Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = glutenin allergy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2104 KiB  
Article
Gluten Is Not Gluten
by Majlinda Xhaferaj and Katharina Anne Scherf
Nutrients 2024, 16(16), 2745; https://doi.org/10.3390/nu16162745 - 17 Aug 2024
Cited by 2 | Viewed by 2319
Abstract
Wheat gluten is responsible for the unique baking properties of wheat flour, but it also causes wheat-related disorders in predisposed individuals. Different commercially available gluten materials are commonly used for a variety of assays, but a detailed characterization of their composition is missing [...] Read more.
Wheat gluten is responsible for the unique baking properties of wheat flour, but it also causes wheat-related disorders in predisposed individuals. Different commercially available gluten materials are commonly used for a variety of assays, but a detailed characterization of their composition is missing in many cases. This is why we aimed to provide an in-depth analysis of three commonly used gliadin and gluten materials from two different batches using gel electrophoretic and chromatographic techniques. The gliadin material did not show the typical qualitative and quantitative protein composition and does not appear to be representative of wheat gliadin. The two gluten materials had the expected protein composition, but both showed large batch-to-batch variability regarding total protein content. Since these variations result in different biochemical, immunological, and functional behaviors, it is important to analyze at least the total protein content of each material and each batch. Full article
(This article belongs to the Special Issue Recent Advances in Gluten-Free Diet and Celiac Disease)
Show Figures

Graphical abstract

15 pages, 2427 KiB  
Article
Glutenin from the Ancient Wheat Progenitor Is Intrinsically Allergenic as It Can Clinically Sensitize Mice for Systemic Anaphylaxis by Activating Th2 Immune Pathway
by Rick Jorgensen, Tamil Selvan Arul Arasan, Maya Blanka Srkalovic, Chris Van Antwerp, Perry K. W. Ng and Venu Gangur
Int. J. Mol. Sci. 2024, 25(13), 7324; https://doi.org/10.3390/ijms25137324 - 3 Jul 2024
Cited by 2 | Viewed by 1571
Abstract
Wheat allergy is a major type of food allergy with the potential for life-threatening anaphylactic reactions. Common wheat, Triticum aestivum (hexaploid, AABBDD genome), was developed using tetraploid wheat (AABB genome) and the ancient diploid wheat progenitor (DD genome)-Aegilops tauschii. The potential [...] Read more.
Wheat allergy is a major type of food allergy with the potential for life-threatening anaphylactic reactions. Common wheat, Triticum aestivum (hexaploid, AABBDD genome), was developed using tetraploid wheat (AABB genome) and the ancient diploid wheat progenitor (DD genome)-Aegilops tauschii. The potential allergenicity of gluten from ancient diploid wheat is unknown. In this study, using a novel adjuvant-free gluten allergy mouse model, we tested the hypothesis that the glutenin extract from this ancient wheat progenitor will be intrinsically allergenic in this model. The ancient wheat was grown, and wheat berries were used to extract the glutenin for testing. A plant protein-free colony of Balb/c mice was established and used in this study. The intrinsic allergic sensitization potential of the glutenin was determined by measuring IgE response upon transdermal exposure without the use of an adjuvant. Clinical sensitization for eliciting systemic anaphylaxis (SA) was determined by quantifying the hypothermic shock response (HSR) and the mucosal mast cell response (MMCR) upon intraperitoneal injection. Glutenin extract elicited a robust and specific IgE response. Life-threatening SA associated and a significant MMCR were induced by the glutenin challenge. Furthermore, proteomic analysis of the spleen tissue revealed evidence of in vivo Th2 pathway activation. In addition, using a recently published fold-change analysis method, several immune markers positively and negatively associated with SA were identified. These results demonstrate for the first time that the glutenin from the ancient wheat progenitor is intrinsically allergenic, as it has the capacity to elicit clinical sensitization for anaphylaxis via activation of the Th2 pathway in vivo in mice. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Allergic Reactions)
Show Figures

