Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = graded index photonic crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 1660 KiB  
Proceeding Paper
Chromatic Dispersion of Chalcogenide Glass-Based Photonic Crystal Fiber with Ultra-High Numerical Aperture
by Jyoti Chauhan, Yogita Kalra and Ravindra Kumar Sinha
Phys. Sci. Forum 2024, 10(1), 8; https://doi.org/10.3390/psf2024010008 - 20 Feb 2025
Cited by 1 | Viewed by 420
Abstract
We report a graded index chalcogenide glass (As2Se3)-based photonic crystal fiber having a solid core. The proposed PCF has ultra-high numerical aperture value reaching up to 1.82 for the explored wavelength range of 1.8–10 μm in the mid-infrared region. [...] Read more.
We report a graded index chalcogenide glass (As2Se3)-based photonic crystal fiber having a solid core. The proposed PCF has ultra-high numerical aperture value reaching up to 1.82 for the explored wavelength range of 1.8–10 μm in the mid-infrared region. The value of numerical aperture increases as the pitch increase from 0.92 to 0.96 to 1 micrometer, at a particular value of wavelength. With this high value of numerical aperture, a PCF is capable of gathering a high amount of light in its core. With negative dispersion reaching up to −2000 ps/km/nm at 4.8 µm, the fiber acts as a dispersion-compensating fiber, with confinement loss being close to zero for higher values of wavelength. The confinement loss of the designed PCF is also significantly less and it decreases as the wavelength increases. Also, the value of dispersion is significantly less due to the regular variation in the size of the holes in the transverse direction, as compared to the design when there is no gradation. The design has been optimized with an appropriate value of the perfectly matched layer to achieve the best results. Full article
(This article belongs to the Proceedings of The 1st International Online Conference on Photonics)
Show Figures

Figure 1

11 pages, 932 KiB  
Article
Nonreciprocal Propagation of Nematicons
by Enrique Calisto and Gaetano Assanto
Photonics 2023, 10(10), 1144; https://doi.org/10.3390/photonics10101144 - 12 Oct 2023
Cited by 3 | Viewed by 1356
Abstract
We model two-port nonlinear optical isolators based on solitary waveguides in planar cells with non-homogeneously oriented liquid crystals in the nematic phase. In a planar layout with molecular anchoring linearly changing along the sample length or across its width, we conduct numerical experiments [...] Read more.
We model two-port nonlinear optical isolators based on solitary waveguides in planar cells with non-homogeneously oriented liquid crystals in the nematic phase. In a planar layout with molecular anchoring linearly changing along the sample length or across its width, we conduct numerical experiments on the excitation and propagation of reorientational solitons—“nematicons”—launched in opposite directions from the two ends of the cell. Specifically, in the Kerr-like diffractionless regime corresponding to graded-index waveguides for copolarized weak signals, we investigate the non-overlapping trajectories of forward and backward propagating wavepackets. The resulting non-specular transmission entails optical isolation and diode-like behavior as light propagating backwards does not reach the forward input. The response dependencies on input power, range of angular modulation, and one-photon losses are analyzed with reference to parameters of realistic soft matter. Full article
(This article belongs to the Special Issue Liquid Crystals in Photonics)
Show Figures

Figure 1

14 pages, 5428 KiB  
Article
Graded-Index Active Layer for Efficiency Enhancement in Polymer Solar Cell
by M. A. Morsy and Khalid Saleh
Energies 2023, 16(9), 3933; https://doi.org/10.3390/en16093933 - 6 May 2023
Cited by 4 | Viewed by 1648
Abstract
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the [...] Read more.
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the polymer solar cells (PSCs) to increase the photocurrent and enhance solar efficiency compared to the existing PBDB-T:PZT and PBDB-T:PZT-γ. In addition, a two-dimensional photonic crystal (2D-PhC) structure was utilized as a light-trapping anti-reflection coating (ARC) thin film based on indium tin oxide (ITO) to reduce incident light reflection and enhance its absorption. The dimensions of the cell layers were optimized to achieve the maximum power-conversion efficiency (PCE). Furthermore, the design and simulations were conducted from a 300 nm to 1200 nm wavelength range using a finite difference time-domain (FDTD) analysis. One of the most important results expected from the study was the design of a nano solar cell at (64 µm)2 with a PCE of 25.1%, a short-circuit current density (JSC) of 27.74 mA/cm2, and an open-circuit voltage (VOC) of 0.986 V. Full article
Show Figures

