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Abstract: Increases in litter size, which are influenced by ovulation, are responsible for between 74%
and 96% of the economic value of genetic progress, which influences selection. For the selection and
breeding of highly prolific goats, genetic mechanisms underlying variations in litter size should be
elucidated. Here, we used single-nucleus RNA sequencing to analyze 44,605 single nuclei from the
ovaries of polytocous and monotocous goats during the follicular phase. Utilizing known reference
marker genes, we identified 10 ovarian cell types characterized by distinct gene expression profiles,
transcription factor networks, and reciprocal interaction signatures. An in-depth analysis of the
granulosa cells revealed three subtypes exhibiting distinct gene expression patterns and dynamic
regulatory mechanisms. Further investigation of cell-type-specific prolificacy-associated transcrip-
tional changes elucidated that “downregulation of apoptosis”, “increased anabolism”, and “upstream
responsiveness to hormonal stimulation” are associated with prolificacy. This study provides a
comprehensive understanding of the cell-type-specific mechanisms and regulatory networks in the
goat ovary, providing insights into the molecular mechanisms underlying goat prolificacy. These
findings establish a vital foundation for furthering understanding of the molecular mechanisms
governing folliculogenesis and for improving the litter size in goats via molecular design breeding.
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1. Introduction

In mammals, reproduction is an important and complex biological process. From a
physiological perspective, the reproductive performance of female animals is determined
by a series of biological events that occur from egg maturation to birth [1]. An increased
number of offspring is largely associated with increased ovulation rates during the estrous
cycle [2–4]. Certain mammals (including humans) often yield more than one offspring per
parity. Within the realm of livestock, low fecundity (i.e., litter size) is a major limitation in
the development of animal husbandry and genetics.

The ovary is a complex structure consisting of numerous heterogeneous cell types,
including follicles in various stages of development. The ovarian follicle is the fundamental
functional unit within the ovary, composed of oocytes, surrounding granulosa cells (GCs),
and/or theca cells [5]. Follicular development is a highly coordinated process. Follicle
cyclic recruitment, spatial displacement, follicle atresia, and ovulation are implicated
events resulting from the release of molecular signals by somatic cells [6]. Each primordial
follicle has the potential to undergo folliculogenesis and develop into a primary follicle,
then into a secondary follicle, and ultimately into a mature follicle capable of ovulation or
degeneration, akin to the majority of follicles that do not undergo maturation [7,8]. From the
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initial 1 million follicles present in the mammalian ovary at birth, only a mere 500 follicles
progress to the ovulatory phase, while the remaining follicles undergo degeneration [9].
However, the molecular mechanisms regulating oocyte maturation, follicular growth, and
regression, which contribute to the maintenance of ovarian tissue homeostasis and the
number of ovulations during the estrous cycle, remain unclear [10]. Additionally, our
understanding of the communication among ovarian niches, signaling pathways, critical
events, and specific transcription factors (TFs) that regulate various ovarian cell types
remains limited.

The Nubian goat, native to Africa, exhibits good adaptability and reproductive perfor-
mance, with more than two litters per parity. In southwest China, they have been groomed
on a large scale to improve the quality of local goat population since their introduction in
about 1985. Du’an goats, exhibiting almost no gene communication of species or groups of
species and artificial imprinting for commercial characters, are a geographical indication
of the agricultural product of Du’an Yao Autonomous County, Hechi, Guangxi Zhuang
Autonomous Region, China, and the litter size is small (mostly one litter per parity). They
are considered an ideal biological model for investigating the mechanism governing ovar-
ian follicle development, ovulation, and follicular atresia [11]. In addition, the molecular
mechanism underlying the significant difference in litter size between Du’an and Nubian
goats remains unclear.

In the context of a heterogeneous organ such as the ovary, conventional bulk RNA-
sequencing (RNA-seq) approaches fail to accurately reveal cell-type-specific changes in gene
expression profiles, particularly for rare cell types. The single-cell/nuclei RNA sequencing
(sc/nRNA-seq) technique can efficiently identify cell types, uncover heterogeneity, and con-
struct developmental trajectories. Studies have demonstrated the ability of sc/nRNA-seq
to determine the molecular underpinnings of dominant follicle selection, follicular atresia,
and prolificacy in mammals [12,13]. Therefore, in this study, we utilized snRNA-seq data
from the ovaries of polytocous and monotocous goats to reveal distinctive characteristics
of ovarian cells and the molecular mechanisms governing prolificacy in goats. Our study
establishes a vital foundation for furthering understanding of the folliculogenesis molecular
mechanisms in mammals.

2. Materials and Methods
2.1. Animal Preparation and Animal Tissue Collection

The snRNA-seq data utilized in this study were derived from previously collected
data by our research team. Briefly, the Nubian and Du’an goats were obtained from the
Standardized Breeding Farm in Guangxi Province in this study, and their litter sizes were
recorded. Between 2016 and 2020, Du’an goats exhibited a range of 1–2 lambs per parity,
with an average litter size of 1.28. In contrast, Nubian goats had an average litter size of
2.13, approximately 1–5 lambs per parity. The experimental group comprised two Nubian
goats in the polytocous group (litter size = 3, about 3 years old, and 3 births) and two
Du’an goats in the monotocous group (litter size = 1, about 3 years old, and 3 births) based
on three generations of lamb breeding records. These goats were subjected to estrous
synchronization through controlled internal drug release (progesterone 300 mg, InterAg,
Hanilton, New Zealand) for 17 days to achieve a synchronized estrus phase. Subsequently,
two Nubian and two Du’an goats were anesthetized and euthanized, and their ovaries
were collected for snRNA-seq analysis.

2.2. Single-Cell RNA-Seq Library Construction and Sequencing

The left ovaries of the two Nubian and two Du’an goats were isolated 12 h after the
onset of the estrus phase. After removal of the ovarian adventitia and surrounding adipose
tissue, the ovarian tissues were dissociated to obtain single nuclei, and Trypan Blue staining
was performed to confirm nuclear lysis. Later, single-nuclei RNA sequencing (snRNA-seq)
was performed using the 10× Genomics platform on the single nuclei. Briefly, nuclei
preparations and sorting single-cell nuclei were prepared using a sodium citrate lysis buffer
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containing Triton X-100 detergent. Subsequently, scRNA-seq libraries were constructed
employing 10× Genomics Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 (1000268),
following a previously described protocol [14]. These libraries were subjected to quality
assessments (Fragment Analyzer 2100, Agilent Technologies, Waldbronn, Germany) and
sequenced (Platform: Illumina Nova 6000, San Diego, CA, USA; read length: 150 bp,
paired-end). All mRNAs were randomly appended to unique molecular identifiers (UMIs)
after reverse transcription, and mRNAs were quantified based on the UMIs. It was almost
impossible to connect mRNA to the same UMI, which can be used to avoid the bias caused
by PCR. The sequencing and subsequent bioinformatics analyses were performed by OE
Biotech Co., Ltd. (Shanghai, China).

2.3. Data Processing and Downstream Analysis

Transcripts were mapped to the corresponding reference genome (https://www.ncbi.
nlm.nih.gov/genome/10731?genome_assembly_id=281266; accessed on 12 December 2021)
using the 10× Genomics Cell Ranger pipeline (v5.0.0). Subsequently, read count matrices
were generated for each sample through the Cell Ranger count. These count data were then
imported into Seurat R package v8 [15,16]. Quality control (QC) was performed on each
library to eliminate outlier cells and genes. Assuming a Gaussian distribution of UMI/gene
counts per cell, we employed a criterion to filter and exclude cells whose UMI/gene
counts exceeded beyond the mean ± two-fold standard deviation (SD). Following a visual
inspection of the distribution of cells based on the fraction of expressed mitochondrial
genes, low-quality cells, where >20% of the count was attributed to mitochondrial genes,
were excluded. Furthermore, genes expressed by at least five cells were retained. To
mitigate potential biases arising from doublets, we set the threshold for cells captured
during sequencing at 10%. Doublet cells were detected by employing Single-Cell Remover
of Doublets (Scrublet) software (version 0.2.1) [17]. In total, 44,605 single nuclei met
the QC criteria and were subsequently included in the ensuing analysis. To achieve
normalized counts, we performed library size normalization in Seurat on the filtered matrix,
utilizing the Log Normalize method, and the inherent variation attributed to mitochondrial
gene expression was regressed. For cell clustering, principal component analysis was
performed on highly variable genes, as determined by the FindVariableGenes function. In
total, 17 unsupervised cell clusters were derived. The clustering results for individual or
grouped samples were visualized using t-SNE. The categorization of cell types relied on the
differential expression of cluster-specific marker genes, as identified using the Findmarkers
function. Gene Ontology (GO) enrichment analysis of cell-type-specific marker genes was
performed using Metascape (http://metascape.org/gp/index.html#/main/step1; accessed
on 22 February 2022) online tools. Representative GO terms for each cell type were selected
from the top 20 terms with a significance threshold of p < 0.05.

