Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = gluconeogenic signaling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2630 KiB  
Article
A Comparison of the Effects of Milk, Yogurt, and Cheese on Insulin Sensitivity, Hepatic Steatosis, and Gut Microbiota in Diet-Induced Obese Male Mice
by Emad Yuzbashian, Dineli N. Fernando, René L. Jacobs, Till-Robin Lesker, Till Strowig, Siegfried Ussar and Catherine B. Chan
Int. J. Mol. Sci. 2025, 26(11), 5026; https://doi.org/10.3390/ijms26115026 - 23 May 2025
Viewed by 824
Abstract
The effects of low-fat dairy products on insulin resistance (IR), hepatic steatosis, and gut microbiota composition in high-fat diet (HFD)-fed obese mice were examined. C57BL/6 male mice (n = 16/group) were fed a high-fat diet (HFD, 45% fat) or HFD supplemented with either [...] Read more.
The effects of low-fat dairy products on insulin resistance (IR), hepatic steatosis, and gut microbiota composition in high-fat diet (HFD)-fed obese mice were examined. C57BL/6 male mice (n = 16/group) were fed a high-fat diet (HFD, 45% fat) or HFD supplemented with either fat-free milk (MILK), fat-free yogurt (YOG), or reduced-fat (19% milk fat) cheddar cheese (CHE) at 10% of the total energy intake for 8 weeks. Body weight, fat mass, liver lipids, and metabolic enzymes were evaluated. Compared with HFD, MILK reduced homeostatic assessment of insulin resistance along with increased hepatic insulin signaling and decreased hepatic gluconeogenic enzymes. YOG and MILK decreased hepatic triacylglycerol content and lipid droplet size, while CHE had no effect. In the liver, MILK and YOG downregulated de novo lipogenesis enzymes. In MILK, fat oxidation capacity was elevated. Compared with HFD, liver lipidomic analysis in MILK and YOG revealed unique profiles of decreased proinflammatory lipid species, including ceramides. Dairy feeding elicited an increase in beneficial bacteria, such as Streptococcus in YOG and Anaero-tignum in MILK, as shown by 16S rRNA sequencing of gut microbiota. In conclusion, the ability of milk and yogurt to reduce hepatic steatosis in HFD mice may be explained, at least in part, by the regulation of the gut microbiome and liver lipidome. Full article
Show Figures

Graphical abstract

15 pages, 1764 KiB  
Article
Mitochondria-Targeted DNA Repair Glycosylase hOGG1 Protects Against HFD-Induced Liver Oxidative Mitochondrial DNA Damage and Insulin Resistance in OGG1-Deficient Mice
by Larysa V. Yuzefovych, Hye Lim Noh, Sujin Suk, Anne Michele Schuler, Madhuri S. Mulekar, Viktor M. Pastukh, Jason K. Kim and Lyudmila I. Rachek
Int. J. Mol. Sci. 2024, 25(22), 12168; https://doi.org/10.3390/ijms252212168 - 13 Nov 2024
Cited by 1 | Viewed by 1443
Abstract
8-oxoguanine DNA glycosylase-1 (OGG1) is a DNA glycosylase mediating the first step in base excision repair which removes 7,8-dihydro-8-oxoguanine (8-oxoG) and repairs oxidized nuclear and mitochondrial DNA. Previous studies showed that OGG1 deficiency results in an increased susceptibility to high-fat diet (HFD)-induced obesity [...] Read more.
8-oxoguanine DNA glycosylase-1 (OGG1) is a DNA glycosylase mediating the first step in base excision repair which removes 7,8-dihydro-8-oxoguanine (8-oxoG) and repairs oxidized nuclear and mitochondrial DNA. Previous studies showed that OGG1 deficiency results in an increased susceptibility to high-fat diet (HFD)-induced obesity and metabolic dysfunction in mice, suggesting a crucial role of OGG1 in metabolism. However, the tissue-specific mechanisms of how OGG1 deficiency leads to insulin resistance is unknown. Thus, in the current study, we used a hyperinsulinemic-euglycemic clamp to evaluate in-depth glucose metabolism in male wild-type (WT) mice and Ogg1−/− (Ogg1-KO) mice fed an HFD. Ogg1-KO mice fed HFD were more obese, with significantly lower hepatic insulin action compared to WT/HFD mice. Targeting human OGG1 to mitochondria protected against HFD-induced obesity, insulin resistance, oxidative mitochondrial DNA damage in the liver and showed decreased expression of liver gluconeogenic genes in Ogg1-KO mice, suggesting a putative protective mechanism. Additionally, several subunits of oxidative phosphorylation protein levels were noticeably increased in Ogg1-KO/Tg compared to Ogg1-KO mice fed an HFD which was associated with improved insulin signaling. Our findings demonstrate the crucial role of mitochondrial hOGG1 in HFD-induced insulin resistance and propose several protective mechanisms which can further direct the development of therapeutic treatment. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

