Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = goat granulosa cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3219 KiB  
Review
The Role of TGF-β Signaling Pathway in Determining Small Ruminant Litter Size
by Ying Han, Guiling Cao, Wenting Chen, Changfa Wang and Muhammad Zahoor Khan
Biology 2025, 14(7), 786; https://doi.org/10.3390/biology14070786 - 29 Jun 2025
Viewed by 476
Abstract
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs [...] Read more.
The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in regulating female reproductive traits, particularly litter size, in small ruminants, such as sheep and goats. This review comprehensively examines the molecular mechanisms through which TGF-β superfamily members—including bone morphogenetic proteins (BMPs), growth differentiation factor 9 (GDF9), inhibin (INHA and INHB), and associated signaling genes—influence ovarian follicular development, ovulation rate, and ultimately, litter size. We synthesize recent findings on polymorphisms in key genes, such as BMPR1B, BMP15, GDF9, inhibins and SMADs family genes, across diverse sheep and goat breeds worldwide. The manuscript highlights how specific mutations in these genes create an intricate signaling network that modulates granulosa cell proliferation, follicular sensitivity to FSH, and the prevention of dominant follicle selection. These molecular interactions result in increased ovulation rates and larger litter sizes in prolific breeds. The gene dosage effects observed in heterozygous versus homozygous mutation carriers further illuminate the complex nature of these reproductive regulations. This improved the understanding of the genetic basis for prolificacy provides valuable insights for marker-assisted selection strategies aimed at enhancing reproductive efficiency in small ruminant breeding programs, with significant implications for improving livestock productivity and economic outcomes. Full article
(This article belongs to the Special Issue The Biology of Animal Reproduction)
Show Figures

Figure 1

19 pages, 6911 KiB  
Article
ADCY5 Gene Affects Seasonal Reproduction in Dairy Goats by Regulating Ovarian Granulosa Cells Steroid Hormone Synthesis
by Chenbo Shi, Fuhong Zhang, Qiuya He, Jianjun Man, Yuanpan Mu, Jianqing Zhao, Lu Zhu, Juan J. Loor and Jun Luo
Int. J. Mol. Sci. 2025, 26(4), 1622; https://doi.org/10.3390/ijms26041622 - 14 Feb 2025
Cited by 1 | Viewed by 879
Abstract
Follicle development in dairy goats is lower after induced estrus during the non-breeding season, reducing conception rates and challenging year-round milk supply. This study investigated follicle development during the breeding and non-breeding seasons and explored molecular mechanisms for variations in the proportions of [...] Read more.
Follicle development in dairy goats is lower after induced estrus during the non-breeding season, reducing conception rates and challenging year-round milk supply. This study investigated follicle development during the breeding and non-breeding seasons and explored molecular mechanisms for variations in the proportions of follicles of different sizes using ovarian RNA-seq and in vitro experiments. Induced estrus during the non-breeding season used a simulated breeding season short photoperiod and male effect methods, while the male effect method was used during the breeding season. This study identified an increase in follicle size during the breeding season and performed RNA-seq on ovaries to explore the underlying causes. The RNA-seq analysis elucidated pathways associated with cellular and hormonal metabolism and identified adenylyl cyclase 5 (ADCY5) as a key differentially expressed gene. In vitro experiments demonstrated that interfering with ADCY5 in ovarian granulosa cells (GCs) reduced steroid synthesis. Conversely, the overexpression of ADCY5 increased steroid synthesis. ADCY5 affects the biological function of GCs and consequently influences follicle development through the cAMP-response element binding protein (CREB) and p38 mitogen-activated protein kinase phosphorylation (MAPK) pathways. Overall, our findings demonstrate that follicle development in dairy goats differs between the breeding and non-breeding seasons and that the differential expression levels of the ADCY5 gene contribute to this discrepancy. Full article
Show Figures

