Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = glutaminyl cyclase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1727 KiB  
Viewpoint
An Overview of Glutaminyl Cyclase as a Promising Drug Target for Alzheimer’s Disease
by Rasajna Madhusudhana, Emily Boyle and Yana Cen
Biomedicines 2025, 13(6), 1467; https://doi.org/10.3390/biomedicines13061467 - 13 Jun 2025
Viewed by 635
Abstract
Alzheimer’s disease (AD) has become an increasingly pressing concern for the aging population. Current AD treatments mainly focus on cognitive and neuropsychiatric symptoms—with few FDA-approved treatments targeting disease progression itself. The amyloid cascade hypothesis describes the formation and accumulation of β-amyloid (Aβ) oligomers [...] Read more.
Alzheimer’s disease (AD) has become an increasingly pressing concern for the aging population. Current AD treatments mainly focus on cognitive and neuropsychiatric symptoms—with few FDA-approved treatments targeting disease progression itself. The amyloid cascade hypothesis describes the formation and accumulation of β-amyloid (Aβ) oligomers and plaques as a primary event in AD pathogenesis. This hypothesis has served as the foundation of disease-modifying treatment development over the last decade. Recently, glutaminyl cyclase (QC) has been identified as a potential drug target in the amyloid cascade. QC catalyzes the cyclization of Aβ to form pyroglutamated Aβ (pEAβ). pEAβ acts as the seed for the formation of Aβ plaques, thus preventing the formation of pEAβ via QC inhibition, and offers a promising therapeutic strategy against AD. Here, we offer an overview of the pathway QCI research has followed—from the initial testing of imidazole-based inhibitor scaffolds to QCI structural optimization via pharmacophore identification, Varoglutamstat entering clinical trials, and further avenues of bettering specificity and potency for future QCI development. Full article
Show Figures

Figure 1

18 pages, 4154 KiB  
Article
Determination of Potential Lead Compound from Magnolia officinalis for Alzheimer’s Disease through Pharmacokinetic Prediction, Molecular Docking, Dynamic Simulation, and Experimental Validation
by Kumju Youn and Mira Jun
Int. J. Mol. Sci. 2024, 25(19), 10507; https://doi.org/10.3390/ijms251910507 - 29 Sep 2024
Cited by 1 | Viewed by 1891
Abstract
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer’s disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 [...] Read more.
Amyloid β protein (Aβ) deposition has been implicated as the molecular driver of Alzheimer’s disease (AD) progression. The modulation of the formation of abnormal aggregates and their post-translational modification is strongly suggested as the most effective approach to anti-AD. Beta-site APP-cleaving enzyme 1 (BACE1) acts upstream in amyloidogenic processing to generate Aβ, which rapidly aggregates alone or in combination with acetylcholinesterase (AChE) to form fibrils. Accumulated Aβ promotes BACE1 activation via glycogen synthase kinase-3β (GSK-3β) and is post-translationally modified by glutaminyl cyclase (QC), resulting in increased neurotoxicity. A novel multi-target inhibitor as a potential AD agent was identified using an in silico approach and experimental validation. Magnolia officinalis, which showed the best anti-AD activity in our preliminary study, was subjected to analysis, and 82 compounds were studied. Among 23 compounds with drug-likeness, blood–brain barrier penetration, and safety, honokiol emerged as a lead structure for the inhibition of BACE1, AChE, QC, and GSK-3β in docking and molecular dynamics (MD) simulations. Furthermore, honokiol was found to be an excellent multi-target inhibitor of these enzymes with an IC50 of 6–90 μM, even when compared to other natural single-target inhibitors. Taken together, the present study is the first to demonstrate that honokiol acts as a multiple enzyme inhibitor with an excellent pharmacokinetic and safety profile which may provide inhibitory effects in broad-range areas including the overproduction, aggregation, and post-translational modification of Aβ. It also provides insight into novel structural features for the design and discovery of multi-target inhibitors for anti-AD. Full article
(This article belongs to the Special Issue Phenolic Compounds in Human Diseases)
Show Figures

