Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,810)

Search Parameters:
Keywords = governing equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 12185 KB  
Article
Artificial Neural Network-Based Heat Transfer Analysis of Sutterby Magnetohydrodynamic Nanofluid with Microorganism Effects
by Fateh Ali, Mujahid Islam, Farooq Ahmad, Muhammad Usman and Sana Ullah Asif
Magnetochemistry 2025, 11(10), 88; https://doi.org/10.3390/magnetochemistry11100088 (registering DOI) - 10 Oct 2025
Abstract
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of [...] Read more.
Background: The study of non-Newtonian fluids in thin channels is crucial for advancing technologies in microfluidic systems and targeted industrial coating processes. Nanofluids, which exhibit enhanced thermal properties, are of particular interest. This paper investigates the complex flow and heat transfer characteristics of a Sutterby nanofluid (SNF) within a thin channel, considering the combined effects of magnetohydrodynamics (MHD), Brownian motion, and bioconvection of microorganisms. Analyzing such systems is essential for optimizing design and performance in relevant engineering applications. Method: The governing non-linear partial differential equations (PDEs) for the flow, heat, concentration, and bioconvection are derived. Using lubrication theory and appropriate dimensionless variables, this system of PDEs is simplified into a more simplified system of ordinary differential equations (ODEs). The resulting nonlinear ODEs are solved numerically using the boundary value problem (BVP) Midrich method in Maple software to ensure accuracy. Furthermore, data for the Nusselt number, extracted from the numerical solutions, are used to train an artificial neural network (ANN) model based on the Levenberg–Marquardt algorithm. The performance and predictive capability of this ANN model are rigorously evaluated to confirm its robustness for capturing the system’s non-linear behavior. Results: The numerical solutions are analyzed to understand the variations in velocity, temperature, concentration, and microorganism profiles under the influence of various physical parameters. The results demonstrate that the non-Newtonian rheology of the Sutterby nanofluid is significantly influenced by Brownian motion, thermophoresis, bioconvection parameters, and magnetic field effects. The developed ANN model demonstrates strong predictive capability for the Nusselt number, validating its use for this complex system. These findings provide valuable insights for the design and optimization of microfluidic devices and specialized coating applications in industrial engineering. Full article
Show Figures

Figure 1

22 pages, 3119 KB  
Article
Modelling Dynamic Parameter Effects in Designing Robust Stability Control Systems for Self-Balancing Electric Segway on Irregular Stochastic Terrains
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Physics 2025, 7(4), 46; https://doi.org/10.3390/physics7040046 - 10 Oct 2025
Abstract
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the [...] Read more.
In this study, a nonlinear dynamic model is developed to examine the stability and vibration behavior of a self-balancing electric Segway operating over irregular stochastic terrains. The Segway is treated as a three-degrees-of-freedom cart–inverted pendulum system, incorporating elastic and damping effects at the wheel–ground interface. Road irregularities are generated in accordance with international standard using high-order filtered noise, allowing for representation of surface classes from smooth to highly degraded. The governing equations, formulated via Lagrange’s method, are transformed into a Lorenz-like state-space form for nonlinear analysis. Numerical simulations employ the fourth-order Runge–Kutta scheme to compute translational and angular responses under varying speeds and terrain conditions. Frequency-domain analysis using Fast Fourier Transform (FFT) identifies resonant excitation bands linked to road spectral content, while Kernel Density Estimation (KDE) maps the probability distribution of displacement states to distinguish stable from variable regimes. The Lyapunov stability assessment and bifurcation analysis reveal critical velocity thresholds and parameter regions marking transitions from stable operation to chaotic motion. The study quantifies the influence of the gravity–damping ratio, mass–damping coupling, control torque ratio, and vertical excitation on dynamic stability. The results provide a methodology for designing stability control systems that ensure safe and comfortable Segway operation across diverse terrains. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

