Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = gracility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7517 KiB  
Article
Characteristics and Phylogenetic Analysis of the Complete Plastomes of Anthogonium gracile and Eleorchis japonica (Epidendroideae, Orchidaceae)
by Xuyong Gao, Yuming Chen, Xiaowei Xu, Hongjiang Chen, Bingcong Xing, Jianli Pan, Minghe Li and Zhuang Zhou
Horticulturae 2025, 11(6), 698; https://doi.org/10.3390/horticulturae11060698 - 17 Jun 2025
Viewed by 966
Abstract
Phylogenetic relationships within the subtribe Arethusinae (Arethuseae: Epidendroideae: Orchidaceae) remain unresolved, with particular uncertainty surrounding the phylogenetic positions of Anthogonium gracile and Eleorchis japonica. The monophyly of this subtribe remains contentious, making it one of the challenging taxa in Orchidaceae phylogenetics. In [...] Read more.
Phylogenetic relationships within the subtribe Arethusinae (Arethuseae: Epidendroideae: Orchidaceae) remain unresolved, with particular uncertainty surrounding the phylogenetic positions of Anthogonium gracile and Eleorchis japonica. The monophyly of this subtribe remains contentious, making it one of the challenging taxa in Orchidaceae phylogenetics. In this study, we sequenced and analyzed the complete plastome sequences of A. gracile and E. japonica for the first time, aiming to elucidate their plastome characteristics and phylogenetic relationships. Both plastomes exhibited a conserved quadripartite structure, with 158,358 bp in A. gracile and 152,432 bp in E. japonica, and GC contents of 37.1% and 37.3%, respectively. Comparative analyses revealed strong structural conservation, but notable gene losses: E. japonica lacked seven ndh genes (ndhC/D/F/G/H/I/K), whereas A. gracile retained a complete ndh gene set. Repetitive sequence analysis identified an abundance of simple sequence repeats (68 and 77), tandem repeats (43 and 30), and long repeats (35 and 40). Codon usage displayed a bias toward the A/U termination, with leucine and isoleucine being the most frequent. Selection pressure analysis indicated that 68 protein-coding genes underwent purifying selection (Ka/Ks < 1), suggesting evolutionary conservation of plastome protein-coding genes. Nucleotide diversity analysis highlighted six hypervariable regions (rps8-rpl14, rps16-trnQUUG, psbB-psbT, trnTUGU-trnLUAA, trnFGAA-ndhJ, and ycf1), suggesting their potential as molecular markers. Phylogenomic reconstruction, using complete plastome sequences, (ML, MP, and BI) indicated that Arethusinae was non-monophyletic. A. gracile formed a sister relationship with Mengzia foliosa and E. japonica, whereas Arundina graminifolia exhibited a sister relationship with Coelogyninae members. These results shed new light on the plastome characteristics and phylogenetic relationships of Arethusinae. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

17 pages, 2481 KiB  
Article
Halotolerance of Phytoplankton and Invasion Success of Nostocalean Cyanobacteria Under Freshwater Salinization
by Izabelė Šuikaitė, Gabrielė Šiurkutė, Robert Ptacnik and Judita Koreivienė
Microorganisms 2025, 13(6), 1378; https://doi.org/10.3390/microorganisms13061378 - 13 Jun 2025
Viewed by 705
Abstract
Disturbed ecosystems are particularly susceptible to biological invasions. Increasing freshwater salinization, caused by anthropogenic factors, can alter the phytoplankton community and favour newly arrived halotolerant species. This study investigates the halotolerance of four Nostocalean cyanobacterial species—the native to Europe, Aphanizomenon gracile, and [...] Read more.
Disturbed ecosystems are particularly susceptible to biological invasions. Increasing freshwater salinization, caused by anthropogenic factors, can alter the phytoplankton community and favour newly arrived halotolerant species. This study investigates the halotolerance of four Nostocalean cyanobacterial species—the native to Europe, Aphanizomenon gracile, and alien Chrysosporum bergii, Cuspidothrix issatschenkoi, and Sphaerospermopsis aphanizomenoides—using monoculture experiments under varying NaCl concentrations. Additionally, we performed two microcosm experiments to explore shifts in biodiversity in freshwater phytoplankton communities sourced from artificial reservoirs and assess their susceptibility to cyanobacterial invasion under salinity stress. Results showed that all Nostocalean cyanobacteria were halotolerant under mild salinities (up to 1 g/L NaCl), with Chrysosporum bergii and Sphaerospermopsis aphanizomenoides demonstrating the most salt tolerance. In the microcosm experiment, changes in community composition were driven by the halotolerance of dominant groups. Water body 1, dominated by Bacillariophytina, reduced its biomass of phytoplankton at high salinity (5 g/L NaCl), while water body 2, dominated by Chlorophytina, remained stable regardless of disturbance. Both cyanobacteria successfully invaded both halotolerant and halosensitive communities, increasing their dominance as salinity rose. Our findings suggest that anthropogenic stressors such as freshwater salinization can alter the phytoplankton community and increase a competitive advantage to certain taxa, including widespread alien cyanobacteria, potentially promoting invasions and bloom formation. Full article
(This article belongs to the Special Issue Advances in Research on Cyanobacteria)
Show Figures

