Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = gold nanocrystals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1638 KiB  
Article
Diffracted X-Ray Tracking for Analysis of Heterogeneity of Hydrogels
by Hiroshi Sekiguchi, Taiga Shinohara and Isamu Akiba
Quantum Beam Sci. 2025, 9(2), 19; https://doi.org/10.3390/qubs9020019 - 3 Jun 2025
Viewed by 379
Abstract
Diffracted X-ray tracking (DXT) was applied to evaluate spatial heterogeneities in polyacrylamide gel networks. Diffraction spots from the (111) planes of gold nanocrystals (GNPs) encapsulated in the gels exhibited temporal motion during time-resolved X-ray diffraction measurements using a quasi-monochromatic X-ray beam. This observation [...] Read more.
Diffracted X-ray tracking (DXT) was applied to evaluate spatial heterogeneities in polyacrylamide gel networks. Diffraction spots from the (111) planes of gold nanocrystals (GNPs) encapsulated in the gels exhibited temporal motion during time-resolved X-ray diffraction measurements using a quasi-monochromatic X-ray beam. This observation indicates that the GNPs undergo rotational motion within the gel matrix. An analysis of the diffraction spot trajectories revealed that the rotational diffusion coefficient of GNPs in homogeneous gels follows a single Gaussian distribution, whereas that of heterogeneous PAAm gels, with regions of varying cross-linking density, is described by a bimodal distribution. These findings demonstrate that DXT is a powerful technique for analyzing polymer network heterogeneity. Full article
(This article belongs to the Section Structure and Dynamics of Functional Materials)
Show Figures

Graphical abstract

23 pages, 7854 KiB  
Article
Ultra-Stretchable Polymer Fibers Anchored with a Triple-Level Self-Assembled Conductive Network for Wide-Range Strain Detection
by Zhong Zheng, Shuyi Song, Xun Chen, Xixing Li and Jing Li
Polymers 2025, 17(6), 734; https://doi.org/10.3390/polym17060734 - 11 Mar 2025
Viewed by 835
Abstract
Numerous strategies have been demonstrated to enhance the mechanical stretchability of electromechanical sensors for widespread applications in wearable electronics. However, ranging from composite to microstructural materials, their electromechanical sensing performances are usually vulnerable to large stretching deformations due to the low-ductility of the [...] Read more.
Numerous strategies have been demonstrated to enhance the mechanical stretchability of electromechanical sensors for widespread applications in wearable electronics. However, ranging from composite to microstructural materials, their electromechanical sensing performances are usually vulnerable to large stretching deformations due to the low-ductility of the infilled conductive components and the modulus mismatch between the flexible polymer substrate and conductive fillers. Here, a novel design strategy is proposed to fabricate ultra-stretchable electromechanical composites constructed by a triple-level interaction conductive network (Tri-LICN) in buckled-TPU microfibers for strain sensors. The Tri-LICN is established by bridging one-dimensional cellulose nanocrystals (CNC) with zero-dimensional gold-nanoparticles (AuNPs) and two-dimensional MXene sheets using interface self-assembly and ultrasound-assisted anchoring to eliminate the modulus mismatching between the conductive material and polymer substrate. The buckled-TPU microfibers are introduced to improve the mechanical stretchability of composites by the external-stimuli-induced imbalance of the stretching conformation of TPU macromolecules. The Tri-LICN MXene/CNC/AuNPs@TPU composite sensor displays an enhanced strain sensitivity (GF~2514) with a fast response time (~150 ms) over a wide operational strain up to 200% and excellent durability over 1000 tensile cycles. Our finding offers a promising approach to enhancing the performance of stretchable sensors based on polymer materials, providing new opportunities for the development of next-generation electronics. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

11 pages, 2610 KiB  
Article
Controllable Synthesis of Three-Dimensional Chiral Au Nanoflowers Induced by Cysteine with Excellent Biocompatible Properties
by Shengmiao Liu, Jianhao Zhang and Wenjing Yan
Nanomaterials 2024, 14(24), 2040; https://doi.org/10.3390/nano14242040 - 19 Dec 2024
Viewed by 1078
Abstract
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study [...] Read more.
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers. By employing a two-step seed-mediated growth approach, stable chiral Au nanoparticles with customizable sizes, shapes, and optical properties were produced by adjusting the Au nanosphere (Au NP) seed concentration and cysteine dosage. These nanoparticles exhibited optical activity in both the visible and near-infrared regions, with a maximum anisotropy factor (g-factor) of 0.024. Furthermore, the PEG-modified chiral Au NFs demonstrated excellent biocompatibility. This approach provides a precise method for geometrically controlling the design of three-dimensional chiral nanomaterials, holding great potential for biomedical applications. Full article
Show Figures