22 pages, 3155 KB  
Article
Forced Vibration Analysis of a Hydroelastic System with an FGM Plate, Viscous Fluid, and Rigid Wall Using a Discrete Analytical Method
by Mohammed M. Alrubaye and Surkay D. Akbarov
Appl. Sci. 2025, 15(19), 10854; https://doi.org/10.3390/app151910854 - 9 Oct 2025
Viewed by 83
Abstract
This study examines the forced vibration behavior of a hydroelastic system composed of a functionally graded material (FGM) plate, a barotropic compressible Newtonian viscous fluid, and an adjacent rigid wall. The fluid occupies the gap between the plate and the wall. A time-harmonic [...] Read more.
This study examines the forced vibration behavior of a hydroelastic system composed of a functionally graded material (FGM) plate, a barotropic compressible Newtonian viscous fluid, and an adjacent rigid wall. The fluid occupies the gap between the plate and the wall. A time-harmonic force, applied in and along the free surface of the FGM plate, excites vibrations within the system. The plate’s motion is modeled using the exact equations of elastodynamics, while the fluid dynamics are described by the linearized Navier–Stokes equations for compressible viscous flow. The governing equations, which feature variable coefficients, are solved using a discrete analytical approach. Boundary conditions enforce impermeability at the rigid wall and continuity of both forces and velocities at the fluid–plate interface. The investigation focuses on the plane strain state of the plate coupled with the corresponding two-dimensional fluid flow. Numerical analyses are conducted to evaluate normal stresses and velocity distributions along the interface. The primary objective is to assess how the graded material properties of the plate influence the frequency-dependent responses of stresses and velocities at the plate–fluid boundary. Full article
Show Figures

Figure 1

19 pages, 4133 KB  
Article
FLOW-GLIDE: Global–Local Interleaved Dynamics Estimator for Flow Field Prediction
by Jinghan Su, Li Xiao and Jingyu Wang
Appl. Sci. 2025, 15(19), 10834; https://doi.org/10.3390/app151910834 - 9 Oct 2025
Viewed by 54
Abstract
Accurate prediction of the flow field is crucial to evaluating the aerodynamic performance of an aircraft. While traditional computational fluid dynamics (CFD) methods solve the governing equations to capture both global flow structures and localized gradients, they are computationally intensive. Deep learning-based surrogate [...] Read more.
Accurate prediction of the flow field is crucial to evaluating the aerodynamic performance of an aircraft. While traditional computational fluid dynamics (CFD) methods solve the governing equations to capture both global flow structures and localized gradients, they are computationally intensive. Deep learning-based surrogate models offer a promising alternative, yet often struggle to simultaneously model long-range dependencies and near-wall flow gradients with sufficient fidelity. To address this challenge, this paper introduces the Message-passing And Global-attention block (MAG-BLOCK), a graph neural network module that combines local message passing with global self-attention mechanisms to jointly learn fine-scale features and large-scale flow patterns. Building on MAG-BLOCK, we propose FLOW-GLIDE, a cross-architecture deep learning framework that learns a mapping from initial conditions to steady-state flow fields in a latent space. Evaluated on the AirfRANS dataset, FLOW-GLIDE outperforms existing models on key performance metrics. Specifically, it reduces the error in the volumetric flow field by 62% and surface pressure prediction by 82% compared to the state-of-the-art. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

25 pages, 5983 KB  
Article
Theoretical Modeling of Light-Fueled Self-Harvesting in Piezoelectric Beams Actuated by Liquid Crystal Elastomer Fibers
by Lin Zhou, Haiming Chen, Wu Bao, Xuehui Chen, Ting Gao and Dali Ge
Mathematics 2025, 13(19), 3226; https://doi.org/10.3390/math13193226 - 8 Oct 2025
Viewed by 103
Abstract
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, [...] Read more.
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, two resistors, and two piezoelectric cantilever beams arranged symmetrically. Based on the photothermal temperature evolution, we derive the governing equations of the liquid crystal elastomer fiber–piezoelectric beam system. Two distinct states, namely a self-harvesting state and a static state, are revealed through numerical simulations. The self-oscillation results from light-induced cyclic contraction of the liquid crystal elastomer fibers, driving beam bending, stress generation in the piezoelectric layer, and voltage output. Additionally, the effects of various system parameters on amplitude, frequency, voltage, and power are analyzed in detail. Unlike traditional vibration energy harvesters, this light-fueled self-harvesting system features a compact structure, flexible installation, and ensures continuous and stable energy output. Furthermore, by coupling the light-responsive LCE fibers with piezoelectric transduction, the system provides a non-contact actuation mechanism that enhances durability and broadens potential application scenarios. Full article
(This article belongs to the Special Issue Mathematical Models in Mechanics and Engineering)
Show Figures

