity ratio was significantly and positively affected by deficit irrigation (60% FC level) under hundzsoil at a rate of 4 kg alongside proline spray. Reducing irrigation to 60% FC without hundzsoil and proline spray negatively affected numerous growth parameters and the yield. However, irrigation at 60% FC alongside 6 kg of hundzsoil and proline showed the highest IWUE in both seasons. Proline spray was a key factor in conserving water used for irrigation. This study recommends using deficit irrigation alongside hundzsoil application under proline spray as an adequate strategy for water use efficiency and improving the yield and fruit quality of Crimson seedless grapevines cultivated in sand soil. Full article
Show Figures

Figure 1

8 pages, 803 KiB  
Communication
Post-Frost Pruning Does Not Impact Vine Yield and Berry Composition in Young Grapevines
by Suraj Kar, Ricky W. Clark, Ian T. Ivey, Joseph B. DeShields, Jeremy Cusimano and Alexander D. Levin
Horticulturae 2024, 10(5), 505; https://doi.org/10.3390/horticulturae10050505 - 14 May 2024
Cited by 1 | Viewed by 1695
Abstract
Spring frost is a perennial and widespread problem across many cool climatic and high-elevation winegrowing regions of the world. Vitis vinifera L. cv. Pinot noir is an early budding cultivar; thus, it is particularly susceptible to late-spring frost damage. In late April 2022, [...] Read more.
Spring frost is a perennial and widespread problem across many cool climatic and high-elevation winegrowing regions of the world. Vitis vinifera L. cv. Pinot noir is an early budding cultivar; thus, it is particularly susceptible to late-spring frost damage. In late April 2022, an advective frost event occurred throughout Western Oregon winegrowing regions and subsequently damaged a substantial number of commercial vineyards. Growers often are unsure of how to manage grapevines after a frost event. Limited research has shown little-to-no effect of pruning vs. non-pruning strategies on vine yield and productivity. In addition, pruning a frost-affected vineyard incurs additional labor costs that may offset the cost–benefit balance for the grower. Therefore, in this experiment, the effect of two different post-frost pruning treatments (cane pruning and spur pruning) on vine yield, berry composition, and vine vegetative growth were tested. No effect of post-frost pruning treatments on vine yield, berry composition, and vine vegetative characteristics was observed. Cluster numbers, cluster weights, and berries per cluster only differed between cane- vs. spur-pruned vines. Therefore, leaving frost-affected vines alone and a scaled-back vineyard management practice could be practical for economic reasons. Full article
(This article belongs to the Topic Effects of Climate Change on Viticulture (Grape))
Show Figures

Figure 1

23 pages, 3497 KiB  
Article
Plant Biostimulants Enhance Bud Break in Vitis vinifera Crimson Seedless Using Combination Treatments
by Nicole C. Venter, Eunice Avenant, Theunis N. Kotze, Paul N. Hills and John P. Moore
Horticulturae 2024, 10(5), 471; https://doi.org/10.3390/horticulturae10050471 - 4 May 2024
Viewed by 2679
Abstract
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest [...] Read more.
The rest-breaking agent, hydrogen cyanamide (HC), can substitute insufficient chill unit accumulation in Vitis vinifera and induce uniform bud-break; however, due to its toxicity it is being banned. In South Africa, red seedless grapes, including V. vinifera Crimson Seedless (CS), are the largest table grape export group; therefore, replacing HC in V. vinifera CS is crucial. This study aimed to confirm the molecular triggers induced by HC and assess the bud-break-enhancing abilities of commercial plant biostimulants. Forced bud-break assay experiments using V. vinifera CS single-node cuttings and a small-scale field trial were performed. Results demonstrated that increased chill unit accumulation (CUA) reduced HC efficacy. Bud-break started between 10 and 20 days after treatment, irrespective of final CUA. The small-scale field trial found that HC 3% and biostimulants were similar to the negative control. The treatment of dormant grapevine compound buds with nitric oxide (NO), hydrogen peroxide (H2O2), and hypoxia trigger dormancy release to a certain extent, supporting the molecular models proposed for HC action. NO, H2O2, and hypoxia, in combination with PBs, may potentially replace HC; however, this needs to be confirmed in future experiments. Full article
(This article belongs to the Special Issue The Role of Biostimulants in Horticultural Crops)
Show Figures