2.4. Weighted Gene Co-Expression Network Analysis (WGCNA)

WGCNA was performed on pseudo-cells using the WGCNA R package (v1.69) [18].
From the original dataset, 4000 genes and 25,000 nuclear samples were filtered out based
on an SD threshold of ≤0.01. Consequently, 3944 genes and 25,000 samples were retained
for subsequent analysis. The top 4000 differentially expressed genes (DEGs) determined
by Seurat were analyzed. Briefly, to construct a weighted co-expression network model,
we constructed a topological overlap matrix by varying the soft power from 1 to 30. The
hub genes in each module were identified as module eigengenes. GO enrichment analysis
was performed using the ClusterProfiler R package with the hub gene datasets, and the
BH method was employed for multiple test corrections. GO terms with a p ≤ 0.05 were
considered significantly enriched.

2.5. Identification of TFs by SCENIC

SCENIC analysis was conducted using the motifs database of RcisTarget and GRN-
boost (SCENIC [v1.1.2.2] [19], RcisTarget [v1.2.1], and AUCell [v1.4.1]) to identify active
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TFs across various ovarian cell types. Briefly, the potential target genes associated with
each TF were determined through co-expression and motif analysis. The AUCell package
was employed to score the activity of regulons in each cell. To assess cell-type-specific regu-
lation, we calculated the regulator-specific score based on Jensen Shannon divergence [16].
Furthermore, the connection specificity index (CSI) for all regulators was calculated using
the scFunctions package (https://github.com/FloWuenne/scFunctions/; accessed on 2
April 2022).

2.6. Pesudotemperal Trajectory Analysis

Pseudotime analysis of the GC populations was performed using the Monocle2 (v2.9.0)
R package [20]. Genes were ordered based on genes that were expressed in at least 10 cells,
exhibiting differential expression across clusters, and dispersed with a q-value < 0.01. The
pseudotime trajectory’s structure was visualized utilizing the DDRTree dimensionality
reduction algorithm. Briefly, the Monocle2 package was used to explore the developmental
pseudotime. Raw counts in Seurat object were first converted to a CellDataSet object using
the importCDS function in Monocle2. Subsequently, genes informative for ordering cells
along the pseudotime trajectory were identified using the differentialGeneTest function
(q-value < 0.01). A dimensional reduction clustering analysis was performed using the re-
duceDimension function, followed by trajectory inference employing the orderCells function
with default parameters. The plot_genes_in_pseudotime function was applied to monitor
gene expression changes over pseudotime. To determine the order of gene expression
and functional events during cell state transitions at a single-cell resolution, we conducted
GeneSwitches analyses. Specifically, gene expression data were first binarized into 1 (on) or
0 (off) using the binarize_exp function in the GeneSwitches package (fix_cutoff = TRUE,
binarize_cutoff = 0.05). Gaussian noise, with a mean of 0 and s.d. of 0.1, was introduced to
the gene expression data to ensure numerical stability in the model fitting. Genes lacking a
distinct bimodal “on–off” distribution were filtered out. Subsequently, logistic regression
was fitted to model the binary states (on or off) using the find_switch_logistic_fastglm
function, with the random downsampling of zero expressions (downsample = TRUE) to
account for genes with high zero inflation. Finally, the top 50 best-fitting genes (high
McFadden’s Pseudo R2) were visualized along the pseudotimeline, with “switched on”
genes depicted above the line and “switched off” genes depicted below the line.

2.7. Analysis of Cell–Cell Communication

CellPhoneDB (v2.0, https://github.com/Teichlab/cellphonedb; accessed on 15 June
2022) [21] was employed to systematically predict cell–cell communications based on
ligand–receptor analysis, utilizing default parameters. Receptors or ligands expressed in at
least 10% of cells of a particular type, meeting the significance threshold of p < 0.05, were
subsequently analyzed. The Igraph software (Version 1.0.1) package and the Circular Visu-
alization R package were utilized to visualize interaction links for the selected significant
receptor–ligand pairs.

2.8. Identification DEGs

To identify prolificacy-associated DEGs between Nubian and Du’an goat individuals
in each specific cell type, we employed the FindMarkers function in the R package Seurat,
based on a t-test [16]. p-value < 0.05 and |log2foldchange| > 0.58 were set as the threshold
for significant differential expression.

2.9. Gene Enrichment Analysis

Enrichment analysis of significant DEGs was performed using Metascape (http://
metascape.org/gp/index.html#/main/step1; accessed on 15 April 2022). A combined score
was calculated to determine enrichment ranking for pathways, ontology, TF network, and
protein network analyses. This combined score was calculated using the log of the p-value
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obtained through the Fisher exact test and then multiplying it by the z-score, representing
the deviation from the expected rank.

3. Results
3.1. Single-Nucleus Transcriptome Profiling of Goat Ovaries Elucidated Ovarian Cell Types and
Gene Expression Signatures

From a total of 48,332 nuclei, an average of 54,129 reads were obtained, encom-
passing 5230 genes per nucleus. Raw reads were subjected to QC analysis. A high-
quality transcriptome of 44,605 nuclei passed the filters and QC, averaging 1561 genes
and 4049 UMIs per cell for subsequent analyses (Table S1). Upon unsupervised clus-
tering, all ovarian cells were categorized into 17 clusters (Figure 1A). DEGs were cal-
culated in each cluster, and filtering was performed using the following criterion: an
average log2fold change > 0.5. These DEGs were subsequently sorted based on adjusted
p-values (Wilcoxon rank sum test), and one representative DEG was graphed per clus-
ter (Figure 1B). GO enrichment analyses were performed using the Metascape online
tool (http://metascape.org/gp/index.html#/main/step1; accessed on 15 April 2022) to
identify the biological functions of the DEGs from each cluster (Figure 1C) and facilitate
cluster identification (Figure S1). To further delineate these cell clusters, we mapped the
gene expression profiles of well-defined cell-type-specific markers onto a t-SNE plot, and
color-coded single cells based on the expression levels of several expected marker genes
(Figure 1D). GCs were located in clusters 1, 2, and 4, while the internal theca cells were
primarily in clusters 10 and 11. Interstitial cells, containing smooth muscle cells, were
distributed in cluster 3, and stromal cells were detected in cluster 5. Furthermore, exter-
nal theca cells were observed in cluster 14, and vascular endothelial cells were primarily
concentrated in clusters 8 and 9. The immune profile, including B cells, was identified in
clusters 7 and 13; natural killer T cells were present in clusters 6 and 16; and macrophages
were primarily found in cluster 12. Finally, germ cells were located in clusters 15 and 17.
Subsequently, 10 cell types (Figure 1E) and their DEGs (Figure 1F) were identified. GO
analysis of the DEGs revealed the biological functions and unique gene expression signa-
tures/characteristics of each ovarian cell type (Figure 1G). For example, pathways enriched
for GCs were “response to insulin”, “regulation of the canonical Wnt signaling pathway”,
and “fatty acid metabolism”. Vascular endothelial cells exhibited enrichment in “blood
vessel morphogenesis”, “hemostasis”, “cellular response to growth factor stimulus”, and
“extracellular matrix organization”. In summary, we systematically identified 10 distinct
ovarian cell types and their associated gene expression signatures.

3.2. WGCNA Revealed the Biological Functions and Hub Regulatory Networks of Ovarian
Cell Types

To systematically investigate gene dynamics, we performed a WGCNA [22]. Initially,
we filtered the original dataset, consisting of 4000 genes and 25,000 nuclear samples, based
on an SD threshold of ≤0.01 via Seurat QC. Finally, 3944 genes and 25,000 samples were
retained through the WGCNA. Based on the selected power value (1 < power value <
30), we established a weighted co-expression network model and identified 11 gene mod-
ules (Figure 2A). Each module comprised gene sets that demonstrated a tendency to be
co-expressed. Furthermore, we performed GO analyses for the genes in each module to
investigate their biological functions (Figure 2C). To assign co-expressed gene functions
to Seurat clusters, we constructed a correlation heatmap (Figure 2B). For example, the
yellow module represented germ cells, characterized by the enriched functions of “cilium
organization”, “epithelial cilium movement involved in extracellular fluid movement”,
and the “regulation of cilium movement”. The genes in the black module exhibited the
enriched functions “cell morphogenesis involved in differentiation”, “cellular response
to growth factor stimulus”, “response to gonadotropin”, “cholesterol biosynthesis”, and
“hormone secretion”, aligning with the characteristics of GCs. To understand the com-
plex gene expression patterns in the ovary, we identified the relationships between the
top 50 genes with the highest connectivity in each module, i.e., the core genes of each
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module. The hub genes revealed important regulatory networks in ovarian cell types
(Figure S2A–K). For example, in GCs, hub genes including CYP19A1, INHBA, INHBB,
LHCGR, NR5A2, ROBO2, TMEM178B, TMEM200A, and SERPINE2 were associated with
follicular development (Figure S2A). In germ cells, the hub gene NEK5 regulates cell cycle
progression during mouse oocyte maturation and preimplantation embryonic development
(Figure S2K) [23]. In summary, we identified the hub regulatory networks involving diverse
cell types within goat ovaries, thereby facilitating our comprehension of the reciprocal
regulatory mechanisms governing ovarian cells.