Figure 1

34 pages, 768 KB  
Article
Understanding the Mechanism Through Which Safety Management Systems Influence Safety Performance in Nigerian Power and Electricity Distribution Companies
by Victor Olabode Otitolaiye and Fadzli Shah Abd Aziz
Safety 2025, 11(4), 98; https://doi.org/10.3390/safety11040098 - 8 Oct 2025
Viewed by 320
Abstract
The power and electricity (P & E) sector experiences a substantial number of occupational accidents, including in Nigeria. The implementation of a safety management system (SMS) to promote safety performance and mitigate occupational risks in this sector remains underreported. Therefore, we aimed to [...] Read more.
The power and electricity (P & E) sector experiences a substantial number of occupational accidents, including in Nigeria. The implementation of a safety management system (SMS) to promote safety performance and mitigate occupational risks in this sector remains underreported. Therefore, we aimed to explore the factors influencing the safety performance of Nigeria’s P & E distribution companies by applying McGrath’s input–process–output model as a theoretical framework. We used SmartPLS 3.0 for structural equation modelling and SPSS Version 23 for preliminary data analysis. We included a sample of 222 organizations and found that management commitment to safety, safety communication, safety champions, and government regulations influence working conditions and safety performance to varying degrees. Employee involvement, safety training, and working conditions were significant factors affecting safety performance. Management commitment, employee involvement, safety communication, safety champions, and government regulations had significant indirect effects on safety performance through their influence on working conditions. Organizational and regulatory elements played a crucial role in shaping safety performance in high-risk environments. The results highlight vital areas to be considered when developing interventions to address P & E occupational accidents. The results can aid stakeholders in developing and implementing measures to improve workplace safety, including examining current SMSs and considering working conditions when implementing safety interventions. Full article
Show Figures

Figure 1

19 pages, 1035 KB  
Article
Spectral Bounds and Exit Times for a Stochastic Model of Corruption
by José Villa-Morales
Math. Comput. Appl. 2025, 30(5), 111; https://doi.org/10.3390/mca30050111 - 8 Oct 2025
Viewed by 83
Abstract
We study a stochastic differential model for the dynamics of institutional corruption, extending a deterministic three-variable system—corruption perception, proportion of sanctioned acts, and policy laxity—by incorporating Gaussian perturbations into key parameters. We prove global existence and uniqueness of solutions in the physically relevant [...] Read more.
We study a stochastic differential model for the dynamics of institutional corruption, extending a deterministic three-variable system—corruption perception, proportion of sanctioned acts, and policy laxity—by incorporating Gaussian perturbations into key parameters. We prove global existence and uniqueness of solutions in the physically relevant domain, and we analyze the linearization around the asymptotically stable equilibrium of the deterministic system. Explicit mean square bounds for the linearized process are derived in terms of the spectral properties of a symmetric matrix, providing insight into the temporal validity of the linear approximation. To investigate global behavior, we relate the first exit time from the domain of interest to backward Kolmogorov equations and numerically solve the associated elliptic and parabolic PDEs with FreeFEM, obtaining estimates of expectations and survival probabilities. An application to the case of Mexico highlights nontrivial effects: while the spectral structure governs local stability, institutional volatility can non-monotonically accelerate global exit, showing that highly reactive interventions without effective sanctions increase uncertainty. Policy implications and possible extensions are discussed. Full article
(This article belongs to the Section Social Sciences)
Show Figures

Figure 1

51 pages, 5383 KB  
Article
On Complex Dimensions and Heat Content of Self-Similar Fractals
by William E. Hoffer and Michel L. Lapidus
Fractal Fract. 2025, 9(10), 649; https://doi.org/10.3390/fractalfract9100649 - 7 Oct 2025
Viewed by 114
Abstract
Complex fractal dimensions, defined as poles of appropriate fractal zeta functions, describe the geometric oscillations in fractal sets. In this work, we show that the same possible complex dimensions in the geometric setting also govern the asymptotics of the heat content on self-similar [...] Read more.
Complex fractal dimensions, defined as poles of appropriate fractal zeta functions, describe the geometric oscillations in fractal sets. In this work, we show that the same possible complex dimensions in the geometric setting also govern the asymptotics of the heat content on self-similar fractals. We consider the Dirichlet problem for the heat equation on bounded open regions whose boundaries are self-similar fractals. The class of self-similar domains we consider allows for non-disjoint overlap of the self-similar copies, provided some control over the separation. The possible complex dimensions, determined strictly by the similitudes that define the self-similar domain, control the scaling exponents of the asymptotic expansion for the heat content. We illustrate our method in the case of generalized von Koch snowflakes and, in particular, extend known results for these fractals with arithmetic scaling ratios to the generic (in the topological sense), non-arithmetic setting. Full article
(This article belongs to the Special Issue Fractal Dimensions with Applications in the Real World)
Show Figures