Figure 1

43 pages, 1582 KiB  
Review
The Chemical Composition, Pharmacological Activity, Quality Control, Toxicity, and Pharmacokinetics of the Genus Clinopodium L.
by Wen Li, Jianping Pan, Xiaobing Chen, Senhui Guo and Xilin Ouyang
Molecules 2025, 30(11), 2425; https://doi.org/10.3390/molecules30112425 - 31 May 2025
Viewed by 774
Abstract
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, [...] Read more.
The genus Clinopodium L. (Lamiaceae) comprises perennial herbaceous plants known for their diverse pharmacological properties. Clinically, these plants are mainly used for the treatment of various hemorrhagic disorders. This review systematically summarizes the research progress on the chemical composition, pharmacological activity, quality control, toxicity, and pharmacokinetics of the genus Clinopodium by searching Google Scholar, Scopus-Elsevier, Wiley, Springer, Taylor & Francis, Medline, Web of Science, CNKI, Weipu, Wanfang, and other academic databases over the last decade (March 2015–February 2025). To date, more than one hundred and thirty structurally diverse secondary metabolites have been isolated and identified from this genus, including flavonoids, triterpenoid saponins, diterpenoid glycosides, lignans, and phenylpropanoids. In addition, numerous volatile oil constituents have been identified in over forty species of the genus Clinopodium. Crude extracts and purified compounds exhibit a variety of pharmacological activities, including hemostatic, anti-myocardial cell injury, cardiovascular protective, anti-inflammatory, antimicrobial, antitumor, hypoglycemic, and insecticidal properties. However, current quality assessment protocols in the genus Clinopodium are limited to flavonoid- and saponin-based evaluations in C. chinense (Benth.) O. Kuntze and C. gracile (Benth.) O. Matsum. Further research is needed to elucidate the pharmacological mechanisms, toxicity, and possible interactions with other drugs. Therefore, the genus Clinopodium has a wide range of biologically active compounds with potential applications in drug development for hemostasis and cardiovascular protection. Nevertheless, there is also an urgent need to establish standardized methodologies to address uncertainties concerning the safety and efficacy of injectable extracts or compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