Figure 1

10 pages, 3112 KiB  
Article
Seedless and Surfactant-Free Synthesis of Polyhedron Gold Nanocrystals Enclosed by High-Index Facets for Enhanced Electrochemical Detection of Benzoyl Peroxide in Flour
by Zixuan Wang, Qianlong Gao, Kai Yao, Wei Ran, Ying Li, Yushen Jin, Bing Shao and Jiefang Sun
Molecules 2024, 29(23), 5691; https://doi.org/10.3390/molecules29235691 - 2 Dec 2024
Cited by 1 | Viewed by 976
Abstract
Polyhedron gold nanocrystals enclosed by high-index facets (HIF-Au NCs) are in high demand but are very difficult to prepare. To address this issue, we presented a simple, seedless method for synthesizing uniform HIF-Au NCs in an aqueous solution, which remarkably reduced the synthesis [...] Read more.
Polyhedron gold nanocrystals enclosed by high-index facets (HIF-Au NCs) are in high demand but are very difficult to prepare. To address this issue, we presented a simple, seedless method for synthesizing uniform HIF-Au NCs in an aqueous solution, which remarkably reduced the synthesis difficulty. Interestingly, the protonated N2H4 which served as both the reducing and capping agent played a crucial role in modulating the kinetic growth of the HIF-Au NCs. The resulting HIF-Au NCs exhibited distinct electronic oxidation inertness toward alcohol but demonstrated exceptional activity in the electrocatalytic oxidation of peroxides. To demonstrate their sensing capabilities, an electrode decorated with HIF-Au NCs was used to selectively detect benzoyl peroxide (BPO) in flour. BPO is a prohibited whitening agent that may be illegally added to flour and other products, posing potential health risks. The results demonstrate that this assay offers a promising method for the sensitive and selective detection of BPO. In conclusion, this research provides a straightforward pathway for obtaining HIF-Au NCs and further demonstrates their use in electronic sensing. It is expected that HIF-Au NCs will serve as a powerful tool in plasmon-enhanced spectroscopies, catalysis, and sensing applications. Full article
Show Figures

Figure 1

13 pages, 1591 KiB  
Article
Extending the Shelf-Life of Nectarines through Fish Gelatin/Cellulose Nanocrystals/Cinnamon Essential Oil-Based Edible Coatings
by Reza Akbari, Javad Tarighi, Mahsa Sadat Razavi, Mohammad Tahmasebi, Daniele Carullo and Stefano Farris
Coatings 2024, 14(6), 736; https://doi.org/10.3390/coatings14060736 - 8 Jun 2024
Cited by 6 | Viewed by 1513
Abstract
The effect of bacterial cellulose nanocrystal–fish gelatin/cinnamon essential oil (BCNCs–FGelA/CEO) nanocoatings containing different concentrations of essential oil (1.2, 1.8, and 2.4 mL/L) on reducing the ripening and aging processes of ‘Red Gold’ nectarine fruit during cold storage (60 days, 4 °C) [...] Read more.
The effect of bacterial cellulose nanocrystal–fish gelatin/cinnamon essential oil (BCNCs–FGelA/CEO) nanocoatings containing different concentrations of essential oil (1.2, 1.8, and 2.4 mL/L) on reducing the ripening and aging processes of ‘Red Gold’ nectarine fruit during cold storage (60 days, 4 °C) was studied. As a general trend, the application of the coating delayed the ripening process, and increasing the concentration of essential oil was effective in improving the coating efficacy. After 60 days, the lowest values of weight loss (6.93%), peroxidase and polyphenol oxidase activity (11.49 and 0.48 abs min−1 g−1, respectively), soluble solid content (14.56%), and pH (4.17) were detected for samples covered with the BCNCs–FGelA coatings containing the highest tested CEO concentration, whereas the maximum values of the same parameters (20.68%, 18.74 and 0.76 abs min−1 g−1, 17.93%, and 4.39, respectively) were found in the uncoated samples. In addition, increasing the concentration of the essential oil resulted in a better preservation of the firmness, ascorbic acid, and total acidity of the samples. Finally, the respiration rate and ethylene production of coated samples were lower than those detected in uncoated samples, though some differences arose depending on the amount of CEO loaded in the coatings. This study showed the capability of BCNCs–FGelA/CEO coatings to increase the cold storage period and preserve the quality of ‘Red Gold’ nectarine fruit, thereby reducing losses and increasing economic efficiency in the fruit industry. Full article
(This article belongs to the Special Issue Functional Coatings in Postharvest Fruit and Vegetables)
Show Figures