Figure 1

19 pages, 85340 KiB  
Article
Unveiling the Ovarian Cell Characteristics and Molecular Mechanism of Prolificacy in Goats via Single-Nucleus Transcriptomics Data Analysis
by Sanbao Zhang, Yirong Wei, Xiaotong Gao, Ying Song, Yanna Huang and Qinyang Jiang
Curr. Issues Mol. Biol. 2024, 46(3), 2301-2319; https://doi.org/10.3390/cimb46030147 - 11 Mar 2024
Cited by 5 | Viewed by 2099
Abstract
Increases in litter size, which are influenced by ovulation, are responsible for between 74% and 96% of the economic value of genetic progress, which influences selection. For the selection and breeding of highly prolific goats, genetic mechanisms underlying variations in litter size should [...] Read more.
Increases in litter size, which are influenced by ovulation, are responsible for between 74% and 96% of the economic value of genetic progress, which influences selection. For the selection and breeding of highly prolific goats, genetic mechanisms underlying variations in litter size should be elucidated. Here, we used single-nucleus RNA sequencing to analyze 44,605 single nuclei from the ovaries of polytocous and monotocous goats during the follicular phase. Utilizing known reference marker genes, we identified 10 ovarian cell types characterized by distinct gene expression profiles, transcription factor networks, and reciprocal interaction signatures. An in-depth analysis of the granulosa cells revealed three subtypes exhibiting distinct gene expression patterns and dynamic regulatory mechanisms. Further investigation of cell-type-specific prolificacy-associated transcriptional changes elucidated that “downregulation of apoptosis”, “increased anabolism”, and “upstream responsiveness to hormonal stimulation” are associated with prolificacy. This study provides a comprehensive understanding of the cell-type-specific mechanisms and regulatory networks in the goat ovary, providing insights into the molecular mechanisms underlying goat prolificacy. These findings establish a vital foundation for furthering understanding of the molecular mechanisms governing folliculogenesis and for improving the litter size in goats via molecular design breeding. Full article
(This article belongs to the Special Issue Molecular Research in Reproductive Biology, 2nd Edition)
Show Figures