Figure 1

15 pages, 2036 KiB  
Article
Detection of Sensitization Profiles with Cellular In Vitro Tests in Wheat Allergy Dependent on Augmentation Factors (WALDA)
by Valentina Faihs, Viktoria Schmalhofer, Claudia Kugler, Rebekka K. Bent, Katharina A. Scherf, Barbara Lexhaller, Charlotte G. Mortz, Carsten Bindslev-Jensen, Tilo Biedermann, Per S. Skov, Bernadette Eberlein and Knut Brockow
Int. J. Mol. Sci. 2024, 25(7), 3574; https://doi.org/10.3390/ijms25073574 - 22 Mar 2024
Cited by 2 | Viewed by 1741
Abstract
Wheat allergy dependent on augmentation factors (WALDA) is the most common gluten allergy in adults. IgE-mediated sensitizations are directed towards ω5-gliadin but also to other wheat allergens. The value of the different in vitro cellular tests, namely the basophil activation test (BAT) and [...] Read more.
Wheat allergy dependent on augmentation factors (WALDA) is the most common gluten allergy in adults. IgE-mediated sensitizations are directed towards ω5-gliadin but also to other wheat allergens. The value of the different in vitro cellular tests, namely the basophil activation test (BAT) and the active (aBHRA) and passive basophil histamine-release assays (pBHRA), in the detection of sensitization profiles beyond ω5-gliadin has not been compared. Therefore, 13 patients with challenge-confirmed, ω5-gliadin-positive WALDA and 11 healthy controls were enrolled. Specific IgE (sIgE), skin prick tests, BATs, aBHRA, and pBHRA were performed with allergen test solutions derived from wheat and other cereals, and results were analyzed and compared. This study reveals a distinct and highly individual reactivity of ω5-gliadin-positive WALDA patients to a range of wheat allergens beyond ω5-gliadin in cellular in vitro tests and SPT. In the BAT, for all tested allergens (gluten, high-molecular-weight glutenin subunits, α-amylase/trypsin inhibitors (ATIs), alcohol-free wheat beer, hydrolyzed wheat proteins (HWPs), rye gluten and secalins), basophil activation in patients was significantly higher than in controls (p = 0.004–p < 0.001). Similarly, significant histamine release was detected in the aBHRA for all test substances, exceeding the cut-off of 10 ng/mL in all tested allergens in 50% of patients. The dependency of tests on sIgE levels against ω5-gliadin differed; in the pBHRA, histamine release to any test substances could only be detected in patients with sIgE against ω5-gliadin ≥ 7.7 kU/L, whereas aBHRA also showed high reactivity in less sensitized patients. In most patients, reactivity to HWPs, ATIs, and rye allergens was observed. Additionally, alcohol-free wheat beer was first described as a promising test substance in ω5-gliadin-positive WALDA. Thus, BAT and aBHRA are valuable tools for the identification of sensitization profiles in WALDA. Full article
(This article belongs to the Special Issue Recent Advances in Gluten-Related Disorders)
Show Figures

Figure 1

20 pages, 2577 KiB  
Article
Is Wheat Glutenin Extract Intrinsically Allergenic? Evaluation Using a Novel Adjuvant-Free Mouse Model of Systemic Anaphylaxis
by Rick Jorgensen, Haoran Gao, Tamil Selvan Arul Arasan, Chris Van Antwerp, Vaisheswini Sundar, Perry K. W. Ng and Venu Gangur
Int. J. Mol. Sci. 2023, 24(24), 17247; https://doi.org/10.3390/ijms242417247 - 8 Dec 2023
Cited by 3 | Viewed by 1839
Abstract
Wheat is a prominent allergenic food that can trigger life-threatening anaphylaxis. Presently, it remains unclear whether wheat glutenin (WG) extract possesses inherent sensitization potential independently, without the use of adjuvants, and whether it can sensitize mice to the extent of inducing life-threatening systemic [...] Read more.
Wheat is a prominent allergenic food that can trigger life-threatening anaphylaxis. Presently, it remains unclear whether wheat glutenin (WG) extract possesses inherent sensitization potential independently, without the use of adjuvants, and whether it can sensitize mice to the extent of inducing life-threatening systemic anaphylaxis. In this study, we tested the hypothesis that repeated skin exposures to WG extract without adjuvant will sensitize mice with the resultant anaphylactic reaction upon systemic WG challenge. Balb/c mice were bred and maintained on a strict plant protein-free diet and were repeatedly exposed to a WG extract or vehicle once a week for 9 weeks. WG-specific (s)IgE and total (t)IgE levels were quantified. Mice were challenged with WG extract to induce anaphylactic reactions as measured by hypothermic shock response (HSR) and mucosal mast cell degranulation response (MMCR). We also conducted proteomic analysis of 120 spleen immune markers. These skin-sensitized mice exhibited exposure-dependent IgE responses and near-fatal anaphylaxis upon challenge. Proteomic analysis identified seven dramatically elevated immune biomarkers in anaphylactic mice. These data reveal that WG is intrinsically allergenic, and that chronic skin exposure to WG extract can prime the mice for potentially fatal anaphylaxis. Full article
(This article belongs to the Special Issue Recent Advances in Gluten-Related Disorders)
Show Figures