11 pages, 960 KiB  
Review
The Multiple Roles of Lactate in the Skeletal Muscle
by Bianca Bartoloni, Michele Mannelli, Tania Gamberi and Tania Fiaschi
Cells 2024, 13(14), 1177; https://doi.org/10.3390/cells13141177 - 10 Jul 2024
Cited by 11 | Viewed by 14731
Abstract
Believed for a long time to be merely a waste product of cell metabolism, lactate is now considered a molecule with several roles, having metabolic and signalling functions together with a new, recently discovered role as an epigenetic modulator. Lactate produced by the [...] Read more.
Believed for a long time to be merely a waste product of cell metabolism, lactate is now considered a molecule with several roles, having metabolic and signalling functions together with a new, recently discovered role as an epigenetic modulator. Lactate produced by the skeletal muscle during physical exercise is conducted to the liver, which uses the metabolite as a gluconeogenic precursor, thus generating the well-known “Cori cycle”. Moreover, the presence of lactate in the mitochondria associated with the lactate oxidation complex has become increasingly clear over the years. The signalling role of lactate occurs through binding with the GPR81 receptor, which triggers the typical signalling cascade of the G-protein-coupled receptors. Recently, it has been demonstrated that lactate regulates chromatin state and gene transcription by binding to histones. This review aims to describe the different roles of lactate in skeletal muscle, in both healthy and pathological conditions, and to highlight how lactate can influence muscle regeneration by acting directly on satellite cells. Full article
(This article belongs to the Special Issue Regulatory Programs of Skeletal Muscle Repair and Regeneration)
Show Figures

Figure 1

13 pages, 5476 KiB  
Article
Korean Red Ginseng Improves Oxidative Stress-Induced Hepatic Insulin Resistance via Enhancing Mitophagy
by Nodir Rustamov, Yuanqiang Ma, Jeong-Su Park, Feng Wang, Hwan Ma, Guoyan Sui, Gahye Moon, Hwan-Soo Yoo and Yoon-Seok Roh
Foods 2024, 13(13), 2137; https://doi.org/10.3390/foods13132137 - 5 Jul 2024
Cited by 1 | Viewed by 4906
Abstract
This study explored the potential of saponins from Korean Red Ginseng to target the PINK1/Parkin mitophagy pathway, aiming to enhance insulin sensitivity in hepatocytes—a key factor in metabolic disorders like metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes. Results from both [...] Read more.
This study explored the potential of saponins from Korean Red Ginseng to target the PINK1/Parkin mitophagy pathway, aiming to enhance insulin sensitivity in hepatocytes—a key factor in metabolic disorders like metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes. Results from both in vitro and in vivo experiments showed increased expression of PINK1 and Parkin, activating mitophagy and reducing oxidative stress through reduction in mitochondrial and total reactive oxygen species. Additionally, improvements in insulin signaling were observed, including the upregulation of phosphorylated IRS and AKT, and downregulation of gluconeogenic enzymes, underscoring the saponins’ efficacy in boosting insulin sensitivity. The findings highlighted Korean Red Ginseng-derived saponins as potential treatments for insulin resistance and related metabolic conditions. Full article
(This article belongs to the Special Issue The Benefits of Food Extracts for Human Health)
Show Figures

Graphical abstract

24 pages, 4013 KiB  
Article
Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis
by Roza Szatkowska, Emil Furmanek, Andrzej M. Kierzek, Christian Ludwig and Malgorzata Adamczyk
Int. J. Mol. Sci. 2023, 24(19), 14763; https://doi.org/10.3390/ijms241914763 - 29 Sep 2023
Cited by 1 | Viewed by 1974
Abstract
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased [...] Read more.
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell’s intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in Poland)
Show Figures