Version March 11, 2024 submitted to Journal Not Specified 3 of 9

Figure 1. 1.Figure 1. Single-nucleus transcriptomic atlas of the goat (Capra hircus) ovary. (A) t-SNE visualization
of all cells, displayed with different colors for 17 distinct clusters. (B) Violin plots showing the
expression of one representative differentially expressed gene for each cluster. (C) Representative
Gene Ontology (GO) terms of the top 150 marker genes in each cluster. (D) Dot plot showing
the expression of representative markers of each cell type. (E) t-distributed stochastic neighbor
embedding (t-SNE) plot showing ten ovarian cell types. (F) Heatmap of the expression pattern of the
top ten DEGs in each cell type. (G) Representative GO terms for the top 150 DEGs in each cell type.
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Figure 2. 2.Figure 2. Identification of cell-type-specific hub genes and transcription factors by WGCNA and
SCENIC analysis. (A) Dendrogram showing the gene co-expression network constructed by WGCNA.
The color bar, labeled “Module colors”, beneath the dendrogram represents the module assignment
of each gene. (B) The relationship between Modules and Seurat clusters. The upper numbers within
each grid are the correlation between each module and Seurat cluster. The numbers in parentheses
represent the p-values. * p < 0.05, ** p < 0.01 and *** p < 0.001. (C) Significantly enriched representative
GO terms based on the genes in each module. (D) Specific distribution heatmap of regulons of all
the cell types. The “regulon” refers to the regulatory network of TFs and their target genes. The
numbers in parentheses next to the regulon names indicate the number of genes enriched in regulons.
Abbreviation: g, gene. (E) Rank of the regulons in cell type based on regulon specificity score (RSS).
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(F) Heatmap for the CSI correlation clustering of the regulon module. The rows and columns represent
regulons. The color changes from blue to yellow, indicating that the CSI correlation value changes
from low to high. Regulons with high CSI values may have similar cellular functions and jointly
regulate downstream genes. (G) Heatmap for the activity of the connection specificity index (CSI)
module in each cluster, in accordance with Figure 1A. Rows represent the CSI modules, manually
divided according to CSI clustering heatmap; columns represent different groups. The color changes
from blue to yellow, indicating that the activity of the CSI module changes from low to high. The cell
types corresponding to CSI modules with similar activity may have similar gene expression patterns
and regulatory networks. (H) Heatmap for the activity of the CSI module in each cell type. Rows
represent CSI modules, manually divided according to CSI clustering heatmap; columns represent
different groups. The color changes from blue to yellow, indicating that the activity of the CSI module
changes from low to high. The cell types corresponding to CSI modules with similar activity may
have similar gene expression patterns and regulatory networks.

3.3. SCENIC Analysis Revealed Key Transcription Factors (TFs) Regulating Ovarian-Specific
Cell Types

TFs are crucial regulators of gene expression and aid in the identification of various
cell types. We employed SCENIC analysis to characterize ovarian cell types [19,24]. This
algorithm enables the inference of global research networks and assesses the cellular status
based on scRNA data. It facilitates the scoring of gene regulatory network activity in
each cell type, enabling the identification of stable cell states and their corresponding
regulators. Additionally, it investigates the activity of TF regulons (i.e., TFs and their target
genes). Initially, we identified modules containing genes co-expressed with TFs, followed
by cis-regulatory motif analysis to identify significantly enriched modules for scoring the
subnetwork activity. The results revealed 58 active regulons in the ovary (Figure 3D),
with the number of target regulons ranging from 11 to 411 (Figure 3D). Additionally, we
identified several TFs that modulated cell-type-specific gene regulatory networks. Notably,
NR2C1, FOXO3, and TEAD1 exhibited predominant activation in GCs, while in internal
theca cells, the genes BRCA1, MYBL1, and E2F7 were activated (Figure 3E). These TFs can
serve as valuable markers for specific cell types. CSI correlation clustering of the regulon
module elucidated some TFs with similar functions, providing insights into the molecular
mechanisms governing follicular development and atresia (Figure 3F). For example, in the
case of IKZF1 and RUNX3, RUNX3 has been demonstrated to regulate folliculogenesis and
steroidogenesis in the GCs of immature mice [25], indicating that IKZF1 may share similar
functions. In the case of HMGA2 and FOXO1, reports suggest that FOXO1 regulates the
follicle-stimulating hormone (FSH)-mediated inhibition of apoptosis in mouse GCs [26,27],
indicating a potential role for HMGA2 in follicular development. Furthermore, in the case
of PBX3 and GATA4, GATA4, a GC factor, regulates inhibin-α activation through the TGF-β
pathway [28], implying that PBX3 may regulate folliculogenesis via the TGF-β pathway.
Furthermore, CSI correlation clustering of the regulon module within 17 clusters showed
that the cluster–cluster distance exhibited consistency with Figure S1. The 10 main cell
types were accurately classified (Figure 3G). Notably, our results revealed a similarity in the
regulon CSI between GCs and internal theca cells (Figure 3H), suggesting the possibility
of similar biological functions. This prompts the hypothesis that internal theca cells may
originate from GCs.
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Figure 3. 3.Figure 3. Ovary niche regulation based on ligand–receptor analysis. (A,B) Putative communica-
tions between differentially expressed receptors and ligands in the ovary and the corresponding
ligands released from their niche cells of Nubian (A) and Du’an goats (B). Compartments represent
cell types; their preferentially expressed receptors and ligands are labeled along the outer margin.
(C,D) Heatmap of the total number of interactions between cell types of Du’an (C) and Nubian goats
(D). (E) Putative communications between differentially expressed receptors and ligands in the
ovary and the corresponding ligands released from their niche cells. Compartments represent cell
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types; their preferentially expressed receptors and ligands are labeled along the outer margin. (F) Net-
work plots showing the ligand–receptor interaction events in each cell type with the niche cells of the
ovary. Nodes are coloured by cell identity and sized by the number of interactions. Edge thickness
indicates the number of interactions between the connecting cells. (G) Heatmap of the total number of
interactions between cell types. (H) Gene expression signature of key signaling pathway components
in goat ovary and their niche cells, including the expression of genes linked to Wnt, VEGF, Notch,
and TGF-β/BMP signaling pathway. (I,J) Clues for interactions between GCs and External theca
cells (J) and surrounding cells identified by CellphoneDB (I). (K) Venn diagram showing common
receptor–ligand pairs between ovarian cells and surrounding cells. The numbers in the Venn diagram
indicate the overlap numbers of receptor–ligand pairs between ovarian cells and surrounding cells.

3.4. Niche Regulation of Ovary Cell Type Revealed by Cell–Cell Communication

To elucidate niche regulation in the goat ovary, we attempted to explore intercel-
lular communication among various cell types. Notably, the results revealed no signifi-
cant disparity in cell–cell communication between the Nubian goat and the Du’an goat
(Figures 3A–D and S3A–D). We quantified interaction links between the various cell types
through ligand–receptor analysis, considering the integration of the four ovarian cell types
(Figure 3F,G). The immune cell ligands and interstitial cell receptors engaged with receptors
and ligands of various cell types (Figure 3G). Notably, external theca cells exhibited the
highest link counts in both ligands and receptors, indicating an auto- or intercellular mode
of regulation (Figure 3G). In terms of the tentative ligands or receptors identified in the
ovary, external theca cells, germ cells, and vascular endothelial cells influenced a substantial
number of interactions.