Figure 1

13 pages, 1467 KiB  
Article
Effect of Gluten Composition in Low-Allergy O-Free Wheat Flour on Cookie-Making Performance Compared with Flours with Different Gluten Strengths
by Nayeon Baek, Yujin Moon, Jeongeon Kim and Meera Kweon
Foods 2023, 12(20), 3843; https://doi.org/10.3390/foods12203843 - 20 Oct 2023
Cited by 1 | Viewed by 2184
Abstract
The increasing demand for allergen-free and reduced-allergen foods has led to an investigation into the potential use of O-free wheat, a low-allergy wheat cultivar, in cookie production. This study focused on assessing the gluten composition of O-free flour and comparing its suitability for [...] Read more.
The increasing demand for allergen-free and reduced-allergen foods has led to an investigation into the potential use of O-free wheat, a low-allergy wheat cultivar, in cookie production. This study focused on assessing the gluten composition of O-free flour and comparing its suitability for cookie making in comparison to flours with varying gluten strengths. Several analyses were conducted, including gluten composition, solvent retention capacity (SRC), thermal and pasting properties, dough-mixing characteristics, and cookie-making performance. The gluten composition of O-free flour by SDS-PAGE confirmed the absence of ω-gliadins and the reduced levels of low-molecular-weight glutenins and γ-gliadins. The SRC values of O-free flour fell between the flours with weak and medium gluten strengths. While thermal and pasting properties showed significant differences in sucrose solution but not across flour types, indicating similar starch structures, mixograms displayed distinct variations influenced by both sucrose solution and flour type, highlighting the importance of gluten quality and composition. Cookies made with O-free flour demonstrated similarities to those produced with weak gluten flour, known for their favorable cookie characteristics. This study emphasizes the significant influence of flour gluten composition on cookie-making performance and advocates for the adoption of O-free flour in the development of allergy-friendly cookies. Full article
Show Figures

Figure 1

14 pages, 3322 KiB  
Perspective
A Narrative Mini Review on Current Status of Hypoallergenic Wheat Development for IgE-Mediated Wheat Allergy, Wheat-Dependent Exercise-Induced Anaphylaxis
by Eishin Morita, Hiroaki Matsuo, Kunie Kohno, Tomoharu Yokooji, Hiroyuki Yano and Takashi Endo
Foods 2023, 12(5), 954; https://doi.org/10.3390/foods12050954 - 23 Feb 2023
Cited by 14 | Viewed by 3282
Abstract
Immunoglobulin E (IgE)-mediated food allergies to wheat that develop after school age typically shows a type of wheat-dependent exercise-induced anaphylaxis (WDEIA). At present, avoidance of wheat products or postprandial rest after ingesting wheat is recommended for patients with WDEIA, depending on the severity [...] Read more.
Immunoglobulin E (IgE)-mediated food allergies to wheat that develop after school age typically shows a type of wheat-dependent exercise-induced anaphylaxis (WDEIA). At present, avoidance of wheat products or postprandial rest after ingesting wheat is recommended for patients with WDEIA, depending on the severity of the allergy symptoms. ω5-Gliadin has been identified as the major allergen in WDEIA. In addition, α/β-, γ-, and ω1,2-gliadins, high and low molecular weight-glutenins, and a few water-soluble wheat proteins have been identified as IgE-binding allergens in a small proportion of patients with IgE-mediated wheat allergies. A variety of approaches have been manufactured to develop hypoallergenic wheat products that can be consumed by patients with IgE-mediated wheat allergies. In order to analyze such approaches, and to contribute to the further improvement, this study outlined the current status of these hypoallergenic wheat productions, including wheat lines with a reduced allergenicity that are mostly constructed for the patients sensitized to ω5-gliadin, hypoallergenic wheat by enzymic degradation/ion exchanger deamidation, and hypoallergenic wheat by thioredoxin treatment. The wheat products obtained by these approaches significantly reduced the reactivity of Serum IgE in wheat-allergic patients. However, either these were not effective on some populations of the patients, or low-level IgE-reactivity to some allergens of the products was observed in the patients. These results highlight some of the difficulties faced in creating hypoallergenic wheat products or hypoallergenic wheat lines through either traditional breeding or biotechnology approaches in developing hypoallergenic wheat completely safe for all the patients allergic to wheat. Full article
Show Figures