Figure 1

15 pages, 4705 KiB  
Article
miR-128-3p Regulates Follicular Granulosa Cell Proliferation and Apoptosis by Targeting the Growth Hormone Secretagogue Receptor
by Shucan Dong, Shengwei Jiang, Biwei Hou, Yaokun Li, Baoli Sun, Yongqing Guo, Ming Deng, Dewu Liu and Guangbin Liu
Int. J. Mol. Sci. 2024, 25(5), 2720; https://doi.org/10.3390/ijms25052720 - 27 Feb 2024
Cited by 4 | Viewed by 1777
Abstract
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role [...] Read more.
The proliferation and apoptosis of granulosa cells (GCs) affect follicle development and reproductive disorders, with microRNAs playing a crucial regulatory role. Previous studies have shown the differential expression of miR-128-3p at different stages of goat follicle development, which suggests its potential regulatory role in follicle development. In this study, through the Cell Counting Kit-8 assay, the EDU assay, flow cytometry, quantitative real-time polymerase chain reaction, Western blot, and the dual-luciferase reporter assay, we used immortal human ovarian granulosa tumor cell line (KGN) cells as materials to investigate the effects of miR-128-3p and its predicted target gene growth hormone secretagogue receptor (GHSR) on GC proliferation and apoptosis. The results show that overexpression of miR-128-3p inhibited the proliferation of KGN cells, promoted cell apoptosis, and suppressed the expression of proliferating cell nuclear antigen (PCNA) and B-cell lymphoma-2 (BCL2) while promoting that of Bcl-2 associated X protein (BAX). The dual-luciferase reporter assay revealed that miR-128-3p bound to the 3′ untranslated region sequence of GHSR, which resulted in the inhibited expression of GHSR protein. Investigation of the effects of GHSR on GC proliferation and apoptosis revealed that GHSR overexpression promoted the expression of PCNA and BCL2, enhanced GC proliferation, and inhibited cell apoptosis, whereas the opposite effects were observed when GHSR expression was inhibited. In addition, miR-128-3p and GHSR can influence the expression of extracellular signal-regulated kinase 1/2 protein. In conclusion, miR-128-3p inhibits KGN cell proliferation and promotes cell apoptosis by downregulating the expression of the GHSR gene. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 9694 KiB  
Article
miR-486 Responds to Apoptosis and Autophagy by Repressing SRSF3 Expression in Ovarian Granulosa Cells of Dairy Goats
by Shujuan Liu, Qiqi Bu, Jiashun Tong, Zhanhang Wang, Jiuzeng Cui, Heran Cao, Haidong Ma, Binyun Cao, Xiaopeng An and Yuxuan Song
Int. J. Mol. Sci. 2023, 24(10), 8751; https://doi.org/10.3390/ijms24108751 - 15 May 2023
Cited by 5 | Viewed by 2103
Abstract
The accumulation of ovarian granulosa cell (GC) apoptosis underlies follicular atresia. By comparing the previous sequencing results, miR-486 was found to be differentially expressed at higher levels in the monotocous goat than in the polytocous goat. Unfortunately, the miRNA-mediated mechanisms by which the [...] Read more.
The accumulation of ovarian granulosa cell (GC) apoptosis underlies follicular atresia. By comparing the previous sequencing results, miR-486 was found to be differentially expressed at higher levels in the monotocous goat than in the polytocous goat. Unfortunately, the miRNA-mediated mechanisms by which the GC fate is regulated are unknown in Guanzhong dairy goats. Therefore, we investigated miR-486 expression in small and large follicles, as well as its impact on normal GC survival, apoptosis and autophagy in vitro. Here, we identified and characterized miR-486 interaction with Ser/Arg-rich splicing factor 3 (SRSF3) using luciferase reporter analysis, detecting its role in GC survival, apoptosis and autophagy regulation through qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, mitochondrial membrane potential and monodansylcadaverine, etc. Our findings revealed prominent effects of miR-486 in the regulation of GC survival, apoptosis and autophagy by targeting SRSF3, which might explain the high differential expression of miR-486 in the ovaries of monotocous dairy goats. In summary, this study aimed to reveal the underlying molecular mechanism of miR-486 regulation on GC function and its effect on ovarian follicle atresia in dairy goats, as well as the functional interpretation of the downstream target gene SRSF3. Full article
(This article belongs to the Special Issue Germ Cells Molecular Research and Application)
Show Figures

Figure 1

19 pages, 6863 KiB  
Article
Knockdown of KDM5B Leads to DNA Damage and Cell Cycle Arrest in Granulosa Cells via MTF1
by Yingnan Yang, Yu Cai, Jinjing Guo, Keke Dai, Liang Liu, Zili Chen, Feng Wang and Mingtian Deng
Curr. Issues Mol. Biol. 2023, 45(4), 3219-3237; https://doi.org/10.3390/cimb45040210 - 7 Apr 2023
Cited by 2 | Viewed by 2571
Abstract
KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we [...] Read more.
KDM5B is essential for early embryo development, which is under the control of maternal factors in oocytes. Granulosa cells (GCs) play a critical role during oocyte mature. However, the role of KDM5B in GCs remains to be elucidated. In the current study, we found that KDM5B expressed highly in the ovaries and located in goat GCs. Using an RNA sequence, we identified 1353 differentially expressed genes in the KDM5B knockdown GCs, which were mainly enriched in cell cycle, cell division, DNA replication and the cellular oxidative phosphorylation regulation pathway. Moreover, we reported a decrease in the percentage of proliferated cells but an increase in the percentage of apoptotic cells in the KDM5B knockdown GCs. In addition, in the KDM5B knockdown GCs, the percentage of GCs blocked at the S phase was increased compared to the NC group, suggesting a critical role of KDM5B in the cell cycle. Moreover, in the KDM5B knockdown GCs, the reactive oxygen species level, the mitochondrial depolarization ratio, and the expression of intracellular phosphorylated histone H2AX (γH2AX) increased, suggesting that knockdown of KDM5B leads to DNA damage, primarily in the form of DNA double-strand breaks (DSBs). Interestingly, we found a down-regulation of MTF1 in the KDM5B knockdown GCs, and the level of cell proliferation, as well as the cell cycle block in the S phase, was improved. In contrast, in the group with both KDM5B knockdown and MTF1 overexpression, the level of ROS, the expression of γH2AX and the number of DNA DSB sites decreased. Taken together, our results suggest that KDM5B inhibits DNA damage and promotes the cell cycle in GCs, which might occur through the up-regulation of MTF1. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