Figure 1

20 pages, 10638 KiB  
Article
Grapevine Branch Recognition and Pruning Point Localization Technology Based on Image Processing
by Zhangnan Chen, Yaxiong Wang, Siyuan Tong, Chongchong Chen and Feng Kang
Appl. Sci. 2024, 14(8), 3327; https://doi.org/10.3390/app14083327 - 15 Apr 2024
Cited by 4 | Viewed by 1913
Abstract
The identification of branches and bud points is the key to intelligent pruning of dormant grapevine branches and precise positioning of the pruning point on the branch is an important prerequisite for robotic arm pruning. This study takes Cabernet Sauvignon wine grapes as [...] Read more.
The identification of branches and bud points is the key to intelligent pruning of dormant grapevine branches and precise positioning of the pruning point on the branch is an important prerequisite for robotic arm pruning. This study takes Cabernet Sauvignon wine grapes as the experimental object and proposes a depth image-based pruning point localization algorithm based on pruning rules. In order to solve the problem of bud recognition in complex backgrounds, this study adopts a detection method that combines semantic segmentation and target detection. Firstly, the semantic segmentation algorithm PSP-net is used to separate the branches and the main stem from the background and the separated image undergoes two kinds of processing: one is to skeletonize it using the Zhang–Suen thinning algorithm and the other is to identify the buds and obtain the center coordinates of the buds using the target-detection method YOLOv5; finally, combining with the depth information of the depth image, we use the coordinates of the buds to determine the location of the pruning point located on the skeleton image. The results show that PSP-net has better results in segmentation performance with mIoU reaching 83.73%. YOLOv5 performs better in target detection with mAP reaching 81.06% and F1 reaching 0.80. The accuracy of this method in determining the location of pruning points reaches 82.35%. It can provide a method for fruit tree pruning robots to determine the location of pruning points. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

15 pages, 1549 KiB  
Article
Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change
by Francisco Emmanuel Espinosa-Roldán, Andrés García-Díaz, Eva Raboso, Julia Crespo, Félix Cabello, Fernando Martínez de Toda and Gregorio Muñoz-Organero
Horticulturae 2024, 10(4), 353; https://doi.org/10.3390/horticulturae10040353 - 3 Apr 2024
Cited by 2 | Viewed by 1499
Abstract
In this study, a total of 34 Spanish minority varieties were studied during four seasons from 2020 to 2023, and their behavior was characterized according to their main phenological stages (bud break, bloom, veraison, and maturity) and complete cycle. We focused on the [...] Read more.
In this study, a total of 34 Spanish minority varieties were studied during four seasons from 2020 to 2023, and their behavior was characterized according to their main phenological stages (bud break, bloom, veraison, and maturity) and complete cycle. We focused on the varieties prospected in the central Spanish plateau and conserved in the “El Encín” grapevine collection, aiming to identify the potential for adaptation of these varieties and for them to be considered by winegrowers as an alternative to current climate change conditions. The growing degree days required for the expression of the phenological stage, and the duration of each stage, were compiled. Characteristics of oenological interest were also monitored, such as °Brix, pH, and titratable acidity in must at the time of harvest. This study was carried out in years with atypical snowfall and cold spells (winter 2021), as well as with heat waves (summer 2022), with average temperatures 3–5 °C higher than normal and absolute maximum temperatures over 40 °C. Both cases also exceeded records of historical series (1957–2019). Veraison has been identified as the stage most susceptible to damage from high temperatures, in addition to the maturation and duration of the complete cycle. The varieties were classified into five groups according to the duration of each phenological stage (very early, early, medium, late, and very late). Some varieties with late or very late maturation and with must characteristics of 20–23 °Brix, 3–5 g/L of titratable acidity, and pH 3.5–4.5, as well as others, retained stability in their phenological periodicity and must quality. The results suggest that special attention should be given to thoroughly evaluating these varieties, and that the strategies contemplated should be considered as a feasible cultivation alternative in viticulture to mitigate the effects of climate change. Full article
(This article belongs to the Special Issue Vine Cultivation in an Increasingly Warming World)
Show Figures

Figure 1

20 pages, 2718 KiB  
Article
Micellar and Solvent Loan Chemical Extraction as a Tool for the Development of Natural Skin Care Cosmetics Containing Substances Isolated from Grapevine Buds
by Zofia Hordyjewicz-Baran, Tomasz Wasilewski, Magdalena Zarębska, Natalia Stanek-Wandzel, Ewa Zajszły-Turko, Magdalena Tomaka and Martyna Zagórska-Dziok
Appl. Sci. 2024, 14(4), 1420; https://doi.org/10.3390/app14041420 - 8 Feb 2024
Cited by 2 | Viewed by 2108
Abstract
The present study aimed to evaluate the possibility of using micellar and solvent loan chemical extraction (LCE) to isolate valuable components from grapevine leaf buds, subsequently utilizing them to prepare functional and safe-to-use cosmetic preparations, specifically facial serums. An aqueous solution of polyglyceryl-4 [...] Read more.
The present study aimed to evaluate the possibility of using micellar and solvent loan chemical extraction (LCE) to isolate valuable components from grapevine leaf buds, subsequently utilizing them to prepare functional and safe-to-use cosmetic preparations, specifically facial serums. An aqueous solution of polyglyceryl-4 laurate/sebacate and polyglyceryl-6 caprylate/caprate was employed for a micellar LCE, while an aqueous solution of 1,3-propanediol was used for a solvent LCE. Importantly, the extraction medium was exclusively comprised of components from the designed final cosmetic product. Consequently, no additional substances were present in the cosmetics developed, and the formulation was notably enhanced by compounds extracted from grapevine buds. The antioxidant properties and compound characterization of the obtained micellar (SurfE) and solvent (SolvE) extracts based on grapevine buds were tested and compared. UPLC-MS/MS results indicated that the extracts were rich in phenolic and flavonoid compounds, exhibiting antioxidant activity as measured using the DPPH and ABTS scavenging ability. The extracts were used to prepare model facial serums, which underwent evaluation based on fundamental functionality-related parameters (e.g., rheological characteristics and color) and their impact on the skin through cytotoxicity assessment. The results demonstrated that facial serums with extracts based on grapevine buds provided safe, natural cosmetics. Full article
(This article belongs to the Special Issue Development of Innovative Cosmetics)
Show Figures