Figure 1

20 pages, 4136 KiB  
Article
Does Nitrogen Fertilization Affect the Secondary Structures of Gliadin Proteins in Hypoallergenic Wheat?
by Iwona Stawoska, Jacek Waga, Aleksandra Wesełucha-Birczyńska, Michał Dziurka, Grażyna Podolska, Edyta Aleksandrowicz and Andrzej Skoczowski
Molecules 2022, 27(17), 5684; https://doi.org/10.3390/molecules27175684 - 3 Sep 2022
Cited by 7 | Viewed by 2699
Abstract
One of the macronutrients indispensable for plant growth and development is nitrogen (N). It is responsible for starch and storage protein (gliadins and glutenins) biosynthesis and, in consequence, influences kernels’ quality and yields. However, applying N-fertilizers increases gluten content in wheat, and it [...] Read more.
One of the macronutrients indispensable for plant growth and development is nitrogen (N). It is responsible for starch and storage protein (gliadins and glutenins) biosynthesis and, in consequence, influences kernels’ quality and yields. However, applying N-fertilizers increases gluten content in wheat, and it may intensify the risk of developing allergy symptoms in gluten-sensitive individuals. The purpose of our research was to analyse whether and how the elimination of N-fertilizers during the cultivation of wasko.gl− wheat (modified genotype lacking ω-gliadins) changes the secondary structures of gliadin proteins. To this aim, using the FT-Raman technique, we examined flour and gliadin protein extracts obtained from kernels of two winter wheat lines: wasko.gl+ (with a full set of gliadin proteins) and wasko.gl− (without ω-gliadin fraction) cultivated on two different N-fertilization levels—0 and 120 kg N·ha−1. On the basis of the obtained results, we proved that nitrogen fertilization does not have a major impact on the stability of the secondary structures of gliadin proteins for wasko.gl− wheat line with reduced allergenic properties. Furthermore, the results presented herein suggest the possibility of increasing the stability of glutenin structures as a result of the N-fertilization of wasko.gl− wheat line, which gives hope for its use in the production of wheat articles devoted to people suffering from diseases related to gluten sensitivity. Full article
Show Figures

Figure 1

17 pages, 2872 KiB  
Article
Reduction of Allergenic Potential in Bread Wheat RNAi Transgenic Lines Silenced for CM3, CM16 and 0.28 ATI Genes
by Raviraj M. Kalunke, Silvio Tundo, Francesco Sestili, Francesco Camerlengo, Domenico Lafiandra, Roberta Lupi, Colette Larré, Sandra Denery-Papini, Shahidul Islam, Wujun Ma, Stefano D’Amico and Stefania Masci
Int. J. Mol. Sci. 2020, 21(16), 5817; https://doi.org/10.3390/ijms21165817 - 13 Aug 2020
Cited by 25 | Viewed by 4789
Abstract
Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter [...] Read more.
Although wheat is used worldwide as a staple food, it can give rise to adverse reactions, for which the triggering factors have not been identified yet. These reactions can be caused mainly by kernel proteins, both gluten and non-gluten proteins. Among these latter proteins, α-amylase/trypsin inhibitors (ATI) are involved in baker’s asthma and realistically in Non Celiac Wheat Sensitivity (NCWS). In this paper, we report characterization of three transgenic lines obtained from the bread wheat cultivar Bobwhite silenced by RNAi in the three ATI genes CM3, CM16 and 0.28. We have obtained transgenic lines showing an effective decrease in the activity of target genes that, although showing a higher trypsin inhibition as a pleiotropic effect, generate a lower reaction when tested with sera of patients allergic to wheat, accounting for the important role of the three target proteins in wheat allergies. Finally, these lines show unintended differences in high molecular weight glutenin subunits (HMW-GS) accumulation, involved in technological performances, but do not show differences in terms of yield. The development of new genotypes accumulating a lower amount of proteins potentially or effectively involved in allergies to wheat and NCWS, not only offers the possibility to use them as a basis for the production of varieties with a lower impact on adverse reaction, but also to test if these proteins are actually implicated in those pathologies for which the triggering factor has not been established yet. Full article
(This article belongs to the Special Issue Plant Proteomic Research 3.0)
Show Figures