13 pages, 5530 KiB  
Article
Effects of Zearalenone on Apoptosis and Copper Accumulation of Goat Granulosa Cells In Vitro
by Liang Liu, Jianyu Ma, Zongyou Wei, Yingnan Yang, Dongxu Li and Yongjie Wan
Biology 2023, 12(1), 100; https://doi.org/10.3390/biology12010100 - 9 Jan 2023
Cited by 2 | Viewed by 1934
Abstract
Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell [...] Read more.
Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell survival as a metal ion, can consist of a variety of enzymes that facilitate abundant metabolic processes. However, the accumulation of copper in cells can have toxic effects. Here, we intended to determine whether ZEA could impair goat granulosa cells (GCs) and alter the cellular copper concentration. GCs were divided into a negative control (NC) group (cells cultured with 0.1% dimethyl sulfoxide (DMSO) for 8 h) and a ZEA group (cells cultured with 200 μmol/L ZEA diluted in DMSO for 8 h). The results showed that ZEA could inhibit GC proliferation and impair cell viability. GCs showed significant increases in the apoptosis rate and oxidative stress levels, while their ability to synthesize estrogen decreased. In addition, RNA-seq results showed dramatic changes in the expression of copper transport-related genes. The expression levels of ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B) were significantly downregulated (p < 0.01), while the expression of solute carrier family 31 member 1 (SLC31A1) was not modified in the ZEA group compared with the NC group. In accordance with these trends, the copper concentration increased significantly in the ZEA group (p < 0.01). In summary, our results show that ZEA can negatively affect GCs and cause copper accumulation. This finding may provide a prospective line of research on the relationship between ZEA and the transport of copper ions in GCs. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