Figure 1

18 pages, 3436 KiB  
Article
Comparative Studies on the Anti-Inflammatory and Apoptotic Activities of Four Greek Essential Oils: Involvement in the Regulation of NF-κΒ and Steroid Receptor Signaling
by Achilleas Georgantopoulos, Athanasios Vougioukas, Foteini D. Kalousi, Ioannis Tsialtas and Anna-Maria G. Psarra
Life 2023, 13(7), 1534; https://doi.org/10.3390/life13071534 - 10 Jul 2023
Cited by 9 | Viewed by 3812
Abstract
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus–pituitary–adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most [...] Read more.
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus–pituitary–adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most widely prescribed anti-inflammatory drugs, despite their adverse side effects. In this study, comparative studies of the anti-inflammatory activities and interference with glucocorticoids receptor (GR) and estrogen receptor (ER) signaling of EOs from Greek Oregano, Melissa officinalis, Lavender and from the Chios Mastic, produced from the Greek endemic mastic tree, were performed in Human Embryonic Kidney 293 (HEK-293) cells. Chios Mastic (Mastiha) and oregano EOs exhibited the highest anti-inflammatory activities. The former showed a reduction in both NF-κB activity and protein levels. Mastic essential oil also caused a reduction in GR protein levels that may compensate for its boosting effect on dexamethasone (DEX)-induced GR transcriptional activation, ending up in no induction of the gluconeogenic phoshoenolpyruvate carboxykinase (PEPCK) protein levels that constitute the GR target. Oregano, Melissa officinalis and lavender EOs caused the suppression of the transcriptional activation of GR. Furthermore, the most active EO, that taken from Melissa officinalis, showed a reduction in both GR and PEPCK protein levels. Thus, the anti-inflammatory and anti-gluconeogenic activities of the EOs were uncovered, possibly via the regulation of GR signaling. Moreover, cytotoxic actions of Melissa officinalis and lavender EOs via the induction of mitochondrial-dependent apoptosis were revealed. Our results highlight these essentials oils’ anti-inflammatory and apoptotic actions in relation to their implication on the regulation of steroid hormones’ actions, uncovering their potential use in steroid therapy, with many applications in pharmaceutical and health industries as anti-cancer, anti-hyperglycemic and anti-inflammatory supplements. Full article
(This article belongs to the Special Issue Inflammation and Natural Products)
Show Figures

Graphical abstract

24 pages, 6443 KiB  
Article
Hypoglycemic Potential of Carica papaya in Liver Is Mediated through IRS-2/PI3K/SREBP-1c/GLUT2 Signaling in High-Fat-Diet-Induced Type-2 Diabetic Male Rats
by Jeane Rebecca Roy, Coimbatore Sadagopan Janaki, Selvaraj Jayaraman, Vishnu Priya Veeraraghavan, Vijayalakshmi Periyasamy, Thotakura Balaji, Madhavan Vijayamalathi, Ponnusamy Bhuvaneswari and Panneerselvam Swetha
Toxics 2023, 11(3), 240; https://doi.org/10.3390/toxics11030240 - 1 Mar 2023
Cited by 19 | Viewed by 4356
Abstract
Regardless of socioeconomic or demographic background, the prevalence of type 2 diabetes mellitus, which affects more than half a billion people worldwide, has been steadily increasing over time. The health, emotional, sociological, and economic well-being of people would suffer if this number is [...] Read more.
Regardless of socioeconomic or demographic background, the prevalence of type 2 diabetes mellitus, which affects more than half a billion people worldwide, has been steadily increasing over time. The health, emotional, sociological, and economic well-being of people would suffer if this number is not successfully handled. The liver is one of the key organs accountable for sustaining metabolic balance. Elevated levels of reactive oxygen species inhibit the recruitment and activation of IRS-1, IRS-2, and PI3K-Akt downstream signaling cascade. These signaling mechanisms reduce hepatic glucose absorption and glycogenesis while increasing hepatic glucose output and glycogenolysis. In our work, an analysis of the molecular mechanism of Carica papaya in mitigating hepatic insulin resistance in vivo and in silico was carried out. The gluconeogenic enzymes, glycolytic enzymes, hepatic glycogen tissue concentration, oxidative stress markers, enzymatic antioxidants, protein expression of IRS-2, PI3K, SREBP-1C, and GLUT-2 were evaluated in the liver tissues of high-fat-diet streptozotocin-induced type 2 diabetic rats using q-RT-PCR as well as immunohistochemistry and histopathology. Upon treatment, C. papaya restored the protein and gene expression in the liver. In the docking analysis, quercetin, kaempferol, caffeic acid, and p-coumaric acid present in the extract were found to have high binding affinities against IRS-2, PI3K, SREBP-1c, and GLUT-2, which may have contributed much to the antidiabetic property of C. papaya. Thus, C. papaya was capable of restoring the altered levels in the hepatic tissues of T2DM rats, reversing hepatic insulin resistance. Full article
(This article belongs to the Special Issue Human Toxicology and Metabolic Disease with Exposure to Drugs)
Show Figures