A cell–cell interaction map was constructed by correlating ligands with their respective
receptors on follicles and their associated niche cells (Figure S3E), which indicated a dual
role for follicles: they can be regulated by niche cells or serve as central regulators of the
surrounding niche cells (Figure 3E). Previous studies have shown that the regulation of
follicular development within the niche involves multiple signaling pathways, such as RA
signaling [29], BMP signaling [30], KIT signaling (KITLG) [31], PI3K/AKT signaling [32,33],
TGF-β/SMAD signaling [10,34], Wnt5a/β-catenin signaling, and the Notch pathway [35].
Figure 3H illustrates the key signaling pathways expressed in the goat ovary and in
the surrounding “niche cells”. Overall, the KIT, Wnt, INHB, TGF-β/BMP, and Notch
signaling pathways, ligands, and receptors were expressed in a cell-type-specific manner.
For instance, the ligand of the KIT signaling pathway (KITLG) was explicitly expressed
by GCs, while the receptor was abundantly expressed in the follicular GCs, playing a
crucial role in germ cell survival [31]. Additionally, receptors such as TGFBR3, TGFB1,
ACVR1, and BMPR2, along with their corresponding ligands (including FGF1, FGFB1,
INHA, and TGFB2), were expressed by various ovarian cell types, indicating both intra- and
inter-cellular communication mediated by the TGF-β/BMP signaling pathway (Figure 3H).
Similarly, the Wnt/β-catenin pathway ligand Wnt5A was expressed by each ovarian
cell type, while its corresponding receptors were expressed in GCs, germ cells, vascular
endothelial cells, and external and internal theca cells (Figure 3H). IGF1-IGF1R expression
was notably high in GCs, germ cells, vascular endothelial cells, and external and internal
theca cells (Figure 3H). Previous studies have shown that KIT plays an indispensable role
in both primordial follicle activation and folliculogenesis, and its expression is enhanced
by IGF-1 via its receptor, IGF-1R [31]. We identified VEGFA, VEGFB, and VEGFC ligands
on each cell type of the ovary, along with their corresponding receptors, including NRP1,
NRP2, FLT1, KDR, and FLT4 (Figure 3H). VEGFA influences the growth of the follicles by
regulating the balance between pro-angiogenesis and anti-angiogenesis [36]. As shown in
Figure 3H, Notch1/2/3-JAG1 ligands were primarily expressed in GCs, germ cells, and
vascular endothelial cells, as well as external and internal theca cells. In addition, the
constructed cell niche network revealed a shared receptor–ligand relationship between GCs
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and internal theca cells (Figure 3I,J), suggesting a similarity in their biological functions
within the ovary. Furthermore, certain receptor–ligand pairs, including CADM1–CADM1,
TGFBR3–INHA, and IGF1R–IGF1, have emerged as key players in primordial follicle
activation, follicular development, and ovulation (Figures 3K and S4A–E).

3.5. GC Subtype Identification and Transcriptional Signature Analysis of Goat Ovaries

To investigate GC characteristics, we analyzed the FSHRhigh/NR5A1high/CAMTA1high/
CYTH3high cells again. These cells were divided into nine clusters through unsupervised
clustering (Figure 4A), and the biological function of each cluster was investigated via
GO enrichment analysis of DEGs (Figure 4B,C) to identify the unique differentiating
characteristics of GCs. Based on the expression profile of mural GC markers, namely,
CYP19A1, LHCGR, and INHBA (Figure 4D), alongside the functional enrichment analyses
of each cluster, the GCs were categorized into three subtypes: common progenitor GCs,
cumulus GCs, and mural GCs (Figure 4E).Version March 11, 2024 submitted to Journal Not Specified 6 of 9

Figure 4. 4.
Figure 4. GC subtype identification and transcriptional signatures analysis of the goat ovary. (A) t-
SNE visualization of GCs using different colors for nine distinct clusters. (B) Heatmap showing the
expression of specific markers in each cluster. (C) Representative GO terms for the top 150 marker
genes in each cluster. (D) t-SNE cluster map showing the expression of the candidate cell-type-specific
markers on GCs. A gradient of blue to red indicates a low to high gene expression level. (E) t-SNE
visualization of GCs using different colors for three subtypes. (F) Heatmap showing expression
signatures of the top 10 specifically expressed genes in each GC subtype. (G) Representative GO
terms of the top 150 marker genes in each GC subtype. (H) Cell trajectories on the pseudotime
of GCs generated by Monocle 2. (I) Distribution of GC subtypes on the pseudotime trajectory.
(J) Pseudo-temporal dynamics of pseudotime-dependent genes in three GC subtypes. Each row is
normalized to its peak value over pseudotime. (K) Gene expression dynamics of representative genes
of common progenitor GCs. (L,M) Gene expression dynamics of representative genes of cumulus GCs.
(N,O) Gene expression dynamics of representative genes of mural GCs. (P) Specific distribution
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heatmap of regulons in three GC subtypes during GC differentiation. The “regulon” refers to the
regulatory network of TFs and their target genes. The numbers in parentheses next to the regulon
names indicate the number of genes enriched in the regulons. (Q) Rank for regulons in three GC
subtypes during GC differentiation based on regulon specificity score (RSS). (R) Heatmap for the
activity of CSI module in each GC subtype during folliculogenesis. Rows represent CSI modules
manually divided according to CSI clustering heatmap; columns represent different groups. The
color changes from blue to yellow, indicating that the activity of the CSI module changes from low to
high. The cell types corresponding to CSI modules demonstrating similar activity may have similar
gene expression patterns and regulatory networks. (S) Heatmap for the CSI correlation clustering
of regulon modules. The rows and columns represent the regulons. The color changes from blue to
yellow, indicating that the CSI correlation value changes from low to high.

The biological function of the three GC subtypes was analyzed through the GO en-
richment analysis of DEGs (Figure 4F,G). The enriched functions associated with DEGs in
common progenitor GCs were the “negative regulation of cellular component movement”
and “positive regulation of cellular component movement”. These results suggest that all
the states of the primordial follicle, encompassing both resting and activated primordial
follicles that mature into primary follicles, are established in the ovary prior to birth [37].
In addition, GO terms such as the “positive regulation of apoptotic process” and “WNT
signaling” were also enriched in common progenitor GCs, suggesting the potential in-
volvement of the WNT signaling pathway in maintaining follicle numbers by regulating
follicle atresia in the primordial follicle and its subsequent activation. For cumulus GCs, the
enriched pathways included the “cholesterol biosynthetic process”, “negative regulation
of cell migration”, and “carbohydrate derivative biosynthetic process”, indicating that
cumulus GCs serve as the primary source of nutrients for regulating follicular development
and maturation. In the case of mural GCs, GO analysis revealed enrichment in terms such
as the “negative regulation of follicle-stimulating hormone secretion”, “cellular response
to cholesterol”, “vascular endothelial growth factor signaling pathway”, and “plasma
membrane organization”.

Figure 4H–J illustrate the differentiation trajectory of GCs, commencing with a com-
mon progenitor GC population and culminating in cumulus GCs. As follicular devel-
opment progresses, cumulus GCs differentiate into mural GCs (Figure 4H). Figure 4K
shows that genes associated with cell growth, the cell cycle, and the WNT pathway, such as
PRP16, CDK14, IGFBP5, CCND3, and ARNT2, were abundantly expressed by the common
progenitor GCs. As shown in Figure 4L,M, high levels of genes regulating cell growth
and differentiation (IGFBP2, CHST8, RERG, HMGCR, and EDA) are evident in cumulus
GCs. Furthermore, a high expression of genes associated with the regulation of hormone
secretion and ovulation, such as LHCGR, CYP19A1, INHA, INHBA, INHBB, SERPINE2,
and NR5A1, was observed in mural GCs (Figure 4N,O). A SCENIC analysis revealed 31
active regulons in GCs (Figure 4P). Approximately 11–270 TF target genes associated with
these regulons were identified (Figure 4P). The results demonstrated the expression of
NR5A2, GATA6, and NFKB1 in mural GCs, SOX4, FOSL2, and STAT3 in common progenitor
GCs, and primarily ETV6, NR5A2, and ATF7 in cumulus GCs (Figure 4Q). CSI analysis
suggested that ARID5B may potentially serve a similar function with Hbp1 (Figure 4R,S).
In conclusion, these results elucidate the gene expression patterns and dynamic regulatory
mechanisms at play within GCs.

3.6. Differences in Ovarian Cell Expression Profiles between the Polytocous and Monotocous Goats

We further explored the prolificacy-associated gene expression patterns in ovarian
cells and prolificacy-associated DEGs in each cell type (Figure 5A). Most of the prolificacy–
associated DEGs exhibited cell subtype specificity. Furthermore, ROBO1, ATP6, COX2,
CYP19A1, IGSF11, SERPINE2, PLPP3, LRP8, FAM19A2, TMEM200A, C22H3orf67, MFGE8,
INHA, and LOC102174170 were upregulated and common among four distinct cell types
(Figure 5B). These genes are associated with folliculogenesis, indicating a potential influence
of specific cell types on prolificacy.
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Figure 5. 5.

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they
are cited.

Title 1 Title 2 Title 3

Entry 1 Data Data
Entry 2 Data Data

Figure 5. Differences in ovarian cell expression profiles between the polytocous and monotocous
goats. (A) Histogram showing the distribution of DEGs between Nubian and Du’an goats in each cell
type: red boxes correspond to upregulated DEGs; blue boxes correspond to downregulated DEGs
in each cell type. (B) Venn diagram showing the intersection of DEGs in the internal and external
theca cells, GCs, and vascular endothelial cells; the intersection of DEGs is represented on the side.
(C) Representative GO terms of upregulated genes enriched between Nubian and Du’an goats in
each cell type. (D) Representative GO terms of downregulated genes enriched between Nubian and
Du’an goats in each cell type. (E) t-SNE cluster map showing SERPINE2 expression between Nubian
and Du’an goats. A gradient of blue to red indicates the low to high gene expression profile. Violin
plots show the expression of the candidate cell-type-specific markers of GCs in 17 clusters.