20 pages, 3850 KiB  
Article
miR-450-5p and miR-202-5p Synergistically Regulate Follicle Development in Black Goat
by Guanghang Feng, Jie Liu, Zitao Lu, Yaokun Li, Ming Deng, Guangbin Liu, Baoli Sun, Yongqing Guo, Xian Zou and Dewu Liu
Int. J. Mol. Sci. 2023, 24(1), 401; https://doi.org/10.3390/ijms24010401 - 26 Dec 2022
Cited by 10 | Viewed by 2470
Abstract
Follicle maturation is a complex biological process governed by numerous factors, and researchers have observed follicle development by studying the proliferation and apoptosis of follicular granulosa cells (GCs). However, the regulatory mechanisms of GCs proliferation and death during follicle development are largely unknown. [...] Read more.
Follicle maturation is a complex biological process governed by numerous factors, and researchers have observed follicle development by studying the proliferation and apoptosis of follicular granulosa cells (GCs). However, the regulatory mechanisms of GCs proliferation and death during follicle development are largely unknown. To investigate the regulatory mechanisms of lncRNAs, mRNAs, and microRNAs, RNA sequencing (RNA-seq) and small RNA-seq were performed on large (>10 mm) and small follicles (<3 mm) of Leizhou black goat during estrus. We discovered two microRNAs, miR-450-5p and miR-202-5p, which can target GCs in goats and may be involved in follicle maturation, and the effects of miR-450-5p and miR-202-5p on ovarian granulosa cell lines were investigated (KGN). Using cell counting kit-8 (CCK-8) assays, 5-Ethynyl-2’-deoxyuridine (EdU) assay and flow cytometry, miR-202-5p overexpression could suppress the proliferation and induce apoptosis of GCs, whereas miR-450-5p overexpression induced the opposite effects. The dual-luciferase reporter assay confirmed that miR-450-5p could directly target the BMF gene (a BCL2 modifying factor), and miR-202-5p targeted the BCL2 gene. A considerable rise in phosphorylated Akt (p-AKT) protein was observed following the downregulation of BMF by miR-450-5p mimics. After BMF gene RNAi therapy, a notable elevation in p-AKT was detected. Mimics of miR-202-5p inhibited BCL2 protein expression, significantly decreasing p-AMPK protein expression. These results imply that during the follicular development in black goats, the miR-450-5p-BMF axis favored GC proliferation on a wide scale, while the miR-202-5p-BCL2 axis triggered GC apoptosis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 23265 KiB  
Article
Effects of N-Acetylcysteine on the Proliferation, Hormone Secretion Level, and Gene Expression Profiles of Goat Ovarian Granulosa Cells
by Taotao Ji, Xiang Chen, Yan Zhang, Kaibin Fu, Yue Zou, Weiwei Wang and Jiafu Zhao
Genes 2022, 13(12), 2306; https://doi.org/10.3390/genes13122306 - 7 Dec 2022
Cited by 11 | Viewed by 3289
Abstract
The purpose of this paper was to investigate the effects of N-acetylcysteine (NAC) on the proliferation, hormone secretion, and mRNA expression profiles of ovarian granulosa cells (GCs) in vitro. A total of 12 ovaries from 6 follicular-stage goats were collected for granulosa cell [...] Read more.
The purpose of this paper was to investigate the effects of N-acetylcysteine (NAC) on the proliferation, hormone secretion, and mRNA expression profiles of ovarian granulosa cells (GCs) in vitro. A total of 12 ovaries from 6 follicular-stage goats were collected for granulosa cell extraction. The optimum concentration of NAC addition was determined to be 200 μM via the Cell Counting Kit 8 (CCK-8) method. Next, GCs were cultured in a medium supplemented with 200 μM NAC (200 μM NAC group) and 0 μ M NAC (control group) for 48 h. The effects of 200 μM NAC on the proliferation of granulosa cells and hormones were studied by 5-ethynyl-2′-deoxyuridine (EdU) assay and enzyme-linked immunosorbent assay (ELISA). mRNA expression was analyzed by transcriptome sequencing. The results indicate that 200 μM NAC significantly increased cell viability and the proportion of cells in the S phase but promoted hormone secretion to a lesser degree. Overall, 122 differentially expressed genes (DEGs) were identified. A total of 51 upregulated and 71 downregulated genes were included. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that the most DEGs were enriched in terms of cell growth regulation, cell growth, neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the cAMP-signaling pathway, and the Wnt-signaling pathway. Seven genes related to granulosa cell proliferation were screened, IGFBP4, HTRA4, SST, SSTR1, WISP1, DAAM2, and RSPO2. The above results provide molecular theoretical support for NAC as a feed additive to improve follicle development and improve reproductive performance in ewes. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