Figure 1

11 pages, 2160 KiB  
Communication
A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals
by Liangang Shan, Wenchao Wang, Lei Qian, Jianguo Tang and Jixian Liu
Nanomaterials 2024, 14(11), 900; https://doi.org/10.3390/nano14110900 - 21 May 2024
Cited by 3 | Viewed by 1696
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse [...] Read more.
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and “uni-micelle” synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4–11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

15 pages, 3287 KiB  
Article
Ultrasmall Glucose-Functionalized Au-Carbon Nanohybrids: Exploiting the Warburg Effect to Image Tumors by Multimodal CT/Fluorescence Imaging
by Roberta Cillari, Sergio Scirè, Gennara Cavallaro and Nicolò Mauro
C 2024, 10(2), 35; https://doi.org/10.3390/c10020035 - 4 Apr 2024
Cited by 2 | Viewed by 2827
Abstract
Utilizing glucose as a targeting agent represents a pioneering approach in selectively directing nanoparticles towards cancer cells, capitalizing on the pronounced glucose uptake observed in tumors attributable to the Warburg effect. In this study, we have successfully adopted this targeting strategy to facilitate [...] Read more.
Utilizing glucose as a targeting agent represents a pioneering approach in selectively directing nanoparticles towards cancer cells, capitalizing on the pronounced glucose uptake observed in tumors attributable to the Warburg effect. In this study, we have successfully adopted this targeting strategy to facilitate the specific uptake of advanced nanotools, comprising carbon nanocrystals incorporating gold seeds (AuCDs). Leveraging the advantageous optical and size-related properties of carbon nanodots in conjunction with gold-mediated X-ray attenuation capabilities, these hybrid nanomaterials have been engineered as contrast agents for a bi-modal imaging modality, exploiting the synergistic benefits of fluorescence imaging and X-ray computed tomography. Notably, for the synthesis of AuCDs, we present, for the first time, the incorporation of gold seeds within the molecular precursors of carbon nanodots during their solvothermal synthesis process, showcasing the efficacy of this synthetic pathway in yielding nanoscale carbon structures incorporating bioeliminable gold ultrasmall nanoparticles (d < 5 nm). Subsequently, we employed an azido-alkyne click chemistry reaction to functionalize the nanoparticle surface with 2-deoxy-D-glucose as a targeting moiety. The demonstrated cancer-targeting proficiency, as assessed via fluorescence imaging, renders the proposed nanosystem highly promising for a spectrum of applications in precision anticancer theranostics, encompassing both diagnostic and therapeutic endeavors. Full article
(This article belongs to the Special Issue Carbon Nanohybrids for Biomedical Applications)
Show Figures