Graphical abstract

21 pages, 2013 KiB  
Article
Comprehensive Comparison of Clinically Relevant Grain Proteins in Modern and Traditional Bread Wheat Cultivars
by Olha Lakhneko, Maksym Danchenko, Bogdan Morgun, Andrej Kováč, Petra Majerová and Ľudovit Škultéty
Int. J. Mol. Sci. 2020, 21(10), 3445; https://doi.org/10.3390/ijms21103445 - 13 May 2020
Cited by 10 | Viewed by 3943
Abstract
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins [...] Read more.
Bread wheat (Triticum aestivum L.) is one of the most valuable cereal crops for human consumption. Its grain storage proteins define bread quality, though they may cause food intolerances or allergies in susceptible individuals. Herein, we discovered a diversity of grain proteins in three Ukrainian wheat cultivars: Sotnytsia, Panna (both modern selection), and Ukrainka (landrace). Firstly, proteins were isolated with a detergent-containing buffer that allowed extraction of various groups of storage proteins (glutenins, gliadins, globulins, and albumins); secondly, the proteome was profiled by the two-dimensional gel electrophoresis. Using multi-enzymatic digestion, we identified 49 differentially accumulated proteins. Parallel ultrahigh-performance liquid chromatography separation followed by direct mass spectrometry quantification complemented the results. Principal component analysis confirmed that differences among genotypes were a major source of variation. Non-gluten fraction better discriminated bread wheat cultivars. Various accumulation of clinically relevant plant proteins highlighted one of the modern genotypes as a promising donor for the breeding of hypoallergenic cereals. Full article
(This article belongs to the Special Issue Plant Proteomic Research 3.0)
Show Figures

Graphical abstract

14 pages, 873 KiB  
Article
Preparation of a Defined Gluten Hydrolysate for Diagnosis and Clinical Investigations of Wheat Hypersensitivities
by Herbert Wieser and Katharina A. Scherf
Nutrients 2018, 10(10), 1411; https://doi.org/10.3390/nu10101411 - 2 Oct 2018
Cited by 12 | Viewed by 4306
Abstract
Gluten is the trigger for celiac disease (CD), non-celiac gluten/wheat sensitivity (NCGS), and wheat allergy. An oral food challenge is often needed for diagnosis, but there are no standardized gluten challenge materials with known composition available. To fill this gap, two materials, commercially [...] Read more.
Gluten is the trigger for celiac disease (CD), non-celiac gluten/wheat sensitivity (NCGS), and wheat allergy. An oral food challenge is often needed for diagnosis, but there are no standardized gluten challenge materials with known composition available. To fill this gap, two materials, commercially available gluten and a food-grade gluten hydrolysate (pepgluten), were extensively characterized. Pepgluten was prepared from gluten by incubation with a pepsin dietary supplement and acetic acid at 37 °C for 120 min. The components of pepgluten were crude protein (707 mg/g), starch (104 mg/g), water (59 mg/g), fat (47 mg/g), dietary fiber (41 mg/g) and ash (11 mg/g). The protein/peptide fraction of pepgluten (1 g) contained equivalents derived from 369 mg gliadins and 196 mg glutenins, resulting in 565 mg total gluten equivalents, 25 mg albumins/globulins, 22 mg α-amylase/trypsin inhibitors and 48 mg pepsin capsule proteins. The slightly acidic, dough-like smell and bitter taste of pepgluten could be completely camouflaged in multivitamin juice with bitter lemon, grapefruit juice, or vegetable and fruit smoothies. Thus, pepgluten met the criteria for placebo-controlled challenges (active and placebo materials are identical regarding appearance, taste, smell, and texture) and is appropriate as a standard preparation for the oral food challenge and clinical investigations to study wheat hypersensitivities. Full article
(This article belongs to the Special Issue Gluten-Free Diet)
Show Figures

Figure 1

27 pages, 2531 KiB  
Review
Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities
by Anastasia V. Balakireva and Andrey A. Zamyatnin
Nutrients 2016, 8(10), 644; https://doi.org/10.3390/nu8100644 - 18 Oct 2016
Cited by 199 | Viewed by 43033
Abstract
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can [...] Read more.
Theterm gluten intolerance may refer to three types of human disorders: autoimmune celiac disease (CD), allergy to wheat and non-celiac gluten sensitivity (NCGS). Gluten is a mixture of prolamin proteins present mostly in wheat, but also in barley, rye and oat. Gluten can be subdivided into three major groups: S-rich, S-poor and high molecular weight proteins. Prolamins within the groups possess similar structures and properties. All gluten proteins are evolutionarily connected and share the same ancestral origin. Gluten proteins are highly resistant to hydrolysis mediated by proteases of the human gastrointestinal tract. It results in emergence of pathogenic peptides, which cause CD and allergy in genetically predisposed people. There is a hierarchy of peptide toxicity and peptide recognition by T cells. Nowadays, there are several ways to detoxify gluten peptides: the most common is gluten-free diet (GFD), which has proved its effectiveness; prevention programs, enzymatic therapy, correction of gluten pathogenicity pathways and genetically modified grains with reduced immunotoxicity. A deep understanding of gluten intolerance underlying mechanisms and detailed knowledge of gluten properties may lead to the emergence of novel effective approaches for treatment of gluten-related disorders. Full article
Show Figures

Figure 1

Back to TopTop