Figure 1

17 pages, 6614 KB  
Article
Seismic Response Characteristics and Characterization Parameter Prediction of Thin Interbedded Coal Seam Fracture System
by Kui Wu, Yu Qi, Sheng Zhang, Feng He, Silu Chen, Yixin Yu, Fei Gong and Tingting Zhang
Processes 2025, 13(10), 3173; https://doi.org/10.3390/pr13103173 - 6 Oct 2025
Viewed by 254
Abstract
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation [...] Read more.
Fracture systems critically govern coal seam permeability, influencing hydrocarbon migration pathways and well placement strategies. We established a predictive framework for fracture characterization in thin-interbedded coal reservoirs by integrating seismic response analysis with multi-domain validation. Utilizing borehole log statistics and staggered-grid wave equation modeling, we first decode azimuthal amplitude anisotropy patterns in fractured coal seams under varying lithological contexts. Key findings reveal that (1) isotropic thick surrounding rocks yield distinct fracture symmetry axis alignment (ellipse long-axis orientation shifts with layer velocity), while (2) anisotropic thin-interbedded host strata amplify azimuthal anisotropy ratios at mid–far offsets but induce prediction ambiguity under comparable fracture intensities. By applying azimuthally partitioned OVT data with optimized mid–long offset stacking, our amplitude ellipse fitting method demonstrates unique fracture solutions validated against structural, logging, and production data. This workflow resolves the multi-solution challenges in thin-layered systems, enabling precise fracture parameter prediction to optimize coalbed methane development in geologically complex basins. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization)
Show Figures

Figure 1

9 pages, 889 KB  
Communication
Main Mechanical Forces to Analyse the Chemical Interactions Shaping Backbone Torsion Angles in DNA Tertiary Structures
by Michele Larocca, Giuseppe Floresta, Daniele Verderese and Agostino Cilibrizzi
AppliedChem 2025, 5(4), 26; https://doi.org/10.3390/appliedchem5040026 - 6 Oct 2025
Viewed by 187
Abstract
The genetic material in living systems is mainly stored in DNA molecules, which in turn play a dominant biological role in relation to the coding and transfer of genetic information, the biosynthesis of proteins and RNA and the packaging and regulation of DNA [...] Read more.
The genetic material in living systems is mainly stored in DNA molecules, which in turn play a dominant biological role in relation to the coding and transfer of genetic information, the biosynthesis of proteins and RNA and the packaging and regulation of DNA expression and accessibility. These features, strictly dictated by the three-dimensional structure of DNA, are governed by non-covalent chemical interactions that drive the folding process of these biological macromolecules. The Main Mechanical Forces (MMFs) approach is a recently formulated calculation method, based on the accurate prediction of structural features of biomolecules through an in-depth assessment of the interplay between specific non-covalent chemical interactions and related mechanical forces developed during the folding process. By adopting the MMFs method in the context of nucleic acids, we report here the results obtained in terms of predicting three-dimensional DNA oligomer tertiary structures. To this end, we have developed tailored nucleic acid-specific equations, enabling to predict the torsion angles (with a relevant level of agreement with experimental values) of the phosphate-sugar backbone of the three model molecules A-, B- and Z- DNA used in this study. To increase the validity of this methodology, we have conducted RMSD measurements, indicating that there is a weak but rather acceptable match between the calculated vs. predicted A-DNA structure, whereas the prediction of the BII-DNA and Z-DNA tertiary structures was fully correct. Full article
Show Figures

Figure 1

29 pages, 3520 KB  
Article
Thermal Entropy Generation in Magnetized Radiative Flow Through Porous Media over a Stretching Cylinder: An RSM-Based Study
by Shobha Visweswara, Baskar Palani, Fatemah H. H. Al Mukahal, S. Suresh Kumar Raju, Basma Souayeh and Sibyala Vijayakumar Varma
Mathematics 2025, 13(19), 3189; https://doi.org/10.3390/math13193189 - 5 Oct 2025
Viewed by 136
Abstract
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching [...] Read more.
Magnetohydrodynamic (MHD) flow and heat transfer in porous media are central to many engineering applications, including heat exchangers, MHD generators, and polymer processing. This study examines the boundary layer flow and thermal behavior of an electrically conducting viscous fluid over a porous stretching tube. The model accounts for nonlinear thermal radiation, internal heat generation/absorption, and Darcy–Forchheimer drag to capture porous medium resistance. Similarity transformations reduce the governing equations to a system of coupled nonlinear ordinary differential equations, which are solved numerically using the BVP4C technique with Response Surface Methodology (RSM) and sensitivity analysis. The effects of dimensionless parameters magnetic field strength (M), Reynolds number (Re), Darcy–Forchheimer parameter (Df), Brinkman number (Br), Prandtl number (Pr), nonlinear radiation parameter (Rd), wall-to-ambient temperature ratio (rw), and heat source/sink parameter (Q) are investigated. Results show that increasing M, Df, and Q suppresses velocity and enhances temperature due to Lorentz and porous drag effects. Higher Re raises pressure but reduces near-wall velocity, while rw, Rd, and internal heating intensify thermal layers. The entropy generation analysis highlights the competing roles of viscous, magnetic, and thermal irreversibility, while the Bejan number trends distinctly indicate which mechanism dominates under different parameter conditions. The RSM findings highlight that rw and Rd consistently reduce the Nusselt number (Nu), lowering thermal efficiency. These results provide practical guidance for optimizing energy efficiency and thermal management in MHD and porous media-based systems.: Full article
(This article belongs to the Special Issue Advances and Applications in Computational Fluid Dynamics)
Show Figures