14 pages, 2486 KiB  
Article
A Photosynthetic Bacterium Suitable for Treating High-Salinity Sea Cucumber Boiling Broth
by Shaokun Dong, Yusi Guo, Jinrui Ji, Pu Song, Ning Ma, Hongjin Qiao and Jinling Cai
Fermentation 2025, 11(5), 284; https://doi.org/10.3390/fermentation11050284 - 14 May 2025
Viewed by 581
Abstract
Photosynthetic bacteria exhibit significant bioremediation potential and resource recycling characteristics, rendering them valuable candidates for sustainable wastewater treatment applications. Sea cucumber boiling broth (SCBB) contains high concentrations of organic compounds and nutrient salts, whose indiscriminate discharge poses serious environmental risks. This study aimed [...] Read more.
Photosynthetic bacteria exhibit significant bioremediation potential and resource recycling characteristics, rendering them valuable candidates for sustainable wastewater treatment applications. Sea cucumber boiling broth (SCBB) contains high concentrations of organic compounds and nutrient salts, whose indiscriminate discharge poses serious environmental risks. This study aimed to evaluate a photosynthetic bacterium capable of effectively treating SCBB, which was isolated from the intertidal sediment samples. The bacterial strain was identified using 16S rDNA sequencing, and optimal growth conditions, including light, pH, and temperature, were determined. Finally, a small-scale trial was conducted in a fed-batch fermenter. The results showed that 16S rDNA analysis placed this strain in the Chromatiaceae family, forming a distinct lineage from the closest related species Marichromatium purpuratum and M. gracile, and was tentatively named Marichromatium sp. DYYC01. The strain exhibited optimal growth under anaerobic conditions at 30 °C, light intensity of 100 μmol photons/m2/s, and pH 7.0. Batch culture experiments demonstrated maximum biomass accumulation (OD660 = 0.831) in SCBB medium with an initial COD loading of 3913 mg L⁻1, concomitant with significant nutrient removal efficiencies: 76.45% COD, 55.82% total nitrogen (TN), and 56.67% total phosphorus (TP). Scaling up to fed-batch fermentation enhanced bioremediation performance, achieving removal rates of 83.13% COD, 72.17% TN, and 73.07% TP with enhanced growth (OD660 = 1.2). This study reveals Marichromatium sp. DYYC01’s exceptional halotolerance in high-salinity organic wastewater treatment. The strain’s capacity for simultaneous biomass production and efficient nutrient recovery from hypersaline processing effluent positions it as a promising candidate for developing circular bioeconomy strategies. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

13 pages, 4773 KiB  
Article
Microgliosis in the Spinal Dorsal Horn Early After Peripheral Nerve Injury Is Associated with Damage to Primary Afferent Aβ-Fibers
by Yuto Shibata, Yuki Matsumoto, Keita Kohno, Yasuharu Nakashima and Makoto Tsuda
Cells 2025, 14(9), 666; https://doi.org/10.3390/cells14090666 - 2 May 2025
Viewed by 812
Abstract
Neuropathic pain results from a lesion or disease affecting the somatosensory nervous system. Injury to primary afferent nerves leads to microgliosis in the spinal dorsal horn (SDH), which plays a crucial role in developing neuropathic pain. Within the SDH, primary afferent fibers broadly [...] Read more.
Neuropathic pain results from a lesion or disease affecting the somatosensory nervous system. Injury to primary afferent nerves leads to microgliosis in the spinal dorsal horn (SDH), which plays a crucial role in developing neuropathic pain. Within the SDH, primary afferent fibers broadly project, and microglia are nearly ubiquitously distributed under normal conditions. However, not all microglia react to injuries affecting primary afferent fibers, resulting in spatially heterogeneous microgliosis within the SDH. The mechanisms underlying this phenomenon remain elusive. In this study, the spatial relationship between microgliosis and the projections of injured nerves was investigated by generating mice that had expressed tdTomato in the fourth lumbar dorsal root ganglion (L4-DRG) neurons via intra-L4-spinal nerve (SpN) injection of adeno-associated viral vectors. After transection of the L4-SpN, we found that microgliosis in the SDH selectively occurred in the innervation territories of the injured primary afferent fibers. However, denervating transient receptor potential vanilloid 1 (TRPV1)-expressing primary afferent fibers in the SDH through intrathecal injection of capsaicin did not trigger microgliosis, nor did it influence the microgliosis induced by L4-SpN injury. Conversely, pharmacological damage to myelinated DRG neurons, including Aβ-fibers, was sufficient to induce microgliosis. Furthermore, L4-SpN injury also induced microgliosis in the gracile nucleus, which primarily receives innervation from Aβ-fibers. These findings suggest that microgliosis in the SDH shortly after peripheral nerve injury is predominantly associated with damage to primary afferent Aβ-fibers. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