Figure 1

15 pages, 2088 KiB  
Article
Maternal Calorie Restriction Induces a Transcriptional Cytoprotective Response in Embryonic Liver Partially Dependent on Nrf2
by George I. Habeos, Fotini Filippopoulou, Evagelia E. Habeos, Electra Kalaitzopoulou, Marianna Skipitari, Polyxeni Papadea, George Lagoumintzis, Athanasios Niarchos, Christos D. Georgiou and Dionysios V. Chartoumpekis
Antioxidants 2022, 11(11), 2274; https://doi.org/10.3390/antiox11112274 - 17 Nov 2022
Cited by 4 | Viewed by 2843
Abstract
Background: Calorie restriction is known to enhance Nrf2 signaling and longevity in adult mice, partially by reducing reactive oxygen species, but calorie restriction during pregnancy leads to intrauterine growth retardation. The latter is associated with fetal reprogramming leading to increased incidence of obesity, [...] Read more.
Background: Calorie restriction is known to enhance Nrf2 signaling and longevity in adult mice, partially by reducing reactive oxygen species, but calorie restriction during pregnancy leads to intrauterine growth retardation. The latter is associated with fetal reprogramming leading to increased incidence of obesity, metabolic syndrome and diabetes in adult life. Transcription factor Nrf2 is a central regulator of the antioxidant response and its crosstalk with metabolic pathways is emerging. We hypothesized that the Nrf2 pathway is induced in embryos during calorie restriction in pregnant mothers. Methods: From gestational day 10 up to day 16, 50% of the necessary mouse diet was provided to Nrf2 heterozygous pregnant females with fathers being of the same genotype. Embryos were harvested at the end of gestational day 16 and fetal liver was used for qRT-PCR and assessment of oxidative stress (OS). Results: Intrauterine calorie restriction led to upregulation of mRNA expression of antioxidant genes (Nqo1, Gsta1, Gsta4) and of genes related to integrated stress response (Chac1, Ddit3) in WT embryos. The expression of a key gluconeogenic (G6pase) and two lipogenic genes (Acacb, Fasn) was repressed in calorie-restricted embryos. In Nrf2 knockout embryos, the induction of Nqo1 and Gsta1 genes was abrogated while that of Gsta4 was preserved, indicating an at least partially Nrf2-dependent induction of antioxidant genes after in utero calorie restriction. Measures of OS showed no difference (superoxide radical and malondialdehyde) or a small decrease (thiobarbituric reactive substances) in calorie-restricted WT embryos. Conclusions: Calorie restriction during pregnancy elicits the transcriptional induction of cytoprotective/antioxidant genes in the fetal liver, which is at least partially Nrf2-dependent, with a physiological significance that warrants further investigation. Full article
Show Figures