Figure 1

13 pages, 3651 KiB  
Article
Simultaneous Recording of Remote Domain Dynamics in Membrane Proteins Using the Double-Labeled DXB/DXT Technique
by Kazuhiro Mio, Tatsunari Ohkubo, Daisuke Sasaki, Mayui Sugiura, Kayoko Kawaguchi, Kazutaka Araki, Keizaburo Taninaka, Masaki Sakaguchi, Shunsuke Nozawa, Tatsuya Arai and Yuji C. Sasaki
Membranes 2024, 14(4), 75; https://doi.org/10.3390/membranes14040075 - 27 Mar 2024
Cited by 1 | Viewed by 2090
Abstract
Protein dynamics play important roles in biological functions, which accompany allosteric structure changes. Diffracted X-ray blinking (DXB) uses monochromatic X-rays and nanocrystal probes. The intramolecular motion of target proteins is analyzed from the intensity changes in detector signals at the diffraction rings. In [...] Read more.
Protein dynamics play important roles in biological functions, which accompany allosteric structure changes. Diffracted X-ray blinking (DXB) uses monochromatic X-rays and nanocrystal probes. The intramolecular motion of target proteins is analyzed from the intensity changes in detector signals at the diffraction rings. In contrast, diffracted X-ray tracking (DXT) elucidates molecular dynamics by analyzing the trajectories of Laue spots. In this study, we have developed a dual-labeling technique for DXB and DXT, allowing the simultaneous observation of motions at different domains in proteins. We identified zinc oxide (ZnO) crystals as promising candidates for the second labeling probes due to their excellent diffraction patterns, high chemical stability, and favorable binding properties with proteins. The diffraction spots from the ZnO crystals are sufficiently separated from those of gold, enabling independent motion analysis at different domains. Dual-labeling DXB was employed for the motion analysis of the 5-HT2A receptor in living cells. Simultaneous motion recording of the N-terminus and the second extracellular loop demonstrated ligand-induced motion suppression at both domains. The dual-labeling DXT technique demonstrated a capsaicin-induced peak shift in the two-dimensional motion maps at the N-terminus of the TRPV1 protein, but the peak shift was not obvious in the C-terminus. The capsaicin-induced motion modulation was recovered by the addition of the competitive inhibitor AMG9810. Full article
Show Figures

Figure 1

18 pages, 14016 KiB  
Review
Diffracted X-ray Tracking for Observing the Internal Motions of Individual Protein Molecules and Its Extended Methodologies
by Yuji C. Sasaki
Int. J. Mol. Sci. 2023, 24(19), 14829; https://doi.org/10.3390/ijms241914829 - 2 Oct 2023
Cited by 3 | Viewed by 1877
Abstract
In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in [...] Read more.
In 1998, the diffracted X-ray tracking (DXT) method pioneered the attainment of molecular dynamics measurements within individual molecules. This breakthrough revolutionized the field by enabling unprecedented insights into the complex workings of molecular systems. Similar to the single-molecule fluorescence labeling technique used in the visible range, DXT uses a labeling method and a pink beam to closely track the diffraction pattern emitted from the labeled gold nanocrystals. Moreover, by utilizing X-rays with extremely short wavelengths, DXT has achieved unparalleled accuracy and sensitivity, exceeding initial expectations. As a result, this remarkable advance has facilitated the search for internal dynamics within many protein molecules. DXT has recently achieved remarkable success in elucidating the internal dynamics of membrane proteins in living cell membranes. This breakthrough has not only expanded our knowledge of these important biomolecules but also has immense potential to advance our understanding of cellular processes in their native environment. Full article
Show Figures

Figure 1

14 pages, 4016 KiB  
Article
Multi-Modal Laser-Fabricated Nanocomposites with Non-Invasive Tracking Modality and Tuned Plasmonic Properties
by Yury V. Ryabchikov
Crystals 2023, 13(9), 1381; https://doi.org/10.3390/cryst13091381 - 18 Sep 2023
Cited by 4 | Viewed by 1694
Abstract
Ultrapure composite nanostructures combining semiconductor and metallic elements as a result of ultrafast laser processing are important materials for applications in fields where high chemical purity is a crucial point. Such nanocrystals have already demonstrated prospects in plasmonic biosensing by detecting different analytes [...] Read more.
Ultrapure composite nanostructures combining semiconductor and metallic elements as a result of ultrafast laser processing are important materials for applications in fields where high chemical purity is a crucial point. Such nanocrystals have already demonstrated prospects in plasmonic biosensing by detecting different analytes like dyes and bacteria. However, the structure of the nanocomposites, as well as the control of their properties, are still very challenging due to the significant lack of research in this area. In this paper, the synthesis of silicon–gold nanoparticles was performed using various approaches such as the direct ablation of (i) a gold target immersed in a colloidal solution of silicon nanoparticles and (ii) a silicon wafer immersed in a colloidal solution of plasmonic nanoparticles. The formed nanostructures combine both plasmonic (gold) and paramagnetic (silicon) modalities observed by absorbance and electron paramagnetic resonance spectroscopies, respectively. A significant narrowing of the size distributions of both types of two-element nanocrystals as compared to single-element ones is shown to be independent of the laser fluence. The impact of the laser ablation time on the chemical stability and the concentration of nanoparticles influencing their both optical properties and electrical conductivity was studied. The obtained results are important from a fundamental point of view for a better understanding of the laser-assisted synthesis of semiconductor–metallic nanocomposites and control of their properties for further applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Alloys via Laser-Based Techniques)
Show Figures