Figure 1

17 pages, 1439 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Viewed by 188
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
Show Figures

Figure 1

21 pages, 542 KB  
Article
Disaggregating ESG Mechanisms: The Mediating Role of Stakeholder Pressure in the Financial Performance of Logistics Firms
by A Young Choi, Dohyun Kim and Joonho Na
Sustainability 2025, 17(19), 8840; https://doi.org/10.3390/su17198840 - 2 Oct 2025
Viewed by 417
Abstract
This research investigates the impact of Environmental, Social, and Governance (ESG) practices on the financial performance of logistics firms, with a focus on the mediating role of stakeholder pressure. Utilizing survey data collected from Korean logistics firms (N = 256 valid responses) and [...] Read more.
This research investigates the impact of Environmental, Social, and Governance (ESG) practices on the financial performance of logistics firms, with a focus on the mediating role of stakeholder pressure. Utilizing survey data collected from Korean logistics firms (N = 256 valid responses) and employing structural equation modeling, the findings indicate that social practices exert a significant direct effect on financial outcomes. Conversely, environmental and governance practices impact financial performance indirectly, through stakeholder pressure. These findings suggest that ESG activities impact financial performance via distinct mechanisms, contingent upon the specific ESG dimension and the level of stakeholder engagement. The study advances ESG literature by providing a disaggregated analysis of ESG effectiveness and empirically confirming stakeholder pressure as a critical pathway. Practically, the results underscore the need for logistics firms to align their ESG strategies with stakeholder expectations and institutional pressures, thereby optimizing both sustainability and financial performance. Full article
Show Figures

Figure 1

23 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Viewed by 344
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Graphical abstract

22 pages, 8178 KB  
Article
Vibration Control and Energy Harvesting of a Two-Degree-of-Freedom Nonlinear Energy Sink to Primary Structure Under Transient Excitation
by Xiqi Lin, Xiaochun Nie, Junjie Fu, Yangdong Qin, Lingzhi Wang and Zhitao Yan
Buildings 2025, 15(19), 3561; https://doi.org/10.3390/buildings15193561 - 2 Oct 2025
Viewed by 206
Abstract
Environmental vibrations may affect the functional use of engineering structures and even lead to disastrous consequences. Vibration suppression and energy harvesting based on Nonlinear Energy Sink (NES) and the piezoelectric effect have gained significant attention in recent years. The harvested electrical energy can [...] Read more.
Environmental vibrations may affect the functional use of engineering structures and even lead to disastrous consequences. Vibration suppression and energy harvesting based on Nonlinear Energy Sink (NES) and the piezoelectric effect have gained significant attention in recent years. The harvested electrical energy can supply power to the structural health monitoring sensor device. In this work, the electromechanical-coupled governing equations of the primary structure coupled with the series-connected 2-degree-of-freedom NES (2-DOF NES) integrated by a piezoelectric energy harvester are derived. The absorption and dissipation performances of the system under varying transient excitation intensities are investigated. Additionally, the targeted energy transfer mechanism between the primary structure and the two NESs oscillators is investigated using the wavelet analysis. The reduced slow flow of the dynamical system is explored through the complex-variable averaging method, and the primary factors for triggering the target energy transfer phenomenon are revealed. Furthermore, a comparison is made between the vibration suppression performance of the single-degree-of-freedom NES (S-DOF NES) system and the 2-DOF NES system as a function of external excitation velocity. The results indicate that the vibration suppression performance of the first-level NES (NES1) oscillator is first stimulated. As the external excitation intensity gradually increases, the vibration suppression performance of the second-level NES (NES2) oscillator is also triggered. The 1:1:1, high-frequency, and low-frequency transient resonance captures are observed between the primary structure and NES1 and NES2 oscillators over a wide frequency range. The 2-DOF NES demonstrates superior efficiency in suppressing vibrations of the primary structure and exhibits enhanced robustness to varying external excitation intensities. This provides a new strategy for structural vibration suppression and online power supply for health monitoring devices. Full article
Show Figures

Figure 1

Back to TopTop