Figure 1

17 pages, 7077 KiB  
Article
Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses
by Corinna Höfling, Luise Ulrich, Sina Burghardt, Philippa Donkersloot, Michael Opitz, Stefanie Geissler, Stephan Schilling, Holger Cynis, Dominik Michalski and Steffen Roßner
Cells 2024, 13(17), 1412; https://doi.org/10.3390/cells13171412 - 23 Aug 2024
Viewed by 1343
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, [...] Read more.
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Graphical abstract

15 pages, 7083 KiB  
Article
Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective
by Giusy Tassone, Cecilia Pozzi and Stefano Mangani
Int. J. Mol. Sci. 2024, 25(15), 8279; https://doi.org/10.3390/ijms25158279 - 29 Jul 2024
Cited by 1 | Viewed by 1233
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC [...] Read more.
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer’s and Huntington’s disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes. Full article
Show Figures

Figure 1

14 pages, 1837 KiB  
Article
Usage of Cell-Free Protein Synthesis in Post-Translational Modification of μ-Conopeptide PIIIA
by Yanli Liu, Zitong Zhao, Yunyang Song, Yifeng Yin, Fanghui Wu and Hui Jiang
Mar. Drugs 2023, 21(8), 421; https://doi.org/10.3390/md21080421 - 25 Jul 2023
Cited by 1 | Viewed by 2000
Abstract
The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in [...] Read more.
The post-translational modifications of conopeptides are the most complicated modifications to date and are well-known and closely related to the activity of conopeptides. The hydroxylation of proline in conopeptides affects folding, structure, and biological activity, and prolyl 4 hydroxylase has been characterized in Conus literatus. However, the hydroxylation machinery of proline in conopeptides is still unclear. In order to address the hydroxylation mechanism of proline in μ-PIIIA, three recombinant plasmids encoding different hybrid precursors of μ-PIIIA were constructed and crossly combined with protein disulfide isomerase, prolyl 4 hydroxylase, and glutaminyl cyclase in a continuous exchange cell-free protein system. The findings showed that prolyl 4 hydroxylase might recognize the propeptide of μ-PIIIA to achieve the hydroxylation of proline, while the cyclization of glutamate was also formed. Additionally, in Escherichia coli, the co-expression plasmid encoding prolyl 4 hydroxylase and the precursor of μ-PIIIA containing pro and mature regions were used to validate the continuous exchange cell-free protein system. Surprisingly, in addition to the two hydroxyproline residues and one pyroglutamyl residue, three disulfide bridges were formed using Trx as a fusion tag, and the yield of the fusion peptide was approximately 20 mg/L. The results of electrophysiology analysis indicated that the recombinant μ-PIIIA without C-terminal amidate inhibited the current of hNaV1.4 with a 939 nM IC50. Our work solved the issue that it was challenging to quickly generate post-translationally modified conopeptides in vitro. This is the first study to demonstrate that prolyl 4 hydroxylase catalyzes the proline hydroxylation through recognition in the propeptide of μ-PIIIA, and it will provide a new way for synthesizing multi-modified conopeptides with pharmacological activity. Full article
(This article belongs to the Special Issue Conotoxins II)
Show Figures

Figure 1

14 pages, 2645 KiB  
Article
A MD Simulation Prediction for Regulation of N-Terminal Modification on Binding of CD47 to CD172a in a Force-Dependent Manner
by Yang Zhao, Liping Fang, Pei Guo, Ying Fang and Jianhua Wu
Molecules 2023, 28(10), 4224; https://doi.org/10.3390/molecules28104224 - 22 May 2023
Viewed by 2263
Abstract
Cancer cells can evade immune surveillance through binding of its transmembrane receptor CD47 to CD172a on myeloid cells. CD47 is recognized as a promising immune checkpoint for cancer immunotherapy inhibiting macrophage phagocytosis. N-terminal post-translated modification (PTM) via glutaminyl cyclase is a landmark [...] Read more.
Cancer cells can evade immune surveillance through binding of its transmembrane receptor CD47 to CD172a on myeloid cells. CD47 is recognized as a promising immune checkpoint for cancer immunotherapy inhibiting macrophage phagocytosis. N-terminal post-translated modification (PTM) via glutaminyl cyclase is a landmark event in CD47 function maturation, but the molecular mechanism underlying the mechano-chemical regulation of the modification on CD47/CD172a remains unclear. Here, we performed so-called “ramp-clamp” steered molecular dynamics (SMD) simulations, and found that the N-terminal PTM enhanced interaction of CD172a with CD47 by inducing a dynamics-driven contraction of the binding pocket of the bound CD172a, an additional constraint on CYS15 on CD47 significantly improved the tensile strength of the complex with or without PTM, and a catch bond phenomenon would occur in complex dissociation under tensile force of 25 pN in a PTM-independent manner too. The residues GLN52 and SER66 on CD172a reinforced the H-bonding with their partners on CD47 in responding to PTM, while ARG69 on CD172 with its partner on CD47 might be crucial in the structural stability of the complex. This work might serve as molecular basis for the PTM-induced function improvement of CD47, should be helpful for deeply understanding CD47-relevant immune response and cancer development, and provides a novel insight in developing of new strategies of immunotherapy targeting this molecule interaction. Full article
(This article belongs to the Special Issue Advances in Molecular Modeling in Chemistry)
Show Figures