GO analysis was performed on DEGs in the germ cells. Upregulated genes exhibited
enrichment in the “electron transport chain: OXPHOS system in mitochondria”, whereas
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downregulated genes were enriched in the “PI3K-KT signaling pathway” and “metabolism
of carbohydrates” (Figure 5C,D).

In GCs, upregulated genes exhibited enrichment in functions associated with the “neg-
ative regulation of follicle-stimulating hormone secretion”, “oxidative phosphorylation”,
“response to gonadotropin”, and “cellular response to hormone stimulus”. Furthermore,
the downregulated genes in GCs were enriched in functions pertaining to the “response to
regulation of the canonical WNT signaling pathway” and the “MAPK signaling pathway”.
The downregulated genes were associated with WNT and MAPK signaling pathways,
which play pivotal roles in GCs and follicular development (Figure 5C,D).

In internal theca cells, upregulated genes exhibited enrichment in functions including
“tissue morphogenesis”, “response to gonadotropin”, and “cellular response to cholesterol”,
while downregulated genes in internal theca cells were enriched in functions including
“blood circulation” and the “MAPK signaling pathway”. These results were consistent
with pathways enriched in GCs, thus validating the potential significance of the GnRH and
MAPK signaling pathways as crucial regulators of heightened reproductive performance
in Nubian goats. In addition, the upregulated genes were associated with the cholesterol
response, which plays a vital role in follicular development (Figure 5C,D).

In external theca cells, upregulated genes exhibited enrichment in functions including
“blood vessel development”, “reproductive structure development”, “response to growth
factors”, “cell morphogenesis involved in differentiation”, and “cellular response to oxygen
levels”. Conversely, downregulated genes in external theca cells were enriched in functions
such as “blood vessel development”, “response to growth factors”, “cellular component
morphogenesis”, and “negative regulation of cell population proliferation”. Notably, the
functions of “blood vessel development” and “response to growth factors” were signifi-
cantly enriched among both upregulated and downregulated genes. This highlights that
the external theca cells play a decisive role in the dynamic maintenance of dominant and
subordinate follicles and decrease external theca cell proliferation. The latter could poten-
tially contribute to an increased incidence of follicular atresia and reduced fecundity in
Du’an goats (Figure 5C,D).

The upregulated genes in vascular endothelial cells were enriched in functions such as
the “negative regulation of follicle-stimulating hormone secretion”, “proton transmembrane
transport”, and “cell surface receptor signaling pathway involved in cell–cell signaling”.
Furthermore, downregulated genes in these cells were associated with “circulatory system
processes”, “regulation of body fluid levels”, and “extracellular matrix organization”.
These results further validate that low-dose FSH in Nubian goats can stimulate follicle
development and ovulation, which are regulated by positive and negative feedback from
the hypothalamus–pituitary axis (Figure 5C,D).

In stromal cells, upregulated genes exhibited enrichment in functions such as “repro-
ductive structure development” and “cell chemotaxis”. This suggests that active stromal
cells undergo differentiation into external theca cells, thereby facilitating the healthy devel-
opment of follicles in Nubian goats (Figure 5C,D).

The upregulated genes in smooth muscle cells enriched two specific functions, namely
“electron transport chain: OXPHOS system in mitochondria” and “angiogenesis”, while
the downregulated genes were associated with “response to peptide hormone” and the
“ovulation cycle”. These results demonstrate the provision of abundant nutrition for the
development of ovarian follicles in Nubian goats (Figure 5C,D).

In immune cells, the upregulated genes exhibited enrichment in the “VEGFA-VEGFR2
signaling pathway” and the “regulation of intrinsic apoptotic signaling pathway”. Con-
versely, downregulated genes in the immune cells exhibited enhanced functions such as
“lymphocyte activation” and a “positive regulation of leukocyte-mediated cytotoxicity”.

We further examined the expression patterns of the DEG SERPINE2 (Figure 5E) in both
polytocous and monotocous goats. A hub gene network analysis revealed that SERPINE2
was closely associated with follicular development (Figure S2K). These results suggest that
SERPINE2 plays an essential role in facilitating the transition of follicles from dominance to
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successful ovulation. Altogether, our results underscore the significance of augmenting
“ATP biosynthesis”, “cell proliferation”, and “cell response to hormone stimulation” to
ensure the maintenance and development of dominant follicles, ultimately leading to
increased ovulation rates and litter sizes in Nubian goats.

4. Discussion

This study presents a comprehensive single-cell transcriptomic atlas of the goat ovary
during the estrus phase, elucidating gene expression profiles of distinct ovarian cell types
and shedding light on the molecular mechanisms underpinning the remarkable prolificacy
observed in goats. Our findings offer three noteworthy contributions. First, we elucidated
gene expression signatures for 10 ovarian cell types and identified TF regulatory networks,
hub genes, key pathways, and intercellular interactions. Second, we demonstrated three dis-
tinct gene expression patterns for GC subtypes and their dynamic regulatory mechanisms.
Third, our analysis of prolificacy-associated alterations in gene expression revealed that the
“downregulation of apoptosis”, “increased anabolism”, and “upstream responsiveness to
hormonal stimulation” are associated with prolificacy. These functions are essential for the
development and maturation of dominant follicles, increased ovulation in a single estrous
cycle, and enhanced litter size per parity in Nubian goats. This study contributes to a
deeper understanding of the molecular mechanisms underlying dominant follicle selection
and the augmentation of fecundity.

The ovary is a heterogeneous and dynamic organ, and research on the characterization
of ovarian cell composition and regulatory networks during specific stages of the men-
strual/estrous cycle in mammals is limited. Notably, bulk-seq analysis fails to elucidate
whether changes in ovarian physiology result from intrinsic molecular alterations or shifts
in cell-type proportions [38]. Previous studies have generated cell atlases of the ovarian cor-
tex in random physiological states across species, including humans [37], primates [29,39],
and mice [40,41]. However, few studies have delved into the precise alterations in gene
expression patterns in various ovarian cell types with regard to dizygotic births. Zengkuan
Li (2021) employed scRNA-seq to reveal distinct expression profiles of GCs in ovarian
follicles from goats with varying fecundity [42]. In this study, we employed snRNA-seq
to successfully map the single-cell transcriptomic atlas of ovaries from polytocous and
monotocous goats during the estrus phase. Our study yielded high-quality data for the
in-depth analysis of gene expression patterns associated with prolificacy in ovarian cells
and folliculogenesis at the single-cell level.

The cellular composition of the goat ovary was investigated, and 10 ovarian cell
types were identified. Based on the unique scRNA-seq molecular signatures, the cell types
and their hub gene regulatory networks were identified via WGCNA. The majority of
canonical markers were confined to their respective islands, validating the robustness of
our snRNA-seq approach and the reliability of our data. Although a certain proportion of
ovarian germ cells were identified, conducting an accurate subtype analysis was impossible
due to their small number. Therefore, spatiotemporal transcriptomic analysis of oocytes
becomes imperative. Notably, GO enrichment analysis revealed significant enrichment of
“the biological characteristics of sperm” in the germ cells, indicating similarities in gene
expression patterns between spermatids and oocytes. This further supports the notion that
the ovaries and testes may originate from a common primordial structure and represent
bipotential gonads composed of multipotent somatic progenitor cells [29,43].

Multicellular organisms exhibit various cell types, each characterized by specific mor-
phology and functions. The maintenance of these cell types relies on the orchestrated
interplay between TFs and their target genes. The SCENIC algorithm can elucidate co-
expression modules between TFs and their potential target genes. Employing the SCENIC
algorithm, we established a network of regulons that were plausible candidates for sustain-
ing cell-specific TF programs throughout our investigation. The results revealed several
TFs specific to distinct cell types. For instance, FOXO3, NR3C1, and TEAD1 were found to
be expressed in GCs, whereas vascular endothelial cells exhibited the specific expression
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of ELK3, ERG, and FLI1. The gene regulatory network activity scores at the single-cell
level enabled the accurate identification of 10 cell types. In addition, a few TFs and their
functions specific to various follicle stages or GCs were predicted, which have not been
reported. These findings provide additional insights into the biological regulation of
follicular development.