Figure 1

11 pages, 1614 KiB  
Review
Analysis of the Structural Dynamics of Proteins in the Ligand-Unbound and -Bound States by Diffracted X-ray Tracking
by Masayuki Oda
Int. J. Mol. Sci. 2023, 24(18), 13717; https://doi.org/10.3390/ijms241813717 - 6 Sep 2023
Cited by 4 | Viewed by 1443
Abstract
Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One [...] Read more.
Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One attractive method for obtaining an accurate view of proteins in solution, which is required for applications such as the rational design of proteins and structure-based drug design, is diffracted X-ray tracking (DXT). DXT can detect the protein structural dynamics on a timeline via gold nanocrystals attached to the protein. Here, the structure dynamics of single-chain Fv antibodies, helix bundle-forming de novo designed proteins, and DNA-binding proteins in both ligand-unbound and ligand-bound states were analyzed using the DXT method. The resultant mean square angular displacements (MSD) curves in both the tilting and twisting directions clearly demonstrated that structural fluctuations were suppressed upon ligand binding, and the binding energies determined using the angular diffusion coefficients from the MSD agreed well with the binding thermodynamics determined using isothermal titration calorimetry. In addition, the size of gold nanocrystals is discussed, which is one of the technical concerns of DXT. Full article
Show Figures

Figure 1

10 pages, 14435 KiB  
Article
Exploring the Crystalline Structure of Gold Mesocrystals Using X-ray Diffraction
by Aleksandra Chumakova, Felizitas Kirner, Andrei Chumakov, Stephan V. Roth, Alexeï Bosak and Elena V. Sturm
Crystals 2023, 13(8), 1204; https://doi.org/10.3390/cryst13081204 - 2 Aug 2023
Cited by 1 | Viewed by 2604
Abstract
Mesocrystals are a class of nanostructured material where individual nanocrystals are arranged in a distinct crystallographic orientation. The multiple-length-scale order in such materials plays an essential role in the emergent physical and chemical phenomena. Our work studies the structure of a faceted mesocrystal [...] Read more.
Mesocrystals are a class of nanostructured material where individual nanocrystals are arranged in a distinct crystallographic orientation. The multiple-length-scale order in such materials plays an essential role in the emergent physical and chemical phenomena. Our work studies the structure of a faceted mesocrystal composed of polystyrene-functionalized single crystalline gold nanoparticles using complementary ultrasmall- and wide-angle X-ray scattering (USAXS and WAXS) with electron microscopy. The results of the data analysis shed some light on the details of the microscopic structure of mesocrystals and their structuration principle. Full article
(This article belongs to the Special Issue Women in Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

12 pages, 2927 KiB  
Article
Real-Time Observation of Capsaicin-Induced Intracellular Domain Dynamics of TRPV1 Using the Diffracted X-ray Tracking Method
by Kazuhiro Mio, Tatsunari Ohkubo, Daisuke Sasaki, Tatsuya Arai, Mayui Sugiura, Shoko Fujimura, Shunsuke Nozawa, Hiroshi Sekiguchi, Masahiro Kuramochi and Yuji C. Sasaki
Membranes 2023, 13(8), 708; https://doi.org/10.3390/membranes13080708 - 30 Jul 2023
Cited by 7 | Viewed by 2395
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) is a multimodal receptor which responds to various stimuli, including capsaicin, protons, and heat. Recent advances in cryo-electron microscopy have revealed the structures of TRPV1. However, due to the large size of TRPV1 and its [...] Read more.
The transient receptor potential vanilloid type 1 (TRPV1) is a multimodal receptor which responds to various stimuli, including capsaicin, protons, and heat. Recent advances in cryo-electron microscopy have revealed the structures of TRPV1. However, due to the large size of TRPV1 and its structural complexity, the detailed process of channel gating has not been well documented. In this study, we applied the diffracted X-ray tracking (DXT) technique to analyze the intracellular domain dynamics of the TRPV1 protein. DXT enables the capture of intramolecular motion through the analysis of trajectories of Laue spots generated from attached gold nanocrystals. Diffraction data were recorded at two different frame rates: 100 μs/frame and 12.5 ms/frame. The data from the 100 μs/frame recording were further divided into two groups based on the moving speed, using the lifetime filtering technique, and they were analyzed separately. Capsaicin increased the slope angle of the MSD curve of the C-terminus in 100 μs/frame recording, which accompanied a shifting of the rotational bias toward the counterclockwise direction, as viewed from the cytoplasmic side. This capsaicin-induced fluctuation was not observed in the 12.5 ms/frame recording, indicating that it is a high-frequency fluctuation. An intrinsiccounterclockwise twisting motion was observed in various speed components at the N-terminus, regardless of the capsaicin administration. Additionally, the competitive inhibitor AMG9810 induced a clockwise twisting motion, which is the opposite direction to capsaicin. These findings contribute to our understanding of the activation mechanisms of the TRPV1 channel. Full article
Show Figures