18 pages, 1570 KiB  
Article
Uncovering a Novel Pathogenic Mechanism of BCS1L in Mitochondrial Disorders: Insights from Functional Studies on the c.38A>G Variant
by Valeria Capaci, Luisa Zupin, Martina Magistrati, Maria Teresa Bonati, Fulvio Celsi, Irene Marrone, Francesco Baldo, Blendi Ura, Beatrice Spedicati, Anna Morgan, Irene Bruno, Massimo Zeviani, Cristina Dallabona, Giorgia Girotto and Andrea Magnolato
Int. J. Mol. Sci. 2025, 26(8), 3670; https://doi.org/10.3390/ijms26083670 - 12 Apr 2025
Viewed by 761
Abstract
The BCS1L gene encodes a mitochondrial chaperone which inserts the Fe2S2 iron–sulfur Rieske protein into the nascent electron transfer complex III. Variants in the BCS1L gene are associated with a spectrum of mitochondrial disorders, ranging from mild to severe phenotypes. [...] Read more.
The BCS1L gene encodes a mitochondrial chaperone which inserts the Fe2S2 iron–sulfur Rieske protein into the nascent electron transfer complex III. Variants in the BCS1L gene are associated with a spectrum of mitochondrial disorders, ranging from mild to severe phenotypes. Björnstad syndrome, a milder condition, is characterized by sensorineural hearing loss (SNHL) and pili torti. More severe disorders include Complex III Deficiency, which leads to neuromuscular and metabolic dysfunctions with multi-systemic issues and Growth Retardation, Aminoaciduria, Cholestasis, Iron Overload, and Lactic Acidosis syndrome (GRACILE). The severity of these conditions varies depending on the specific BCS1L mutation and its impact on mitochondrial function. This study describes a 27-month-old child with SNHL, proximal renal tubular acidosis, woolly hypopigmented hair, developmental delay, and metabolic alterations. Genetic analysis revealed a homozygous BCS1L variant (c.38A>G, p.Asn13Ser), previously reported in a patient with a more severe phenotype that, however, was not functionally characterized. In this work, functional studies in a yeast model and patient-derived fibroblasts demonstrated that the variant impairs mitochondrial respiration, complex III activity (CIII), and also alters mitochondrial morphology in affected fibroblasts. Interestingly, we unveil a new possible mechanism of pathogenicity for BCS1L mutant protein. Since the interaction between BCS1L and CIII is increased, this suggests the formation of a BCS1L-containing nonfunctional preCIII unable to load RISP protein and complete CIII assembly. These findings support the pathogenicity of the BCS1L c.38A>G variant, suggesting altered interaction between the mutant BCS1L and CIII. Full article
Show Figures

Figure 1

31 pages, 10034 KiB  
Article
What Are “Lingzhi Wang” or “Zhu Lingzhi”? Notes on Ganoderma (Ganodermataceae, Polyporales) Species Characterized by Diminutive Pilei and Gracile Stipes from Hainan Island, Tropical China
by Run Tian, Hua-Zhi Qin, Qing Zhong, Zhi-Qun Liang, Xue-Yan Zhang, Xiao-Dong Mu, Lin Xu, Ting-Chi Wen, Xiang-Dong Chen and Nian-Kai Zeng
J. Fungi 2025, 11(3), 237; https://doi.org/10.3390/jof11030237 - 20 Mar 2025
Viewed by 867
Abstract
Species of Ganoderma (Ganodermataceae, Polyporales) have been extensively utilized in traditional Chinese medicine for over two millennia, owing to their remarkable medicinal properties and diverse chemical constituents. Hainan Island, located in tropical China, harbors a rich diversity of Ganoderma species. Among these, certain [...] Read more.
Species of Ganoderma (Ganodermataceae, Polyporales) have been extensively utilized in traditional Chinese medicine for over two millennia, owing to their remarkable medicinal properties and diverse chemical constituents. Hainan Island, located in tropical China, harbors a rich diversity of Ganoderma species. Among these, certain varieties referred to as “Lingzhi Wang” or “Zhu Lingzhi” by indigenous communities are distinguished by their diminutive pilei and slender stipes. Despite their traditional recognition, these species have been subject to morphological confusion. In this study, specimens labeled as “Lingzhi Wang” or “Zhu Lingzhi” were subjected to comprehensive morphological examinations and molecular phylogenetic analyses. The findings reveal that the Ganoderma species characterized by small pilei and gracile stipes encompass at least five distinct species. Among these, two are new to science: G. baisuzhenii and G. shennongii. The remaining three species, G. bambusicola, G. flexipes, and G. subflexipes, have been previously described. Taxonomically, G. bambusicola was reported for the first time on the Chinese mainland. This study provides a clearer taxonomic framework for these medicinally significant fungi. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi, 3rd Edition)
Show Figures