Currently, studies are focused on the interplay between niche and germline communi-
cation, which coordinately and reciprocally regulate folliculogenesis; however, information
regarding the interactions among these signaling pathways is limited. Our study revealed
the signaling pathways that synchronously and reciprocally regulate distinct cell types
in the goat ovary, determining the ligands and their corresponding receptors originat-
ing from the reciprocal compartments. Initially, we analyzed the expression patterns of
other components in these signaling pathways across the ovary. Additionally, we assessed
heterogeneous gene expression associated with key signaling pathways, including Wnt,
Notch, and TGF-β/BMP signaling pathways. Subsequently, a map of intercellular com-
munication among each cell type was constructed. Through rigorous ligand–receptor
analysis, various interacting links across the various cell types were identified. Multiple
ligand–receptor pairs were identified in both follicle and niche cells, providing valuable
insights into folliculogenesis regulation.

The molecular mechanisms underlying prolificacy in farm animals remain largely
unknown. Here, we demonstrated that the Nubian goat’s ovarian prolificacy is linked to the
cell-type-specific markers associated with the “downregulation of apoptosis”, “increase in
anabolism”, and “upstream responsiveness to hormonal stimulation”. Studies have shown
that a lack of functional mitochondrial aggregation can impede the follicle maturation
process [44]. ATP is essential for FSH-induced GC proliferation during follicular devel-
opment [45]. Furthermore, the maintenance of cell proliferation reduces follicular atresia
by inhibiting apoptosis [46] and autophagy [47,48]. Previous studies have focused on the
effects of hormones such as androgen, FSH [49,50], luteinizing hormone, estradiol, proges-
terone [51,52], anti-Müllerian hormone [53], thyroid hormones [54], and melatonin [55] on
follicular development and ovulation. The findings have demonstrated the importance
of hormones for follicular development. However, additional research is imperative to
understand the cellular responses to hormone stimulation and utilize hormone drug dose
dependence in the treatment of reproductive disorders such as POF, hypo-ovulation, and
anovulation. Our findings show that SERPINE2 plays an essential role during the transi-
tion of follicles from the dominant phase to successful ovulation. However, it should be
noted that this conclusion warrants further validation. In summary, our findings provide
novel insights into the genetic mechanisms underlying the prolificacy trait in goats and
other mammals and elucidate potential molecular markers for enhancing prolificacy in
breeding projects.

However, the current study has two limitations. Firstly, RNA techniques using single-
cell suspensions lose information about the spatial relationships among cell types in target
tissues; therefore, such data may be complemented by using spatial transcriptomics and/or
proteomics and/or metabolomics. Secondly, although the mechanism derived in this
study is based on scientific bioinformatics analytical methods, it has not been verified by
molecular and cellular experiments. Further biological experiments are needed to elucidate
the mechanisms behind the expression changes of these key genes and their biological
functions in folliculogenesis.

5. Conclusions

In our study, we mapped the single-cell transcriptomic roadmap of the goat ovary and
identified differences in the ovarian expression profiles between monotocous and polyto-
cous goats. The prolificacy of goats was associated with cell-type-specific “downregulation
of apoptosis”, “increased anabolism”, and “up-stream responsiveness to hormonal stimula-
tion”. This study contributes to a broader understanding of cell identities, cell-type-specific
gene signatures, and the regulatory network in the mammalian ovary. Moreover, our results
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provide new insights into the molecular mechanisms underlying the high reproductive
rate of goats.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb46030147/s1, Table S1: Summary information of sample
data identified by CellRanger; Figure S1: The cluster-to-cluster distances between cells; Figure S2:
Hub network analysis of each module by WGCNA; Figure S3: Ovarian niche regulation based
on ligand–receptor analysis; Figure S4: Clues for interactions between vascular endothelial cells,
interstitial cells, immune cells, external theca cells, germ cells, and surrounding cells identified by
CellphoneDB.

Author Contributions: Conceptualization, S.Z. and Q.J.; methodology, S.Z., X.G., Y.W., Y.S. and Q.J.;
software, S.Z. and Q.J.; validation, S.Z., Y.H. and Q.J.; formal analysis, S.Z., Y.H. and Q.J.; investigation,
S.Z., Y.H. and Q.J.; resources, S.Z. and Q.J.; data curation, S.Z., X.G., Y.W., Y.S. and Q.J.; writing—
original draft preparation, S.Z.; writing—review and editing, S.Z., Y.H. and Q.J.; visualization, S.Z.;
supervision, Y.H. and Q.J.; project administration, S.Z., Y.H. and Q.J.; funding acquisition, S.Z., Y.H.
and Q.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Guangxi Innovation Team Construction Project of National
Modern Agricultural Industry Technology System (nycytxgxcxtd-2021-09) and Innovation Project of
Guangxi Graduate Education (YCBZ2022031).

Institutional Review Board Statement: All procedures involving animals complied with the Prin-
ciples for the Ethical Treatment of Guangxi University, and ethical approval was granted by the
Institutional Animal Ethics Committee (Guangxi University, Nanning, China). The ethical approval
number is GXU-2022-272.

Informed Consent Statement: Not applicable.

Data Availability Statement: The single-cell RNA sequencing data in this study have been deposited
in the NCBI GEO database under accession code “GSE207023 (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE207023; accessed on 11 February 2023)”. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary Materials or from
the corresponding author upon reasonable request.

Acknowledgments: The authors are grateful to Oebiotech (Oebiotech, Shanghai, China) for sequenc-
ing consultation and support.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, J.; Li, X.; Cao, Y.H.; Pokharel, K.; Hu, X.J.; Chen, Z.H.; Xu, S.S.; Peippo, J.; Honkatukia, M.; Kantanen, J.; et al. Comparative

mRNA and miRNA expression in European mouflon (Ovis musimon) and sheep (Ovis aries) provides novel insights into the
genetic mechanisms for female reproductive success. Heredity 2019, 122, 172–186. [CrossRef]

2. Warriach, H.M.; McGill, D.M.; Bush, R.D.; Wynn, P.C.; Chohan, K.R. A Review of Recent Developments in Buffalo Reproduction—
A Review. Asian Australas. J. Anim. 2015, 28, 451–455. [CrossRef] [PubMed]

3. Guo, X.; Wang, X.; Di, R.; Liu, Q.; Hu, W.; He, X.; Yu, J.; Zhang, X.; Zhang, J.; Broniowska, K.; et al. Metabolic Effects of FecB Gene
on Follicular Fluid and Ovarian Vein Serum in Sheep (Ovis aries). Int. J. Mol. Sci. 2018, 19, 539. [CrossRef] [PubMed]

4. Sheng, X.; Zhou, J.; Kang, N.; Liu, W.; Yu, L.; Zhang, Z.; Zhang, Y.; Yue, Q.; Yang, Q.; Zhang, X.; et al. Temporal and spatial
dynamics mapping reveals follicle development regulated by different stromal cell populations. bioRxiv 2022. [CrossRef]

5. Gougeon, A. Human ovarian follicular development: From activation of resting follicles to preovulatory maturation. Ann.
Endocrinol. 2010, 71, 132–143. [CrossRef]

6. Ge, T.; Wen, Y.F.; Li, B.; Huang, X.Y.; Jiang, S.H.; Zhang, E.P. Single-cell sequencing reveals the reproductive variations between
primiparous and multiparous Hu ewes. J. Anim. Sci. Biotechnol. 2023, 14, 144. [CrossRef]

7. Mcgee, E.A.; Hsueh, A. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev. 2000, 21, 200–214.
8. Li, J.; Ye, Y.; Zhang, R.; Zhang, L.; Hu, X.; Han, D.; Chen, J.; He, X.; Wang, G.; Yang, X. Robo1/2 regulate follicle atresia through

manipulating granulosa cell apoptosis in mice. Sci. Rep. 2015, 5, 9720. [CrossRef]
9. de Mello Bianchi, P.H.; Serafini, P.; Monteiro da Rocha, A.; Assad Hassun, P.; Alves da Motta, E.L.; Sampaio Baruselli, P.; Chada

Baracat, E. Review: Follicular waves in the human ovary: A new physiological paradigm for novel ovarian stimulation protocols.
Reprod. Sci. 2010, 17, 1067–1076. [CrossRef]

10. Zhang, Y.; Yan, Z.; Qin, Q.; Nisenblat, V.; Yan, L. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and
Granulosa Cell Interactions. Mol. Cell 2018, 72, 1021–1034.e4. [CrossRef]

https://www.mdpi.com/article/10.3390/cimb46030147/s1
https://www.mdpi.com/article/10.3390/cimb46030147/s1
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207023
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE207023
https://doi.org/10.1038/s41437-018-0090-1
https://doi.org/10.5713/ajas.14.0259
https://www.ncbi.nlm.nih.gov/pubmed/25656203
https://doi.org/10.3390/ijms19020539
https://www.ncbi.nlm.nih.gov/pubmed/29439449
https://doi.org/10.1101/2022.03.04.480328
https://doi.org/10.1016/j.ando.2010.02.021
https://doi.org/10.1186/s40104-023-00941-1
https://doi.org/10.1038/srep09720
https://doi.org/10.1177/1933719110366483
https://doi.org/10.1016/j.molcel.2018.10.029