Figure 1

17 pages, 27079 KiB  
Article
Immunohistochemical Demonstration of the pGlu79 α-Synuclein Fragment in Alzheimer’s Disease and Its Tg2576 Mouse Model
by Alexandra Bluhm, Sarah Schrempel, Stephan Schilling, Stephan von Hörsten, Anja Schulze, Steffen Roßner and Maike Hartlage-Rübsamen
Biomolecules 2022, 12(7), 1006; https://doi.org/10.3390/biom12071006 - 20 Jul 2022
Cited by 4 | Viewed by 3764
Abstract
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead [...] Read more.
The deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer’s disease (AD) and Parkinson’s disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)—along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation—in AD and in the transgenic Tg2576 AD mouse model. In the human brain, pGlu79-aSyn was detected in cortical pyramidal neurons, with more distinct labeling in AD compared to control brain tissue. Using immunohistochemical double and triple labelings and confocal laser scanning microscopy, we demonstrate an association of pGlu79-aSyn, MMP-3 and QC with β-amyloid plaques. In addition, pGlu79-aSyn and QC were present in amyloid plaque-associated reactive astrocytes that were also immunoreactive for the chaperone heat shock protein 27 (HSP27). Our data are consistent for the transgenic mouse model and the human clinical condition. We conclude that pGlu79-aSyn can be generated extracellularly or within reactive astrocytes, accumulates in proximity to β-amyloid plaques and induces an astrocytic protein unfolding mechanism involving HSP27. Full article
Show Figures

Figure 1

14 pages, 5281 KiB  
Communication
Tetrahydroimidazo[4,5-c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase
by Daniel Ramsbeck, Nadine Taudte, Nadine Jänckel, Stefanie Strich, Jens-Ulrich Rahfeld and Mirko Buchholz
Pharmaceuticals 2021, 14(12), 1206; https://doi.org/10.3390/ph14121206 - 23 Nov 2021
Cited by 6 | Viewed by 2755
Abstract
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral [...] Read more.
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure–activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

13 pages, 1049 KiB  
Communication
Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice
by Torsten Hoffmann, Jens-Ulrich Rahfeld, Mathias Schenk, Falk Ponath, Koki Makioka, Birgit Hutter-Paier, Inge Lues, Cynthia A. Lemere and Stephan Schilling
Int. J. Mol. Sci. 2021, 22(21), 11791; https://doi.org/10.3390/ijms222111791 - 30 Oct 2021
Cited by 16 | Viewed by 4765
Abstract
Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed [...] Read more.
Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect. Full article
Show Figures