Figure 1

20 pages, 3325 KiB  
Article
Enhancing Biomass and Lipid Production in Messastrum gracile Using Inorganic Carbon Substrates and Alternative Solvents for Lipid Extraction
by Wanida Pan-utai, Soisuda Pornpukdeewattana, Wilasinee Inrung, Theera Thurakit and Penjit Srinophakun
Life 2025, 15(3), 407; https://doi.org/10.3390/life15030407 - 5 Mar 2025
Viewed by 1003
Abstract
Microalgae show promise as a biomass and bioproduct for applications in various industries. The cultivation of microalgae plays a crucial role in optimizing biomass yield and bioproduct accumulation. The provision of inorganic carbon substrates substantially enhances microalgal growth and lipid biosynthesis, resulting in [...] Read more.
Microalgae show promise as a biomass and bioproduct for applications in various industries. The cultivation of microalgae plays a crucial role in optimizing biomass yield and bioproduct accumulation. The provision of inorganic carbon substrates substantially enhances microalgal growth and lipid biosynthesis, resulting in marked increases in the production of biofuels and other bioproducts. This study examined biomass and lipid accumulation in Messastrum gracile IFRPD 1061 under inorganic stress conditions, previously unreported. M. gracile IFRPD 1061 was subjected to varying conditions of inorganic carbon substrates, 1–3 g·L−1 sodium carbonate and bicarbonate concentration, to enhance biomass and lipid accumulation. Optimal productivity levels were observed with sodium bicarbonate addition of 3 g·L−1 and 1 g·L−1 for biomass and lipids, resulting in productivities of 392.64 and 53.57 mg·L−1·d−1, respectively. Results underlined the effectiveness of sodium carbonate and bicarbonate as inorganic carbon sources for stimulating microalgal growth and enhancing the production of high-value products. The extraction of lipids from freeze-dried biomass of M. gracile IFRPD 1061 demonstrated optimal yield using methanol/hexane solvents compared with the control experiments. Lipid extraction yields using methanol/hexane were 42.18% and 46.81% from oven-dried and freeze-dried biomass, respectively. Lipids extracted from oven-dried M. gracile IFRPD 1061 using methanol/hexane/chloroform solvents indicated the potential of methanol/hexane as a solvent for lipid extraction from dry microalgal biomass using an ultrasonic-assisted technique. This study contributes valuable insights into maximizing biofuel and bioproduct production from microalgae, highlighting A. gracilis as a promising candidate for industrial applications. Full article
Show Figures