Figure 1

18 pages, 2377 KiB  
Review
Biosensors Based on Inorganic Composite Fluorescent Hydrogels
by Pavel Sokolov, Pavel Samokhvalov, Alyona Sukhanova and Igor Nabiev
Nanomaterials 2023, 13(11), 1748; https://doi.org/10.3390/nano13111748 - 26 May 2023
Cited by 9 | Viewed by 2619
Abstract
Fluorescent hydrogels are promising candidate materials for portable biosensors to be used in point-of-care diagnosis because (1) they have a greater capacity for binding organic molecules than immunochromatographic test systems, determined by the immobilization of affinity labels within the three-dimensional hydrogel structure; (2) [...] Read more.
Fluorescent hydrogels are promising candidate materials for portable biosensors to be used in point-of-care diagnosis because (1) they have a greater capacity for binding organic molecules than immunochromatographic test systems, determined by the immobilization of affinity labels within the three-dimensional hydrogel structure; (2) fluorescent detection is more sensitive than the colorimetric detection of gold nanoparticles or stained latex microparticles; (3) the properties of the gel matrix can be finely tuned for better compatibility and detection of different analytes; and (4) hydrogel biosensors can be made to be reusable and suitable for studying dynamic processes in real time. Water-soluble fluorescent nanocrystals are widely used for in vitro and in vivo biological imaging due to their unique optical properties, and hydrogels based on these allow the preservation of these properties in bulk composite macrostructures. Here we review the techniques for obtaining analyte-sensitive fluorescent hydrogels based on nanocrystals, the main methods used for detecting the fluorescent signal changes, and the approaches to the formation of inorganic fluorescent hydrogels via sol–gel phase transition using surface ligands of the nanocrystals. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 7390 KiB  
Article
Controllable Preparation of Gold Nanocrystals with Different Porous Structures for SERS Sensing
by Yazhou Qin, Dewang Fang, Yulun Wu, Yuanzhao Wu and Weixuan Yao
Molecules 2023, 28(5), 2316; https://doi.org/10.3390/molecules28052316 - 2 Mar 2023
Cited by 1 | Viewed by 2778
Abstract
Porous Au nanocrystals (Au NCs) have been widely used in catalysis, sensing, and biomedicine due to their excellent localized surface plasma resonance effect and a large number of active sites exposed by three-dimensional internal channels. Here, we developed a ligand-induced one-step method for [...] Read more.
Porous Au nanocrystals (Au NCs) have been widely used in catalysis, sensing, and biomedicine due to their excellent localized surface plasma resonance effect and a large number of active sites exposed by three-dimensional internal channels. Here, we developed a ligand-induced one-step method for the controllable preparation of mesoporous, microporous, and hierarchical porous Au NCs with internal 3D connecting channels. At 25 °C, using glutathione (GTH) as both a ligand and reducing agent combined with the Au precursor to form GTH–Au(I), and under the action of the reducing agent ascorbic acid, the Au precursor is reduced in situ to form a dandelion-like microporous structure assembled by Au rods. When cetyltrimethylammonium bromide (C16TAB) and GTH are used as ligands, mesoporous Au NCs formed. When increasing the reaction temperature to 80 °C, hierarchical porous Au NCs with both microporous and mesoporous structures will be synthesized. We systematically explored the effect of reaction parameters on porous Au NCs and proposed possible reaction mechanisms. Furthermore, we compared the SERS-enhancing effect of Au NCs with three different pore structures. With hierarchical porous Au NCs as the SERS base, the detection limit for rhodamine 6G (R6G) reached 10−10 M. Full article
(This article belongs to the Special Issue Synthesis and Application of Nanoparticles and Nanocomposites)
Show Figures

Figure 1

Back to TopTop