Figure 1

17 pages, 4603 KiB  
Article
Effect of Carica papaya on IRS-1/Akt Signaling Mechanisms in High-Fat-Diet–Streptozotocin-Induced Type 2 Diabetic Experimental Rats: A Mechanistic Approach
by Jeane Rebecca Roy, Coimbatore Sadagopan Janaki, Selvaraj Jayaraman, Vijayalakshmi Periyasamy, Thotakura Balaji, Madhavan Vijayamalathi and Vishnu Priya Veeraraghavan
Nutrients 2022, 14(19), 4181; https://doi.org/10.3390/nu14194181 - 8 Oct 2022
Cited by 14 | Viewed by 3167
Abstract
Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM [...] Read more.
Despite rigorous endeavors, existing attempts to handle type 2 diabetes (T2DM) are still a long way off, as a substantial number of patients do not meet therapeutic targets. Insulin resistance in skeletal muscle is discerned as a forerunner in the pathogenesis of T2DM and can be detected years before its progress. Studies have revealed the antidiabetic properties of Carica papaya (C. papaya), but its molecular mechanism on insulin receptor substrate-1 (IRS-1)/Akt signaling mechanisms is not yet known. The present study aimed to evaluate the role of C. papaya on IRS1 and Akt in high-fat-diet–streptozotocin-induced type 2 diabetic rats and also to analyze the bioactive compounds of C. papaya against IRS-1 and Akt via in silico analysis. Ethanolic extract of the leaves of C. papaya (600 mg/kg of body weight) was given daily for 45 days postinduction of T2DM up to the end of the study. Gluconeogenic enzymes, glycolytic enzymes, gene expression, and immunohistochemical analysis of IRS-1 and Akt in skeletal muscle were evaluated. C. papaya treatment regulated the levels of gluconeogenic and glycolytic enzymes and the levels of IRS-1 and Akt in skeletal muscle of type 2 diabetic animals. In silico studies showed that trans-ferulic acid had the greatest hit rate against the protein targets IRS-1 and Akt. C. papaya restored the normoglycemic effect in diabetic skeletal muscle by accelerating the expression of IRS-1 and Akt. Full article
(This article belongs to the Special Issue Adiposity, Diabetes and Metabolic Diseases)
Show Figures

Graphical abstract

11 pages, 2343 KiB  
Article
Pea Protein-Derived Peptides Inhibit Hepatic Glucose Production via the Gluconeogenic Signaling in the AML-12 Cells
by Wang Liao, Xinyi Cao, Hui Xia, Shaokang Wang and Guiju Sun
Int. J. Environ. Res. Public Health 2022, 19(16), 10254; https://doi.org/10.3390/ijerph191610254 - 18 Aug 2022
Cited by 11 | Viewed by 2585
Abstract
Pea protein is considered to be a high quality dietary protein source, but also it is an ideal raw material for the production of bioactive peptides. Although the hypoglycemic effect of pea protein hydrolysate (PPH) has been previously reported, the underlying mechanisms, in [...] Read more.
Pea protein is considered to be a high quality dietary protein source, but also it is an ideal raw material for the production of bioactive peptides. Although the hypoglycemic effect of pea protein hydrolysate (PPH) has been previously reported, the underlying mechanisms, in particular its effect on the hepatic gluconeogenesis, remain to be elucidated. In the present study, we found that PPH suppressed glucose production in mouse liver cell-line AML-12 cells. Although both of the gluconeogenic and insulin signaling pathways in the AML-12 cells could be regulated by PPH, the suppression of glucose production was dependent on the inhibition of the cAMP response element-binding protein (CREB)-mediated signaling in the gluconeogenic pathway, but not the activation of insulin signaling. Findings from the present study have unveiled a novel role of PPH underlying its anti-diabetic activity, which could be helpful to accelerate the development of functional foods and nutraceuticals using PPH as a starting material. Full article
(This article belongs to the Special Issue Functional Foods and Cardiometabolic Health)
Show Figures

Graphical abstract

19 pages, 2623 KiB  
Article
Development of a Vector Set for High or Inducible Gene Expression and Protein Secretion in the Yeast Genus Blastobotrys
by Anita Boisramé and Cécile Neuvéglise
J. Fungi 2022, 8(5), 418; https://doi.org/10.3390/jof8050418 - 19 Apr 2022
Cited by 2 | Viewed by 3118
Abstract
Converting lignocellulosic biomass into value-added products is one of the challenges in developing a sustainable economy. Attempts to engineer fermenting yeasts to recover plant waste are underway. Although intensive metabolic engineering has been conducted to obtain Saccharomyces cerevisiae strains capable of metabolising pentose [...] Read more.
Converting lignocellulosic biomass into value-added products is one of the challenges in developing a sustainable economy. Attempts to engineer fermenting yeasts to recover plant waste are underway. Although intensive metabolic engineering has been conducted to obtain Saccharomyces cerevisiae strains capable of metabolising pentose sugars mainly found in hemicellulose, enzymatic hydrolysis after pretreatment is still required. Blastobotrys raffinosifermentans, which naturally assimilates xylose and arabinose and displays numerous glycoside hydrolases, is a good candidate for direct and efficient conversion of renewable biomass. However, a greater diversity of tools for genetic engineering is needed. Here, we report the characterisation of four new promising promoters, a new dominant marker, and two vectors for the secretion of epitope tagged proteins along with a straightforward transformation protocol. The TDH3 promoter is a constitutive promoter stronger than TEF1, and whose activity is maintained at high temperature or in the presence of ethanol. The regulated promoters respond to high temperature for HSP26, gluconeogenic sources for PCK1 or presence of xylose oligomers for XYL1. Two expression/secretion vectors were designed based on pTEF1 and pTDH3, two endogenous signal peptides from an α-arabinanase and an α-glucuronidase, and two epitopes. A heterologous α-arabinoxylan hydrolase from Apiotrichum siamense was efficiently secreted using these two vectors. Full article
(This article belongs to the Special Issue Leveraging Yeast Biodiversity for Biotechnology)
Show Figures