Figure 1

47 pages, 5005 KiB  
Article
Mosasaurids Bare the Teeth: An Extraordinary Ecological Disparity in the Phosphates of Morocco Just Prior to the K/Pg Crisis
by Nathalie Bardet, Valentin Fischer, Nour-Eddine Jalil, Fatima Khaldoune, Oussama Khadiri Yazami, Xabier Pereda-Suberbiola and Nicholas Longrich
Diversity 2025, 17(2), 114; https://doi.org/10.3390/d17020114 - 4 Feb 2025
Cited by 1 | Viewed by 2818
Abstract
Mosasaurid teeth are abundant in the fossil record and often diagnostic to low taxonomic levels, allowing to document the taxonomic diversity and ecological disparity through time and with fewer biases than in other marine reptiles. The upper Maastrichtian Phosphates of Morocco, with at [...] Read more.
Mosasaurid teeth are abundant in the fossil record and often diagnostic to low taxonomic levels, allowing to document the taxonomic diversity and ecological disparity through time and with fewer biases than in other marine reptiles. The upper Maastrichtian Phosphates of Morocco, with at least fifteen coeval species representing a wide range of sizes and morphologies, undoubtedly represent the richest outcrop in the world for this clade of iconic Mesozoic squamates and one of the richest known marine tetrapod assemblages. Until now, the methods used to link tooth morphology to diets in marine amniotes were mainly qualitative in nature. Here, using the dental morphology of mosasaurids from Morocco, we combine two complementary approaches—a thorough comparative anatomical description and 2D/3D geometric morphometry—to quantitatively categorize the main functions of these teeth during feeding processes and infer diet preferences and niche-partitioning of these apex predators. Our results from combining these two approaches show the following: (1) Mosasaurids from the upper Maastrichtian Phosphates of Morocco occupy the majority of dental guilds ever colonized by Mesozoic marine reptiles. (2) As seen elsewhere in the Maastrichtian, mosasaurines dominate the regional mosasaurid assemblage, exhibiting the greatest taxonomic diversity (two-thirds of the species) and the largest range of morphologies, body sizes (2 m to more than 10 m) and ecological disparities (participating in nearly all predatory ecological guilds); strikingly, mosasaurines did not developed flesh piercers and, conversely, are the only ones to include durophagous species. (3) Halisaurines, though known by species of very different sizes (small versus large) and cranial morphologies (gracile versus robust), maintain a single tooth shape (piercer). (4) Plioplatecarpines were medium-size cutters and piercers, known by very morphologically diverging species. (5) Tylosaurines currently remain scarce, represented by a very large generalist species; they were largely replaced by mosasaurines as apex predators over the course of the Maastrichtian, as observed elsewhere. Also, when comparing tooth shapes with body sizes, the largest taxa (>8 m long) occupied a restricted area of tooth shapes (generalist, durophagous), whereas small and medium-sized species (<8 m long) range across all of them (generalists, durophagous, cutters, piercers). In other words, and probably related to the specificities and advantages of biomechanical resistance, apex predators are never dedicated piercers, micro-predators are conversely never generalists, and meso-predators show the widest range of dental adaptations. These diversities and disparities strongly suggest that Tethyan mosasaurids evolved strong niche-partitioning in the shallow marine environment of the upper Maastrichtian Phosphates of Morocco. Such a high diversity sensu lato just prior to the K/Pg biological crisis suggests that their extinction was rather sudden, though the exact causes of their extinction remain unknown. Finally, Gavialimimus Strong et al., 2020 is systematically reassigned to Gavialimimus ptychodon (Arambourg, 1952), and an emended diagnosis (for teeth and dentition) is proposed for this species. Full article
Show Figures

Figure 1

15 pages, 1576 KiB  
Case Report
Kenny–Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization
by Kyriaki Hatziagapiou, Amalia Sertedaki, Vasiliki Dermentzoglou, Nataša Čurović Popović, George I. Lambrou, Louis Papageorgiou, Trias Thireou, Christina Kanaka-Gantenbein and Sophia D. Sakka
J. Clin. Med. 2025, 14(1), 118; https://doi.org/10.3390/jcm14010118 - 28 Dec 2024
Viewed by 1394
Abstract
Background/Objectives: Kenny–Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the FAM111A gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. Methods: [...] Read more.
Background/Objectives: Kenny–Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the FAM111A gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. Methods: The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. Results: The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years. Biochemical evaluation at several ages revealed persistent hypocalcemia, high normal phosphorous, and inappropriately low normal PTH. To exclude other causes of short stature, the diagnostic approach revealed low levels of IGF-1, and on CNS MRI, small pituitary gland and empty sella. Nocturnal levels of growth hormone were normal. MRI also revealed bilateral symmetrical microphthalmia and torturous optic nerves. Skeletal survey was compatible with cortical thickening and medullary stenosis of the long bones. Genomic data analysis revealed a well-known pathogenic variant of the FAM111A gene (c.1706G>A, p. R569H), which is linked with KCS2 or nanophthalmos. Conclusions: KCS2, although a rare disease, should be included in the differential diagnosis of hypoparathyroidism and short stature. Understanding the association of pathogenic variants with KCS2 phenotypic variability will allow the advancement of clinical genetics and personalized long-term follow-up and will offer insights into the role of the FAM111A gene in the disease pathogenesis and normal embryogenesis of implicated tissues and organs. Full article
(This article belongs to the Special Issue Endocrine Disorders in Children)
Show Figures