25 pages, 6077 KiB  
Article
Neuromedin S Regulates Steroidogenesis through Maintaining Mitochondrial Morphology and Function via NMUR2 in Goat Ovarian Granulosa Cells
by Xuan Sun, Cheng Zeng, Feng Wang, Zhen Zhang, Fan Yang, Zhi-Peng Liu, Kang Li and Guo-Min Zhang
Int. J. Mol. Sci. 2022, 23(21), 13402; https://doi.org/10.3390/ijms232113402 - 2 Nov 2022
Cited by 10 | Viewed by 2533
Abstract
Neuromedin S (NMS) plays various roles in reproductive regulation, while the mechanism by which NMS regulates ovarian steroidogenesis remains unclear. In the current study, we confirmed the enhancement role of NMS in steroidogenesis in goat ovarian granulosa cells (GCs). To further explore the [...] Read more.
Neuromedin S (NMS) plays various roles in reproductive regulation, while the mechanism by which NMS regulates ovarian steroidogenesis remains unclear. In the current study, we confirmed the enhancement role of NMS in steroidogenesis in goat ovarian granulosa cells (GCs). To further explore the specific mechanism, we conducted a knockdown of NMUR2 in GCs followed by treatment with NMS and determined the effects of NMS treatment on mitochondrial morphology and function. The results found that NMS treatment increased the production of estrogen and up-regulated the expression of STAR, CYP11A1, 3BHSD, and CYP19A1, while the effects of NMS treatment were blocked by the knockdown of NMUR2 in goat GCs. Moreover, NMS treatment enhanced the fusion of mitochondria and up-regulated the expression of OPA1, MFN1, and MFN2, and increased mitochondrial membrane potential, the activity of respiratory chain enzymes and ATP production by maintaining a low expression level of mitochondrial unfolded protein response markers. The effects of NMS treatment on mitochondria were reversed by NMUR2 knockdown and NMS cotreatment. The possible mechanism of the results above was revealed by NMS treatment activating the Hippo pathway effector YAP1 and then managing the expression of phosphorylation PPARGC1A (Ser571). Together, these data showed that NMS promoted the fusion of mitochondria and protected mitochondrial function from mitochondrial unfolded protein response possibly via the NMUR2/YAP1/PPARGC1A pathway, thereby affecting the steroidogenesis of goat GCs. By elaborating the potential mechanism of NMS in regulating estrogen production in goat GCs, our results can serve as the mechanism reference for follicular growth and development. Full article
(This article belongs to the Special Issue Cellular Signalling Transduction)
Show Figures

Figure 1

12 pages, 2211 KiB  
Article
BMP6 Promotes the Secretion of 17 Beta-Estradiol and Progesterone in Goat Ovarian Granulosa Cells
by Shuaifei Song, Wenfei Ding, Hui Yao, Lei Wang, Bijun Li, Yukun Wang, Xue Tang, Yiyu Zhang, Deli Huang, Dejun Xu and Zhongquan Zhao
Animals 2022, 12(16), 2132; https://doi.org/10.3390/ani12162132 - 19 Aug 2022
Cited by 8 | Viewed by 2315
Abstract
The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant [...] Read more.
The purpose of this study was to investigate the effects of BMP6 on the function of goat ovarian granulosa cells (GCs). The results showed that the exogenous addition of BMP6 did not affect the EdU-positive ratio of ovarian GCs and had no significant effect on the mRNA and protein expression levels of the proliferation-related gene PCNA (p > 0.05). Meanwhile, BMP6 had no significant effect on the cycle phase distribution of GCs but increased the mRNA expression of CDK4 (p < 0.05) and CCND1 (p < 0.01) and decreased the mRNA expression of CCNE1 (p < 0.01). Moreover, BMP6 had no significant effect on the apoptosis rate of GCs and did not affect the mRNA expression levels of apoptosis-related genes BAX, BCL2, and Caspase3 (p > 0.05). Importantly, BMP6 upregulated the secretion of 17 beta-estradiol (E2) and progesterone (P4) in ovarian GCs (p < 0.01). Further studies found that BMP6 inhibited the mRNA expression of 3β-HSD and steroid synthesis acute regulator (StAR) but significantly promoted the mRNA expression of the E2 synthesis rate-limiting enzyme CYP19A1 and the P4 synthesis rate-limiting enzyme CYP11A1 (p < 0.01). Taken together, these results showed that the exogenous addition of BMP6 did not affect the proliferation, cell cycle, and apoptosis of goat ovarian GCs but promoted the secretion of E2 and progesterone P4 in ovarian GCs by upregulating the mRNA expressions of CYP19A1 and CYP11A1. Full article
(This article belongs to the Special Issue Advances of Endocrinology in Animal Reproduction)
Show Figures