Figure 1

25 pages, 5437 KiB  
Article
Towards a Rationalization of Ultrafast Laser-Induced Crystallization in Lithium Niobium Borosilicate Glasses: The Key Role of the Scanning Speed
by Elisa Muzi, Maxime Cavillon, Matthieu Lancry, François Brisset, Ruyue Que, Diego Pugliese, Davide Janner and Bertrand Poumellec
Crystals 2021, 11(3), 290; https://doi.org/10.3390/cryst11030290 - 15 Mar 2021
Cited by 15 | Viewed by 3573
Abstract
Femtosecond (fs)-laser direct writing is a powerful technique to enable a large variety of integrated photonic functions in glass materials. One possible way to achieve functionalization is through highly localized and controlled crystallization inside the glass volume, for example by precipitating nanocrystals with [...] Read more.
Femtosecond (fs)-laser direct writing is a powerful technique to enable a large variety of integrated photonic functions in glass materials. One possible way to achieve functionalization is through highly localized and controlled crystallization inside the glass volume, for example by precipitating nanocrystals with second-order susceptibility (frequency converters, optical modulators), and/or with larger refractive indices with respect to their glass matrices (graded index or diffractive lenses, waveguides, gratings). In this paper, this is achieved through fs-laser-induced crystallization of LiNbO3 nonlinear crystals inside two different glass matrices: a silicate (mol%: 33Li2O-33Nb2O5-34SiO2, labeled as LNS) and a borosilicate (mol%: 33Li2O-33Nb2O5-13SiO2-21B2O3, labeled as LNSB). More specifically, we investigate the effect of laser scanning speed on the crystallization kinetics, as it is a valuable parameter for glass laser processing. The impact of scanning energy and speed on the fabrication of oriented nanocrystals and nanogratings during fs-laser irradiation is studied.Fs-laser direct writing of crystallized lines in both LNS and LNSB glass is investigated using both optical and electron microscopy techniques. Among the main findings to highlight, we observed the possibility to maintain crystallization during scanning at speeds ~5 times higher in LNSB relative to LNS (up to ~600 µm/s in our experimental conditions). We found a speed regime where lines exhibited a large polarization-controlled retardance response (up to 200 nm in LNSB), which is attributed to the texturation of the crystal/glass phase separation with a low scattering level. These characteristics are regarded as assets for future elaboration methods and designs of photonic devices involving crystallization. Finally, by using temperature and irradiation time variations along the main laser parameters (pulse energy, pulse repetition rate, scanning speed), we propose an explanation on the origin of (1) crystallization limitation upon scanning speed, (2) laser track width variation with respect to scanning speed, and (3) narrowing of the nanogratings volume but not the heat-affected volume. Full article
(This article belongs to the Special Issue Laser-Induced Crystallization)
Show Figures

Graphical abstract

8 pages, 3285 KiB  
Article
Generation of over 1000 Diffraction Spots from 2D Graded Photonic Super-Crystals
by Safaa Hassan, Yan Jiang, Khadijah Alnasser, Noah Hurley, Hualiang Zhang, Usha Philipose and Yuankun Lin
Photonics 2020, 7(2), 27; https://doi.org/10.3390/photonics7020027 - 10 Apr 2020
Cited by 4 | Viewed by 3514
Abstract
For the first time, we are able to generate over 1000 diffraction spots from a graded photonic super-crystal with a unit super-cell size of 12a × 12a where a is the lattice constant and hole radii are gradually changed in dual directions. The [...] Read more.
For the first time, we are able to generate over 1000 diffraction spots from a graded photonic super-crystal with a unit super-cell size of 12a × 12a where a is the lattice constant and hole radii are gradually changed in dual directions. The diffraction pattern from the graded photonic super-crystal reveals unique diffraction properties. The first order diffractions of (±1,0) or (0,±1) disappear. Fractional diffraction orders are observed in the diffraction pattern inside a square with vertices of (1,1), (1,−1), (−1,−1) and (−1,−1). The fractional diffraction can be understood from lattices with a period of a. However, a dual-lattice model is considered in order to explain higher-order diffractions. E-field intensity simulations show a coupling and re-distribution among fractional orders of Bloch waves. There are a total of 12 × 12 spots in E-field intensity in the unit supercell corresponding to 12 × 12 fractional diffraction orders in the diffraction pattern and 12 × 12 fractional orders of momentum in the first Brillouin zone in k-space. Full article
(This article belongs to the Special Issue Advanced Optical Materials and Devices)
Show Figures

Figure 1

9 pages, 2791 KiB  
Article
Extraordinary Light-Trapping Enhancement in Silicon Solar Cell Patterned with Graded Photonic Super-Crystals
by Safaa Hassan, David Lowell, Murthada Adewole, David George, Hualiang Zhang and Yuankun Lin
Photonics 2017, 4(4), 50; https://doi.org/10.3390/photonics4040050 - 20 Dec 2017
Cited by 11 | Viewed by 4573
Abstract
Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs) with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by [...] Read more.
Light-trapping enhancement in newly discovered graded photonic super-crystals (GPSCs) with dual periodicity and dual basis is herein explored for the first time. Broadband, wide-incident-angle, and polarization-independent light-trapping enhancement was achieved in silicon solar cells patterned with these GPSCs. These super-crystals were designed by multi-beam interference, rendering them flexible and efficient. The optical response of the patterned silicon solar cell retained Bloch-mode resonance; however, light absorption was greatly enhanced in broadband wavelengths due to the graded, complex unit super-cell nanostructures, leading to the overlap of Bloch-mode resonances. The broadband, wide-angle light coupling and trapping enhancement mechanism are understood to be due to the spatial variance of the index of refraction, and this spatial variance is due to the varying filling fraction, the dual basis, and the varying lattice constants in different directions. Full article
Show Figures

Figure 1

Back to TopTop