Figure 1

10 pages, 4499 KiB  
Communication
Seimatosporium chinense, a Novel Pestalotioid Fungus Associated with Yellow Rose Branch Canker Disease
by Haoran Yang, Jing Cheng, Nu Dili, Ning Jiang and Rong Ma
Pathogens 2024, 13(12), 1090; https://doi.org/10.3390/pathogens13121090 - 10 Dec 2024
Viewed by 861
Abstract
Yellow rose (Rosa xanthina) is a common ornamental shrub species widely cultivated in China. However, canker disease symptoms were discovered during our investigations in Beijing and Xinjiang, China. The fungal isolates were obtained from diseased barks and identified using combined methods of [...] Read more.
Yellow rose (Rosa xanthina) is a common ornamental shrub species widely cultivated in China. However, canker disease symptoms were discovered during our investigations in Beijing and Xinjiang, China. The fungal isolates were obtained from diseased barks and identified using combined methods of morphology and phylogeny based on a partial region of ITS, LSU, rpb2, tef1, and tub2 sequences. As a result, a new species of Seimatosporium named S. chinense was proposed and described herein. The new species is distinguished from its phylogenetic sister species, S. gracile and S. nonappendiculatum, by conidial characters. The present study improves the species concept in Seimatosporium and provides fundamental data for the yellow rose canker disease control in the future. Full article
(This article belongs to the Special Issue Identification and Characterization of Plant Pathogens)
Show Figures

Figure 1

16 pages, 9230 KiB  
Article
Clinopodium gracile Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease by Upregulating Peroxisome Proliferator-Activated Receptor α and Inhibiting Mitochondrial Oxidative Damage
by Mingshi Ren, Jiayue Ren, Jianmei Zheng, Xiaotong Sha, Yining Lin and Feihua Wu
Antioxidants 2024, 13(9), 1136; https://doi.org/10.3390/antiox13091136 - 20 Sep 2024
Viewed by 1336
Abstract
The most prevalent chronic liver disease, known as metabolic dysfunction-associated steatotic liver disease (MASLD), is characterized by an excessive accumulation of lipids and oxidative damage. Clinopodium gracile, a natural herbal medicine widely used by Chinese folk, has antioxidative, anti-inflammatory, and lipid metabolism-regulating [...] Read more.
The most prevalent chronic liver disease, known as metabolic dysfunction-associated steatotic liver disease (MASLD), is characterized by an excessive accumulation of lipids and oxidative damage. Clinopodium gracile, a natural herbal medicine widely used by Chinese folk, has antioxidative, anti-inflammatory, and lipid metabolism-regulating effects. Here, we explored the effect of C. gracile extract (CGE) on MASLD using palmitic acid (PA)-induced hepatocytes and high-fat diet (HFD)-fed mice. In vitro, CGE could promote fatty acid oxidation and inhibit fatty acid synthesis and uptake to reduce lipid accumulation by regulating PPARα activation. Moreover, CGE could inhibit reactive oxygen species production and maintain mitochondrial homeostasis in PA-induced HepG2 cells. In vivo, animal study results indicated that CGE could effectively reduce lipid metabolism disorder, inhibit oxidative stress, and upregulate PPARα protein in the liver of HFD-fed mice. Molecular docking results also showed that active compounds isolated from CGE had low binding energy and highly stable binding with PPARα. In summary, these findings reveal that CGE may be a potential therapeutic candidate for MASLD and act by upregulating PPARα to reduce lipid accumulation and suppress mitochondrial oxidative damage. Full article
Show Figures