Figure 1

18 pages, 4415 KiB  
Article
Death and Dying: Grapevine Survival, Cold Hardiness, and BLUPs and Winter BLUEs in North Dakota Vineyards
by Bülent Köse, Andrej Svyantek, Venkateswara Rao Kadium, Matthew Brooke, Collin Auwarter and Harlene Hatterman-Valenti
Life 2024, 14(2), 178; https://doi.org/10.3390/life14020178 - 25 Jan 2024
Cited by 4 | Viewed by 1834
Abstract
A total of fourteen diverse, interspecific hybrid grapevines (Vitis spp.) were evaluated for their adaptability to North Dakota winter conditions using differential thermal analysis (DTA) of low-temperature exotherms (LTE) and bud cross-sectional assessment of survival techniques. This research was conducted in two [...] Read more.
A total of fourteen diverse, interspecific hybrid grapevines (Vitis spp.) were evaluated for their adaptability to North Dakota winter conditions using differential thermal analysis (DTA) of low-temperature exotherms (LTE) and bud cross-sectional assessment of survival techniques. This research was conducted in two vineyard locations in eastern North Dakota. This work demonstrates the use of DTA for monitoring and selecting cultivars capable of withstanding sub-zero temperatures. These results were assessed for quantitative genetic traits. High heritability was observed for bud LTE traits and may thus be a useful target for cold hardiness breeding programs; however, it is necessary to ensure that variance is reduced when pooling multiple sample events. After DTA sampling, grapevines were assessed for survival of primary and secondary dormant buds using cross-sectional visual evaluation of death. ‘Valiant’ had the greatest primary bud survival (68%), followed by ‘Frontenac gris’, ‘Crimson Pearl’, and ‘King of the North’. These varieties are among those with potential for production in eastern North Dakota’s environment. The newly evaluated relationships between traits and the heritability of DTA results provide valuable tools to grapevine breeders for the development of cold-tolerant genotypes for future climatic challenges. Full article
(This article belongs to the Special Issue Effects of Environmental Factors on Challenges of Plant Breeding)
Show Figures

Graphical abstract

15 pages, 2509 KiB  
Article
Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine (Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction
by Ranjith Pathirana and Francesco Carimi
Plants 2023, 12(24), 4126; https://doi.org/10.3390/plants12244126 - 11 Dec 2023
Cited by 5 | Viewed by 2859
Abstract
Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the [...] Read more.
Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the only pathway for the genetic modification of grapevines through transformation. The single-cell origin of somatic embryos makes them an ideal explant for mutation breeding as the resulting mutants will be chimera-free. In the present research, two combinations of plant growth regulators and different explants from flower buds at two stages of maturity were tested in regard to the efficiency of callusing and embryo formation from the callus produced in three white grape cultivars. Also, the treatment of somatic embryos with the chemical mutagen ethyl methanesulfonate (EMS) was optimised. Medium 2339 supplemented with β-naphthoxyacetic acid (5 μM) and 6-benzylaminopurine (BAP—9.0 μM) produced significantly more calluses than medium 2337 supplemented with 2,4-dichlorophenoxyacetic acid (4.5 µM) and BAP (8.9 µM) in all explants. The calluses produced on medium 2337 were harder and more granular and produced more SEs. Although the stage of the maturity of floral bud did not have a significant effect on the callusing of the explants, calluses produced from immature floral bud explants in the premeiotic stage produced significantly more SEs than those from more mature floral buds. Overall, immature ovaries and cut floral buds exposing the cut ends of filaments, style, etc., tested for the first time in grapevine SE, produced the highest percentage of embryogenic calluses. It is much more efficient to cut the floral bud and culture than previously reported explants such as anthers, ovaries, stigmas and styles during the short flowering period when the immature flower buds are available. When the somatic embryos of the three cultivars were incubated for one hour with 0.1% EMS, their germination was reduced by 50%; an ideal treatment considered to obtain a high frequency of mutations for screening. Our research findings will facilitate more efficient SE induction in grapevines and inducing mutations for improving individual traits without altering the genetic background of the cultivar. Full article
Show Figures

Figure 1

Back to TopTop