Figure 1

13 pages, 5716 KiB  
Article
CYP19A1 May Influence Lambing Traits in Goats by Regulating the Biological Function of Granulosa Cells
by Yan Zhang, Xiang Chen, Zhinan Zhou, Xingzhou Tian, Peifang Yang and Kaibing Fu
Animals 2022, 12(15), 1911; https://doi.org/10.3390/ani12151911 - 27 Jul 2022
Cited by 10 | Viewed by 2849
Abstract
Abnormal expression of CYP19A1, a gene related to steroid hormone synthesis, causes steroid hormone disruption and leads to abnormal ovulation in granulosa cells. However, the exact mechanism of CYP19A1 regulation is unclear. In this study, we confirmed the localization of CYP19A1 in [...] Read more.
Abnormal expression of CYP19A1, a gene related to steroid hormone synthesis, causes steroid hormone disruption and leads to abnormal ovulation in granulosa cells. However, the exact mechanism of CYP19A1 regulation is unclear. In this study, we confirmed the localization of CYP19A1 in goat ovarian tissues using immunohistochemistry. Subsequently, we investigated the effects of CYP19A1 on granulosa cell proliferation, steroid hormone secretion, and expression of candidate genes for multiparous traits by overexpressing and silencing CYP19A1 in goat granulosa cells (GCs). The immunohistochemistry results showed that CYP19A1 was expressed in all types of follicular, luteal, and granulosa cells, with subcellular localization results revealing that CYP19A1 protein was mainly localized in the cytoplasm and nucleus. Overexpression of CYP19A1 significantly increased the mRNA levels of CYP19A1, FSHR, and INHBA, which are candidate genes for multiple birth traits in goats. It also promoted cell proliferation, PCNA and Cyclin E mRNA levels in granulosa cells, and secretion of estrogen and progesterone. However, it inhibited the mRNA levels of STAR, CYP11A1, and 3βSHD, which are genes related to steroid synthesis. Silencing CYP19A1 expression significantly reduced CYP19A1, FSHR, and INHBA mRNA levels in granulosa cells and inhibited granulosa cell proliferation and PCNA and Cyclin E mRNA levels. It also reduced estrogen and progesterone secretion but enhanced the mRNA levels of STAR, CYP11A1, and 3βSHD. CYP19A1 potentially influenced the lambing traits in goats by affecting granulosa cell proliferation, hormone secretion, and expression of candidate genes associated with traits for multiple births. Full article
(This article belongs to the Collection Reproductive Management of Sheep and Goats)
Show Figures