Figure 1

10 pages, 1331 KiB  
Article
The Application of Lophatherum Gracile Brongn Flavonoids in Wheat Flour Products: Effects on the Structural and Functional Characteristics of Wheat Dough
by Qin Li, Yi Liu, Huimei Bao and Haihua Zhang
Foods 2024, 13(16), 2556; https://doi.org/10.3390/foods13162556 - 16 Aug 2024
Cited by 1 | Viewed by 1117
Abstract
The effects of lophatherum gracile brongn flavonoids on the multiscale structure and functional properties of wheat dough were investigated. Wheat dough samples with varying contents of lophatherum gracile brongn flavonoids were analyzed to assess changes in thermal-mechanical rheological properties, microstructure, chemical interactions, water [...] Read more.
The effects of lophatherum gracile brongn flavonoids on the multiscale structure and functional properties of wheat dough were investigated. Wheat dough samples with varying contents of lophatherum gracile brongn flavonoids were analyzed to assess changes in thermal-mechanical rheological properties, microstructure, chemical interactions, water distribution, and macropolymer formation by Mixolab mixer, fluorescence microscopy, and low-field nuclear magnetic resonance (LF-NMR). The findings revealed that lophatherum gracile brongn flavonoids disrupted the three-dimensional network of gluten proteins in the wheat dough, leading to decreased water-binding capacity and reduced gluten protein crosslinking while enhancing thermal stability and inhibiting the starch retrogradation of the dough. This study provided important insights into the interaction mechanisms between lophatherum gracile brongn flavonoids and the proteins/starch in wheat dough, offering theoretical guidance for the development of novel wheat-based products for industrialization and practical production. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

16 pages, 1816 KiB  
Review
Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications
by Danielle Naicker, Cenza Rhoda, Falone Sunda and Afolake Arowolo
Int. J. Mol. Sci. 2024, 25(5), 2845; https://doi.org/10.3390/ijms25052845 - 29 Feb 2024
Cited by 9 | Viewed by 2774
Abstract
Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA [...] Read more.
Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity. Additionally, FAM111A functions as an antiviral factor against DNA and RNA viruses. Apart from being involved in DNA repair, FAM111B, a paralog of FAM111A, participates in cell cycle regulation and apoptosis. It influences the apoptotic pathway by upregulating anti-apoptotic proteins and modulating cell cycle-related proteins. Furthermore, FAM111B’s association with nucleoporins suggests its involvement in nucleo-cytoplasmic trafficking and plays a role in maintaining normal telomere length. FAM111A and FAM111B also exhibit some interconnectedness and functional similarity despite their distinct roles in cellular processes and associated diseases resulting from their dysfunction. FAM111A and FAM111B dysregulation are linked to genetic disorders: Kenny–Caffey Syndrome type 2 and Gracile Bone Dysplasia for FAM111A and POIKTMP, respectively, and cancers. Therefore, the dysregulation of these proteases in diseases emphasizes their potential as diagnostic markers and therapeutic targets. Future research is essential to unravel the intricate mechanisms governing FAM111A and FAM111B and explore their therapeutic implications comprehensively. Full article
Show Figures

Figure 1

11 pages, 1420 KiB  
Article
The Diet of Metriorhynchus (Thalattosuchia, Metriorhynchidae): Additional Discoveries and Paleoecological Implications
by Stéphane Hua, Jeff Liston and Jérôme Tabouelle
Foss. Stud. 2024, 2(1), 66-76; https://doi.org/10.3390/fossils2010002 - 20 Feb 2024
Cited by 5 | Viewed by 6079
Abstract
A new metriorhynchid specimen with stomach contents is described here. Assigned to Metriorhynchus cf. superciliosus., this specimen has a clear longirostrine form as indicated by its gracile and elongated mandibular rami. This is the second example of gastric contents described for Metriorhynchidae. [...] Read more.
A new metriorhynchid specimen with stomach contents is described here. Assigned to Metriorhynchus cf. superciliosus., this specimen has a clear longirostrine form as indicated by its gracile and elongated mandibular rami. This is the second example of gastric contents described for Metriorhynchidae. This specimen’s preservation allows the identification of the gill apparatus remains of Leedsichthys, the giant suspension-feeding osteichthyan from the Jurassic, including its gill rakers. The gastric contents also contain remains of invertebrates. This specimen indicates that Leedsichthys was not the direct prey of these crocodiles but more that its body was scavenged by them. Longirostrine metriorhynchids were piscivorous but also opportunistic and may have had more of a scavenging component in their lifestyle than previously understood, as all discovered fossils point in this direction. Full article
Show Figures

Figure 1

Back to TopTop