Curr. Issues Mol. Biol. 2024, 46 2318

11. Spencer, T.E.; Wells, K.D.; Lee, K.; Telugu, B.P.; Hansen, P.J.; Bartol, F.F.; Blomberg, L.; Schook, L.B.; Dawson, H.; Lunney, J.K.; et al.
Future of biomedical, agricultural, and biological systems research using domesticated animals. Biol. Reprod. 2022, 106, 629–638.
[CrossRef] [PubMed]

12. Li, L.; Yang, R.; Yin, C.H.; Kee, K. Studying human reproductive biology through single-cell analysis and in vitro differentiation
of stem cells into germ cell-like cells. Hum. Reprod. Update 2020, 26, 670–688. [CrossRef] [PubMed]

13. La, H.; Yoo, H.; Lee, E.J.; Thang, N.X.; Choi, H.J.; Oh, J.; Park, J.H.; Hong, K. Insights from the Applications of Single-Cell
Transcriptomic Analysis in Germ Cell Development and Reproductive Medicine. Int. J. Mol. Sci. 2021, 22, 823. [CrossRef]
[PubMed]

14. Guo, R.C.; You, X.; Meng, K.; Sha, R.L.; Wang, Z.Z.; Yuan, N.Y.; Peng, Q.; Li, Z.G.; Xie, Z.Q.; Chen, R.J.; et al. Single-Cell RNA
Sequencing Reveals Heterogeneity of Myf5-Derived Cells and Altered Myogenic Fate in the Absence of SRSF2. Adv. Sci. 2022, 9,
e2105775. [CrossRef] [PubMed]

15. Satija, R.; Farrell, J.A.; Gennert, D.; Schier, A.F.; Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol.
2015, 33, 495–502. [CrossRef] [PubMed]

16. Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 2018, 36, 411–420. [CrossRef]

17. Wolock, S.L.; Lopez, R.; Klein, A.M. Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.
Cell Syst. 2019, 8, 281–291. [CrossRef]

18. Tosches, M.A.; Yamawaki, T.M.; Naumann, R.K.; Jacobi, A.A.; Tushev, G.; Laurent, G. Evolution of pallium, hippocampus, and
cortical cell types revealed by single-cell transcriptomics in reptiles. Science 2018, 360, 881–888. [CrossRef]

19. Aibar, S.; González-Blas, C.; Moerman, T.; Wouters, J.; Aerts, S. SCENIC: Single-Cell Regulatory Network Inference and Clustering.
Nat. Methods 2017, 14, 1083–1086. [CrossRef]

20. Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32,
381–386. [CrossRef]

21. Vento-Tormo, R.; Efremova, M.; Botting, R.A.; Turco, M.Y.; Vento-Tormo, M.; Meyer, K.B.; Park, J.E.; Stephenson, E.; Polanski,
K.; Goncalves, A.; et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 2018, 563, 347–353.
[CrossRef] [PubMed]

22. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

23. Li, Y.Y.; Guo, L.; Li, H.; Li, J.; Dong, F.; Yi, Z.Y.; Ouyang, Y.C.; Hou, Y.; Wang, Z.B.; Sun, Q.Y.; et al. NEK5 regulates cell cycle
progression during mouse oocyte maturation and preimplantation embryonic development. Mol. Reprod. Dev. 2019, 86, 1189–1198.
[CrossRef] [PubMed]

24. Davie, K.; Janssens, J.; Koldere, D.; Waegeneer, M.; Pech, U.; Kreft, U.; Aibar, S.; Makhzami, S.; Christiaens, V.; González-Blas, C.
A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018, 174, 1–17. [CrossRef]

25. Ojima, F.; Saito, Y.; Tsuchiya, Y.; Ogoshi, M.; Fukamachi, H.; Inagaki, K.; Otsuka, F.; Takeuchi, S.; Takahashi, S. Runx3 regulates
folliculogenesis and steroidogenesis in granulosa cells of immature mice. Cell Tissue Res. 2019, 375, 743–754. [CrossRef] [PubMed]

26. Shen, M.; Liu, Z.; Li, B.; Teng, Y.; Zhang, J.; Tang, Y.; Sun, S.C.; Liu, H. Involvement of FoxO1 in the effects of follicle-stimulating
hormone on inhibition of apoptosis in mouse granulosa cells. Cell Death Dis. 2014, 5, e1475. [CrossRef] [PubMed]

27. Herndon, M.K.; Law, N.C.; Donaubauer, E.M.; Kyriss, B.; Hunzicker-Dunn, M. Forkhead box O member FOXO1 regulates the
majority of follicle-stimulating hormone responsive genes in ovarian granulosa cells. Mol. Cell. Endocrinol. 2016, 434, 116–126.
[CrossRef]

28. Anttonen, M.; Parviainen, H.; Kyronlahti, A.; Bielinska, M.; Wilson, D.B.; Ritvos, O.; Heikinheimo, M. GATA-4 is a granulosa cell
factor employed in inhibin-alpha activation by the TGF-beta pathway. J. Mol. Endocrinol. 2006, 36, 557–568. [CrossRef]

29. Zhao, Z.H.; Li, C.Y.; Meng, T.G.; Wang, Y.; Liu, W.B.; Li, A.; Cai, Y.J.; Hou, Y.; Schatten, H.; Wang, Z.B.; et al. Single-cell RNA
sequencing reveals regulation of fetal ovary development in the monkey (Macaca fascicularis). Cell Discov. 2020, 6, 97. [CrossRef]

30. Ghanim, A.; Chantelle, R.; Amanda, T.; Tim, O.; Jim, M.F. The Role of BMP Signalling Pathway in the Regulation of Ovarian
Follicle Development. Biol. Reprod. 2008, 78 (Suppl. S1), 289–290.

31. Kissel, H.; Timokhina, I.; Hardy, M.P.; Rothschild, G.; Tajima, Y.; Soares, V.; Angeles, M.; Whitlow, S.R.; Manova, K.; Besmer, P.
Point mutation in Kit receptor tyrosine kinase reveals essential roles for Kit signaling in spermatogenesis and oogenesis without
affecting other Kit responses. EMBO J. 2014, 19, 1312–1326. [CrossRef]

32. Wang, L.Q.; Liu, J.C.; Chen, C.L.; Cheng, S.F.; Sun, X.F.; Zhao, Y.; Yin, S.; Hou, Z.M.; Pan, B.; Ding, C. Regulation of primordial
follicle recruitment by cross-talk between the Notch and phosphatase and tensin homologue (PTEN)/AKT pathways. Reprod.
Fertil. Dev. 2014, 28, 700–712. [CrossRef]

33. Makker, A.; Goel, M.M.; Mahdi, A.A. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility:
An update. J. Mol. Endocrinol. 2014, 53, R103–R118. [CrossRef]

34. Yu, C.; Zhou, J.J.; Fan, H.Y. Studying the Functions of TGF-β Signaling in the Ovary. In TGF-β Signaling; Methods in Molecular
Biology; Humana Press: New York, NY, USA, 2016.

35. Gu, C.; Liu, S.; Wu, Q.; Zhang, L.; Guo, F. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin
accessibility in mouse oocytes. Cell Res. 2019, 29, 110–123. [CrossRef]

https://doi.org/10.1093/biolre/ioac019
https://www.ncbi.nlm.nih.gov/pubmed/35094055
https://doi.org/10.1093/humupd/dmaa021
https://www.ncbi.nlm.nih.gov/pubmed/32464645
https://doi.org/10.3390/ijms22020823
https://www.ncbi.nlm.nih.gov/pubmed/33467661
https://doi.org/10.1002/advs.202105775
https://www.ncbi.nlm.nih.gov/pubmed/35460187
https://doi.org/10.1038/nbt.3192
https://www.ncbi.nlm.nih.gov/pubmed/25867923
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.cels.2018.11.005
https://doi.org/10.1126/science.aar4237
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/s41586-018-0698-6
https://www.ncbi.nlm.nih.gov/pubmed/30429548
https://doi.org/10.1186/1471-2105-9-559
https://www.ncbi.nlm.nih.gov/pubmed/19114008
https://doi.org/10.1002/mrd.23234
https://www.ncbi.nlm.nih.gov/pubmed/31304658
https://doi.org/10.1016/j.cell.2018.05.057
https://doi.org/10.1007/s00441-018-2947-2
https://www.ncbi.nlm.nih.gov/pubmed/30377784
https://doi.org/10.1038/cddis.2014.400
https://www.ncbi.nlm.nih.gov/pubmed/25321482
https://doi.org/10.1016/j.mce.2016.06.020
https://doi.org/10.1677/jme.1.01962
https://doi.org/10.1038/s41421-020-00219-0
https://doi.org/10.1093/emboj/19.6.1312
https://doi.org/10.1071/RD14212
https://doi.org/10.1530/JME-14-0220
https://doi.org/10.1038/s41422-018-0125-4