Figure 1

17 pages, 3568 KiB  
Article
Mechanism of Action of Cyanidin 3-O-Glucoside in Gluconeogenesis and Oxidative Stress-Induced Cancer Cell Senescence
by Yaoyao Jia, Chunyan Wu, Adriana Rivera-Piza, Yeon-Ji Kim, Ji Hae Lee and Sung-Joon Lee
Antioxidants 2022, 11(4), 749; https://doi.org/10.3390/antiox11040749 - 9 Apr 2022
Cited by 26 | Viewed by 4389
Abstract
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin abundant in fruits and vegetables that interacts and possibly modulates energy metabolism and oxidative stress. This study investigated the effect of C3G on gluconeogenesis and cancer cell senescence. C3G activates adenosine monophosphate-activated protein kinase (AMPK), a cellular [...] Read more.
Cyanidin-3-O-glucoside (C3G) is a natural anthocyanin abundant in fruits and vegetables that interacts and possibly modulates energy metabolism and oxidative stress. This study investigated the effect of C3G on gluconeogenesis and cancer cell senescence. C3G activates adenosine monophosphate-activated protein kinase (AMPK), a cellular energy sensor involved in metabolism and the aging process. C3G suppressed hepatic gluconeogenesis by reducing the expression of gluconeogenic genes through the phosphorylation inactivation of CRTC2 and HDAC5 coactivators via AMPK. C3G did not directly interact with AMPK but, instead, activated AMPK through the adiponectin receptor signaling pathway, as demonstrated through adiponectin receptor gene knockdown experiments. In addition, C3G increased cellular AMP levels in cultured hepatocytes, and the oral administration of C3G in mice elevated their plasma adiponectin concentrations. These effects collectively contribute to the activation of AMPK. In addition, C3G showed potent antioxidant activity and induced cellular senescence, and apoptosis in oxidative-stress induced senescence in hepatocarcinoma cells. C3G increased senescence-associated β-galactosidase expression, while increasing the expression levels of P16, P21 and P53, key markers of cellular senescence. These findings demonstrate that anthocyanin C3G achieves hypoglycemic effects via AMPK activation and the subsequent suppression of gluconeogenesis and exhibits anti-cancer activity through the induction of apoptosis and cellular senescence. Full article
Show Figures

Figure 1

13 pages, 1032 KiB  
Article
Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2
by Fotini Filippopoulou, George I. Habeos, Vagelis Rinotas, Antonia Sophocleous, Gerasimos P. Sykiotis, Eleni Douni and Dionysios V. Chartoumpekis
Antioxidants 2022, 11(1), 4; https://doi.org/10.3390/antiox11010004 - 21 Dec 2021
Cited by 16 | Viewed by 5348
Abstract
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be [...] Read more.
Glucocorticoids are used widely on a long-term basis in autoimmune and inflammatory diseases. Their adverse effects include the development of hyperglycemia and osteoporosis, whose molecular mechanisms have been only partially studied in preclinical models. Both these glucocorticoid-induced pathologies have been shown to be mediated at least in part by oxidative stress. The transcription factor nuclear erythroid factor 2-like 2 (NRF2) is a central regulator of antioxidant and cytoprotective responses. Thus, we hypothesized that NRF2 may play a role in glucocorticoid-induced metabolic disease and osteoporosis. To this end, WT and Nrf2 knockout (Nrf2KO) mice of both genders were treated with 2 mg/kg dexamethasone or vehicle 3 times per week for 13 weeks. Dexamethasone treatment led to less weight gain during the treatment period without affecting food consumption, as well as to lower glucose levels and high insulin levels compared to vehicle-treated mice. Dexamethasone also reduced cortical bone volume and density. All these effects of dexamethasone were similar between male and female mice, as well as between WT and Nrf2KO mice. Hepatic NRF2 signaling and gluconeogenic gene expression were not affected by dexamethasone. A 2-day dexamethasone treatment was also sufficient to increase insulin levels without affecting body weight and glucose levels. Hence, dexamethasone induces hyperinsulinemia, which potentially leads to decreased glucose levels, as well as osteoporosis, both independently of NRF2. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