Figure 1

18 pages, 4484 KiB  
Article
Monogalactosyldiacylglycerol and Sulfolipid Synthesis in Microalgae
by Gennaro Riccio, Daniele De Luca and Chiara Lauritano
Mar. Drugs 2020, 18(5), 237; https://doi.org/10.3390/md18050237 - 1 May 2020
Cited by 45 | Viewed by 5323
Abstract
Microalgae, due to their huge taxonomic and metabolic diversity, have been shown to be a valuable and eco-friendly source of bioactive natural products. The increasing number of genomic and transcriptomic data will give a great boost for the study of metabolic pathways involved [...] Read more.
Microalgae, due to their huge taxonomic and metabolic diversity, have been shown to be a valuable and eco-friendly source of bioactive natural products. The increasing number of genomic and transcriptomic data will give a great boost for the study of metabolic pathways involved in the synthesis of bioactive compounds. In this study, we analyzed the presence of the enzymes involved in the synthesis of monogalactosyldiacylglycerols (MGDGs) and sulfoquinovosyldiacylglycerols (SQDG). Both compounds have important biological properties. MGDGs present both anti-inflammatory and anti-cancer activities while SQDGs present immunostimulatory activities and inhibit the enzyme glutaminyl cyclase, which is involved in Alzheimer’s disease. The Ocean Global Atlas (OGA) database and the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) were used to search MGDG synthase (MGD), UDP-sulfoquinovose synthase (SQD1), and sulfoquinovosyltransferase (SQD2) sequences along microalgal taxa. In silico 3D prediction analyses for the three enzymes were performed by Phyre2 server, while binding site predictions were performed by the COACH server. The analyzed enzymes are distributed across different taxa, which confirms the importance for microalgae of these two pathways for thylakoid physiology. MGD genes have been found across almost all analyzed taxa and can be separated in two different groups, similarly to terrestrial plant MGD. SQD1 and SQD2 genes are widely distributed along the analyzed taxa in a similar way to MGD genes with some exceptions. For Pinguiophyceae, Raphidophyceae, and Synurophyceae, only sequences coding for MGDG were found. On the contrary, sequences assigned to Ciliophora and Eustigmatophyceae were exclusively corresponding to SQD1 and SQD2. This study reports, for the first time, the presence/absence of these enzymes in available microalgal transcriptomes, which gives new insights on microalgal physiology and possible biotechnological applications for the production of bioactive lipids. Full article
Show Figures

Figure 1

17 pages, 47356 KiB  
Article
Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation
by Maike Hartlage-Rübsamen, Alexandra Bluhm, Anke Piechotta, Miriam Linnert, Jens-Ulrich Rahfeld, Hans-Ulrich Demuth, Inge Lues, Peer-Hendrik Kuhn, Stefan F. Lichtenthaler, Steffen Roßner and Corinna Höfling
Molecules 2018, 23(4), 924; https://doi.org/10.3390/molecules23040924 - 17 Apr 2018
Cited by 14 | Viewed by 6545
Abstract
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell [...] Read more.
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation. Full article
(This article belongs to the Special Issue 25th Anniversary of the Amyloid Hypothesis and Alzheimer Disease)
Show Figures

Figure 1

16 pages, 1067 KiB  
Article
Natural Products from Microalgae with Potential against Alzheimer’s Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors
by Stephanie Hielscher-Michael, Carola Griehl, Mirko Buchholz, Hans-Ulrich Demuth, Norbert Arnold and Ludger A. Wessjohann
Mar. Drugs 2016, 14(11), 203; https://doi.org/10.3390/md14110203 - 2 Nov 2016
Cited by 55 | Viewed by 10609
Abstract
In recent years, many new enzymes, like glutaminyl cyclase (QC), could be associated with pathophysiological processes and represent targets for many diseases, so that enzyme-inhibiting properties of natural substances are becoming increasingly important. In different studies, the pathophysiology connection of QC to various [...] Read more.
In recent years, many new enzymes, like glutaminyl cyclase (QC), could be associated with pathophysiological processes and represent targets for many diseases, so that enzyme-inhibiting properties of natural substances are becoming increasingly important. In different studies, the pathophysiology connection of QC to various diseases including Alzheimer’s disease (AD) was described. Algae are known for the ability to synthesize complex and highly-diverse compounds with specific enzyme inhibition properties. Therefore, we screened different algae species for the presence of QC inhibiting metabolites using a new “Reverse Metabolomics” technique including an Activity-correlation Analysis (AcorA), which is based on the correlation of bioactivities to mass spectral data with the aid of mathematic informatics deconvolution. Thus, three QC inhibiting compounds from microalgae belonging to the family of sulfolipids were identified. The compounds showed a QC inhibition of 81% and 76% at concentrations of 0.25 mg/mL and 0.025 mg/mL, respectively. Thus, for the first time, sulfolipids are identified as QC inhibiting compounds and possess substructures with the required pharmacophore qualities. They represent a new lead structure for QC inhibitors. Full article
(This article belongs to the Special Issue Enzyme Inhibitors of Marine Origin)
Show Figures

Figure 1

Back to TopTop