Figure 1

17 pages, 3831 KiB  
Article
Effect of Upregulation of Transcription Factor TFDP1 Binding Promoter Activity Due to RBP4 g.36491960G>C Mutation on the Proliferation of Goat Granulosa Cells
by Yufang Liu, Siwu Guo, Xiaoyun He, Yanting Jiang, Qionghua Hong, Rong Lan and Mingxing Chu
Cells 2022, 11(14), 2148; https://doi.org/10.3390/cells11142148 - 8 Jul 2022
Cited by 9 | Viewed by 2816
Abstract
Retinol-binding protein 4 (RBP4), a member of the lipocalin family, is a specific carrier of retinol (vitamin A) in the blood. Numerous studies have shown that RBP4 plays an important role in mammalian embryonic development and that mutations in RBP4 can be used [...] Read more.
Retinol-binding protein 4 (RBP4), a member of the lipocalin family, is a specific carrier of retinol (vitamin A) in the blood. Numerous studies have shown that RBP4 plays an important role in mammalian embryonic development and that mutations in RBP4 can be used for the marker-assisted selection of animal reproductive traits. However, there are few studies on the regulation of reproduction and high-prolificacy traits by RBP4 in goats. In this study, the 5′ flanking sequence of RBP4 was amplified, and a G>C polymorphism in the promoter region -211 bp (g.36491960) was detected. An association analysis revealed that the respective first, second and third kidding number and mean kidding number of nanny goats with CC and GC genotypes (2.167 ± 0.085, 2.341 ± 0.104, 2.529 ± 0.107 and 2.189 ± 0.070 for CC and 2.052 ± 0.047, 2.206 ± 0.057, 2.341 ± 0.056 and 2.160 ± 0.039 for GC) were significantly higher (p < 0.05) than those with the GG genotype (1.893 ± 0.051, 2.027 ± 0.064, 2.107 ± 0.061 and 1.74 ± 0.05). The luciferase assay showed that luciferase activity was increased in C allele individuals compared with that in G allele individuals. A competitive electrophoretic mobility shift assay (EMSA) showed that individuals with the CC genotype had a stronger promoter region binding capacity than those with the GG genotype. In addition, transcription factor prediction software showed that the RBP4 g.36491960G>C mutation added a novel binding site for transcription factor DP-1 (TFDP1). RT–qPCR results showed that the expression of TFDP1 was significantly higher in the high-prolificacy group than in the low-prolificacy group, and the expression of RBP4 was higher in both the CC and GC genotypes than that in the GG genotype. TFDP1 overexpression significantly increased the expression of RBP4 mRNA (p < 0.05) and the expression of the cell proliferation factors cyclin-D1, cyclin-D2 and CDK4 (p < 0.05). The opposite trend was observed after interference with TFDP1. Both the EdU and CCK-8 results showed that TFDP1 expression could regulate the proliferation of goat ovarian granulosa cells. In summary, our results showed that RBP4 g.36491960G>C was significantly associated with fecundity traits in goats. The g.36491960G>C mutation enhanced the transcriptional activity of RBP4 and increased the expression of RBP4, thus improving the fertility of Yunshang black goats. Full article
Show Figures

Figure 1

16 pages, 3332 KiB  
Article
Transactivation of miR-202-5p by Steroidogenic Factor 1 (SF1) Induces Apoptosis in Goat Granulosa Cells by Targeting TGFβR2
by Qiang Ding, Miaohan Jin, Yaoyue Wang, Jiao Liu, Peter Kalds, Ying Wang, Yuxin Yang, Xiaolong Wang and Yulin Chen
Cells 2020, 9(2), 445; https://doi.org/10.3390/cells9020445 - 14 Feb 2020
Cited by 23 | Viewed by 4456
Abstract
MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles [...] Read more.
MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles of miR-202-5p in GCs remain unknown. Here, we show that miR-202-5p is specifically expressed in GCs and accumulates in extracellular vesicles (EVs) from large growth follicles in goat ovaries. In vitro assays showed that miR-202-5p induced apoptosis and suppressed the proliferation of goat GCs. We further revealed that miR-202-5p is a functional miRNA that targets the transforming growth factor-beta type II receptor (TGFβR2). MiR-202-5p attenuated TGF-β/SMAD signaling through the degradation of TGFβR2 at both the mRNA and protein level, decreasing p-SMAD3 levels in GCs. Moreover, we verified that steroidogenic factor 1 (SF1) is a transcriptional factor that binds to the promoters of miR-202 and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) through luciferase reporter and chromatin immunoprecipitation (ChIP) assays. That contributed to positive correlation between miR-202-5p and CYP19A1 expression and estradiol (E2) release. Furthermore, SF1 repressed TGFβR2 and p-SMAD3 levels in GCs through the transactivation of miR-202-5p. Taken together, these results suggest a mechanism by which miR-202-5p regulates canonical TGF-β/SMAD signaling through targeting TGFβR2 in GCs. This provides insight into the transcriptional regulation of miR-202 and CYP19A1 during goat ovarian follicular development. Full article
(This article belongs to the Special Issue TGF-beta/BMP Signaling Pathway)
Show Figures

Figure 1

Back to TopTop