12 pages, 1516 KiB  
Article
Hyperpolarized Dihydroxyacetone Is a Sensitive Probe of Hepatic Gluconeogenic State
by Mukundan Ragavan, Marc A. McLeod, Anthony G. Giacalone and Matthew E. Merritt
Metabolites 2021, 11(7), 441; https://doi.org/10.3390/metabo11070441 - 5 Jul 2021
Cited by 11 | Viewed by 3266
Abstract
Type II diabetes and pre-diabetes are widely prevalent among adults. Elevated serum glucose levels are commonly treated by targeting hepatic gluconeogenesis for downregulation. However, direct measurement of hepatic gluconeogenic capacity is accomplished only via tracer metabolism approaches that rely on multiple assumptions, and [...] Read more.
Type II diabetes and pre-diabetes are widely prevalent among adults. Elevated serum glucose levels are commonly treated by targeting hepatic gluconeogenesis for downregulation. However, direct measurement of hepatic gluconeogenic capacity is accomplished only via tracer metabolism approaches that rely on multiple assumptions, and are clinically intractable due to expense and time needed for the studies. We previously introduced hyperpolarized (HP) [2-13C]dihydroxyacetone (DHA) as a sensitive detector of gluconeogenic potential, and showed that feeding and fasting produced robust changes in the ratio of detected hexoses (6C) to trioses (3C) in the perfused liver. To confirm that this ratio is robust in the setting of treatment and hormonal control, we used ex vivo perfused mouse livers from BLKS mice (glucagon treated and metformin treated), and db/db mice. We confirm that the ratio of signal intensities of 6C to 3C in 13C nuclear magnetic resonance spectra post HP DHA administration is sensitive to hepatic gluconeogenic state. This method is directly applicable in vivo and can be implemented with existing technologies without the need for substantial modifications. Full article
Show Figures

Figure 1

13 pages, 777 KiB  
Review
Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling
by Ling He
Int. J. Mol. Sci. 2021, 22(4), 2121; https://doi.org/10.3390/ijms22042121 - 20 Feb 2021
Cited by 21 | Viewed by 4614
Abstract
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. [...] Read more.
A high-fat, Western-style diet is an important predisposing factor for the onset of type 2 diabetes and obesity. It causes changes in gut microbial profile, reduction of microbial diversity, and the impairment of the intestinal barrier, leading to increased serum lipopolysaccharide (endotoxin) levels. Elevated lipopolysaccharide (LPS) induces acetyltransferase P300 both in the nucleus and cytoplasm of liver hepatocytes through the activation of the IRE1-XBP1 pathway in the endoplasmic reticulum stress. In the nucleus, induced P300 acetylates CRTC2 to increase CRTC2 abundance and drives Foxo1 gene expression, resulting in increased expression of the rate-limiting gluconeogenic gene G6pc and Pck1 and abnormal liver glucose production. Furthermore, abnormal cytoplasm-appearing P300 acetylates IRS1 and IRS2 to disrupt insulin signaling, leading to the prevention of nuclear exclusion and degradation of FOXO1 proteins to further exacerbate the expression of G6pc and Pck1 genes and liver glucose production. Inhibition of P300 acetyltransferase activity by chemical inhibitors improved insulin signaling and alleviated hyperglycemia in obese mice. Thus, P300 acetyltransferase activity appears to be a therapeutic target for the treatment of type 2 diabetes and obesity. Full article
(This article belongs to the Special Issue Nutrient-Gene Interactions)
Show Figures

Figure 1

Back to TopTop