Curr. Issues Mol. Biol. 2024, 46 2319

36. Mcfee, R.M.; Rozell, T.G.; Cupp, A.S. The balance of proangiogenic and antiangiogenic VEGFA isoforms regulate follicle
development. Cell Tissue Res. 2012, 349, 635–647. [CrossRef]

37. Wagner, M.; Yoshihara, M.; Douagi, I.; Damdimopoulos, A.; Damdimopoulou, P. Single-cell analysis of human ovarian cortex
identifies distinct cell populations but no oogonial stem cells. Nat. Commun. 2020, 11, 1147. [CrossRef]

38. Zhao, Z.H.; Wang, X.Y.; Schatten, H.; Sun, Q.Y. Single cell RNA sequencing techniques and applications in research of ovary
development and related diseases. Reprod. Toxicol. 2022, 107, 97–103. [CrossRef]

39. Wang, S.; Zheng, Y.; Li, J.; Yu, Y.; Zhang, W.; Song, M.; Liu, Z.; Min, Z.; Hu, H.; Jing, Y.; et al. Single-Cell Transcriptomic Atlas of
Primate Ovarian Aging. Cell 2020, 180, 585–600.e19. [CrossRef]

40. Meinsohn, M.C.; Saatcioglu, H.D.; Wei, L.; Li, Y.; Horn, H.; Chauvin, M.; Kano, M.; Nguyen, N.M.P.; Nagykery, N.; Kashiwagi, A.;
et al. Single-cell sequencing reveals suppressive transcriptional programs regulated by MIS/AMH in neonatal ovaries. Proc. Natl.
Acad. Sci. USA 2021, 118, e2100920118. [CrossRef]

41. Park, C.J.; Lin, P.C.; Zhou, S.; Barakat, R.; Bashir, S.T.; Choi, J.M.; Cacioppo, J.A.; Oakley, O.R.; Duffy, D.M.; Lydon, J.P.; et al.
Progesterone Receptor Serves the Ovary as a Trigger of Ovulation and a Terminator of Inflammation. Cell Rep. 2020, 31, 107496.
[CrossRef]

42. Li, Z.; Wang, J.; Zhao, Y.; Ma, D.; Zhao, M.; Li, N.; Men, Y.; Zhang, Y.; Chu, H.; Lei, C.; et al. scRNA-seq of ovarian follicle
granulosa cells from different fertility goats reveals distinct expression patterns. Reprod. Domest. Anim. 2021, 56, 801–811.
[CrossRef]

43. Allen, B.M. The Embryonic development of the Ovary and Testis of the Mammals. Dev. Dyn. 2010, 3, 89–154. [CrossRef]
44. Contreras-Solis, I.; Catala, M.; Soto-Heras, S.; Roura, M.; Paramio, M.T.; Izquierdo, D. Effect of follicle size on hormonal status of

follicular fluid, oocyte ATP content, and in vitro embryo production in prepubertal sheep. Domest. Anim. Endocrinol. 2021, 75,
106582. [CrossRef]

45. Hoque, S.A.M.; Umehara, T.; Kawai, T.; Shimada, M. Adverse effect of superoxide-induced mitochondrial damage in granulosa
cells on follicular development in mouse ovaries. Free Radic. Biol. Med. 2021, 163, 344–355. [CrossRef]

46. Manabe, N.; Inoue, N.; Miyano, T.; Sakamaki, K.; Sugimoto, M.; Miyamoto, H. Follicle Selection in Mammalian Ovaries:
Regulatory Mechanisms of Granulosa Cell Apoptosis during Follicular Atresia. In The Ovary, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 2004; pp. 369–385.

47. Bhardwaj, J.K.; Paliwal, A.; Saraf, P.; Sachdeva, S.N. Role of autophagy in follicular development and maintenance of primordial
follicular pool in the ovary. J. Cell Physiol. 2022, 237, 1157–1170. [CrossRef]

48. Yadav, P.K.; Gupta, A.; Sharma, A.; Yadav, A.K.; Chaube, S. Fate of the germ cells in mammalian ovary: A review. J. Reprod. Health
Med. 2020, 3, 1–7. [CrossRef]

49. Weil, S.; Vendola, K.; Zhou, J.; Bondy, C.A. Androgen and Follicle-Stimulating Hormone Interactions in Primate Ovarian Follicle
Development. J. Clin. Endocrinol. Metab. 1999, 84, 2591–2596. [CrossRef]

50. Heather, J.; Baker, P.J.; Margaret, A.; Charlton, H.M.; Gary, J.; Lynne, F.; Rajendra, K.T.; O’Shaughnessy, P. Regulation of Sertoli cell
number and activity by follicle-stimulating hormone and androgen during postnatal development in the mouse. Endocrinology
2004, 145, 318–329.

51. Stricker, R.; Eberhart, R.; Chevailler, M.C.; Quinn, F.A.; Bischof, P.; Stricker, R. Establishment of detailed reference values for
luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on
the Abbott ARCHITECT® analyzer. Clin. Chem. Lab. Med. 2006, 44, 883–887. [CrossRef]

52. Gong, J.G.; Campbell, B.K.; Bramley, T.A.; Gutierrez, C.G.; Peters, A.R.; Webb, R. Suppression in the secretion of follicle-stimulating
hormone and luteinizing hormone, and ovarian follicle development in heifers continuously infused with a gonadotropin-
releasing hormone agonist. Biol. Reprod. 1996, 55, 68–74. [CrossRef]

53. Durlinger, A.; Gruijters, M.; Piet, K.; Bas, K.; Rajendra, K.T.; Matzuk, M.M.; Rose, U.M.; De, J.F.H.; Uilenbroek, J.; Anton, G.J.
Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 2001, 142,
4891–4899. [CrossRef]

54. Cecconi, S.; Rossi, G.; Coticchio, G.; Macchiarelli, G.; Borini, A.; Canipari, R. Influence of thyroid hormone on mouse preantral
follicle development in vitro. Fertil. Steril. 2004, 81 (Suppl. S1), 919–924. [CrossRef] [PubMed]

55. Rocha, R.; Lima, L.F.; Alves, A.; Celestino, J.; Matos, M.; Lima-Verde, I.B.; Bernuci, M.P.; Lopes, C.; Báo, S.; Campello, C. Interaction
between melatonin and follicle-stimulating hormone promotes in vitro development of caprine preantral follicles. Domest. Anim.
Endocrinol. 2013, 44, 1–9. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00441-012-1330-y
https://doi.org/10.1038/s41467-020-14936-3
https://doi.org/10.1016/j.reprotox.2021.12.003
https://doi.org/10.1016/j.cell.2020.01.009
https://doi.org/10.1073/pnas.2100920118
https://doi.org/10.1016/j.celrep.2020.03.060
https://doi.org/10.1111/rda.13920
https://doi.org/10.1002/aja.1000030202
https://doi.org/10.1016/j.domaniend.2020.106582
https://doi.org/10.1016/j.freeradbiomed.2020.12.434
https://doi.org/10.1002/jcp.30613
https://doi.org/10.25259/JRHM_5_2020
https://doi.org/10.1210/jcem.84.8.5929
https://doi.org/10.1515/CCLM.2006.160
https://doi.org/10.1095/biolreprod55.1.68
https://doi.org/10.1210/endo.142.11.8486
https://doi.org/10.1016/j.fertnstert.2003.11.014
https://www.ncbi.nlm.nih.gov/pubmed/15019830
https://doi.org/10.1016/j.domaniend.2012.07.001
https://www.ncbi.nlm.nih.gov/pubmed/22920266

	Introduction 
	Materials and Methods 
	Animal Preparation and Animal Tissue Collection 
	Single-Cell RNA-Seq Library Construction and Sequencing 
	Data Processing and Downstream Analysis 
	Weighted Gene Co-Expression Network Analysis (WGCNA) 
	Identification of TFs by SCENIC 
	Pesudotemperal Trajectory Analysis 
	Analysis of Cell–Cell Communication 
	Identification DEGs 
	Gene Enrichment Analysis 

	Results 
	Single-Nucleus Transcriptome Profiling of Goat Ovaries Elucidated Ovarian Cell Types and Gene Expression Signatures 
	WGCNA Revealed the Biological Functions and Hub Regulatory Networks of Ovarian Cell Types 
	SCENIC Analysis Revealed Key Transcription Factors (TFs) Regulating Ovarian-Specific Cell Types 
	Niche Regulation of Ovary Cell Type Revealed by Cell–Cell Communication 
	GC Subtype Identification and Transcriptional Signature Analysis of Goat Ovaries 
	Differences in Ovarian Cell Expression Profiles between the Polytocous and Monotocous Goats 

	Discussion 
	Conclusions 
	References

